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1. Introduction

Here we give a survey on the bounds for character sums of D. A. Burgess [1]. We henceforth set

(1.1) Sχ(N) =
∑

M<n≤M+N

χ(n),

where χ is a non-principle character modulo a prime number p. The result of Burgess can be generalized to
composite moduli, but for the sake of simplicity, we shall only concentrate on prime moduli here.

By Polya-Vinogradov inequality, we have

(1.2) Sχ(N) ≤ 6
√

p log p.

See section 12.4 of [3] for a proof of the above. This bound is non-trivial whenever N is larger than
√

p log p.
However, the expected bound is

Sχ(N) ≪
√

Npε,

which is non-trivial if N ≫ p3ε.

Burgess [1] proved the following result.

Theorem 1 (Burgess). If p is a prime number and χ is a non-principal character of order l modulo p and
N , r ∈ N, then

(1.3) |Sχ(N)| ≤ cN1− 1
r p

r+1

4r
2 (log p)

1
r ,

where c is an absolute constant (c = 30 should suffice.).

A consequence of Theorem 1 is that we have a non-trivial bound for a character sums whenever N > p1/4+ε.
In turn, we have the following results.

(1) The maximum number of consecutive quadratic residue or non-residue to a prime modulus is
O(p1/4+ε), provided that p is sufficiently large. Hence any sequence of consectivie integers longer
than the said quantity would contain at least one quadratic residue and non-residue.

(2) For each ε > 0, every interval of length N > p1/4+ε contains

ϕ(p − 1)

p − 1
N

(

1 + O
(

p−δ
))

primitive roots modulo p, where δ depends on ε. Hence the least primitive root modulo p is O(p1/4+ε).

(3) With r = 2, Theorem 1 also gives a subconvexity bound for Dirichlet L-functions in the conductor
aspect. If χ is a character modulo a prime p, then

L

(

1

2
+ it, χ

)

≪ |t|p3/16+ε.

Considering that there is no non-principal character modulo p = 2 and character sums of the form in (1.1)
modulo p = 3 is never exceeds one in modulus, it suffices in the sequal to consider only p ≥ 5.
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2. Various Tranformations and Estimates

For the benefit the combinatorists in the audience, the arguments will go by induction on N . The
statement is obvious if N = 1. If either

N > p1/2+1/(4r) log p, or N < crp1/4+1/(4r) log p,

the majorant in (1.3) exceeds that in (1.2). Hence in those cases, Theorem 1 follows from (1.2). Therefore,
we henceforth assume that

(2.1) crp1/4+1/(4r) log p ≤ N ≤ p1/2+1/(4r) log p.

Making a shift n → n + h with 1 ≤ h ≤ H < N , we have

Sχ(N) =
∑

M<n≤M+N

χ(n + h) + 2θE(H),

where θ is a complex number of modulus not exceeding 1, and

E(H) = cH1−1/rp
r+1

4r
2 (log p)

1/r
,

by the induction hypothesis.

Note here that E(H) represent characters sums of length less than N . Let H = AB with A, B ∈ N. Write
h = ab with 1 ≤ a ≤ A and 1 ≤ b ≤ B, we have, after summing over all a’s and b’s in the said range,

(2.2) Sχ(N) =
1

H

∑

1≤a≤A
1≤b≤B

∑

M<n≤M+N

χ(n + ab) + 2θE(H).

The first term on the right-hand side of (2.2) is

1

H

∑

a

∑

n

χ(a)
∑

b

χ(an + b).

Here a denotes the multiplicative inverse of a modulo p. Note here that by (2.1), we have A, B ≤ H < N < p.
So gcd(a, p) = 1 as p ∈ P.

We now have

(2.3) |Sχ(N)| ≤ H−1V + 2E(H),

where

V =
∑

x mod p

ν(x)

∣

∣

∣

∣

∣

∣

∑

1≤b≤B

χ(x + b)

∣

∣

∣

∣

∣

∣

,

and ν(x) is the number of representations of x as an modulo p with 1 ≤ A and M < n ≤ M + N .

Applying Hölder’s inequality twice, we have

(2.4) V ≤ V
1−1/r
1 V

1/(2r)
2 W 1/(2r)

with
V1 =

∑

x mod p

ν(x), V2 =
∑

x mod p

ν2(x)

and

W =
∑

x mod p

∣

∣

∣

∣

∣

∣

∑

1≤b≤B

χ(x + b)

∣

∣

∣

∣

∣

∣

2r

.

(2.4) is most easily seen as having p = (1 − 1/(2r))−1 and q = 2r in the first application of Hölder and

p =
2r − 1

2r − 2
, q = 2r − 1

and re-writing

ν(x)1+1/(2r−1) = ν(x)
2r−2

2r−1 ν(x)
2

2r−1

in the second application.
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It should be noted that ν(x) is very often zero and that we could have restricted the outer sum in W only
to the x for which ν(x) 6= 0. But we are not able to take advantage of such a condition. We have potentially
lost greatly in relaxing the said restriction, but such loss is small relative to the length of the character sum
raised to the power 2r. We hope, and indeed we do, that we shall gain some total saving in the end. It
is also neccessary to have integral moments of ν(x) in the sequal. This required the second application of
Hölder’s inequality.

We first observe that

(2.5) V1 = AN,

and that

V2 = {(a1, a2, n1, n2) : 1 ≤ a1, a2 ≤ A, M < n1, n2 ≤ M + N, a1n2 ≡ a2n2 (mod p)} .

Fix a1, a2 and set kp = a1n2 − a2n1, we have

kp − (a1 − a2)M = a1n2 − a2n1 − a1M + a2M = a2(n2 − M) − a2(n2 − M).

The last difference is between two natural numbers neither of which exceeds AN . Hence we have
∣

∣

∣

∣

k − (a1 − a2)
M

p

∣

∣

∣

∣

≤ AN

p
.

Moreover, we have gcd(a1, a2)|k. Hence the number of possible choices for k is at most

2AN

gcd(a1, a2)p
+ 1.

Moreover, by the extended Euclidean algorithm, the number of pairs (n1, n2) satisfying

a1n2 − a2n1 = kp

with a1, a2 and k fixed is less than both

2N gcd(a1, a2)

a1
,
2N gcd(a1, a2)

a2
.

Hence

V2 ≤ 2N
∑

a1

∑

a2

gcd(a1, a2)

max(a1, a2)

(

2AN

gcd(a1, a2)p
+ 1

)

.

Note that
∑

a1

∑

a2

2AN

max(a1, a2)p
≤ 4AN

p

∑

a1

1

a1

∑

a2≤a1

1 =
4A2N

p
,

and
∑

a1

∑

a2

gcd(a1, a2)

max(a1, a2)
≤ 2

∑

a1

1

a1

∑

a2≤a2

gcd(a1, a2) ≤ 2
∑

a1

1

a1

∑

d|a1

∑

d|a2

a2≤a1

d ≤ 2
∑

a1

τ(a2) ≤ 4A log(3A),

where τ(n) is the number of divisors of n and the last inequality arrives upon noting that
∑

n≤x

τ(n) = x log x + θx,

with |θ| ≤ 1. Putting the above estimates together, we have

(2.6) V2 ≤ 8AN(ANp−1 + log(3A)).

We now assume the following estimate for W which we shall prove in the next section.

(2.7) W ≤ (2rB)rp + 2rB2rp1/2.

We now take

A =

[

N

9rp1/(2r)

]

and B =
[

rp1/(2r)
]

.

We first note that A ≥ 1 by the first inequality in (2.1) and by the second inequality in the same we have

(2.8) AN ≤ N2

9rp1/(2r)
≤ p1+1/r log2 p

9rp1/(2r)
≤ p log2 p.
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Hence by (2.7) and the definition of B, we have

(2.9) W ≤ (2r)2rp3/2

and by (2.6) and (2.8) we have

(2.10) V2 ≤ AN(4 log p)2.

Putting (2.4), (2.5), (2.9) and (2.10) together, we get

V ≤ 2r(AN)1−1/(2r)(4 log p)1/rp3/(4r).

Now noting that A ≤ N/(9rp1/(2r)), we get

(2.11) V ≤ N2−1/rp
r+1

4r
2 (log p)1/r.

Putting (2.3) and (2.11) together, we get

|Sχ(N)| ≤ V

H
+ 2E(H) ≤ 1

H
N2−1/rp

r+1

4r
2 (log p)1/r + cH1−1/rp

r+1

4r
2 (log p)1/r.

Clearly, H = AB ≤ N/9. It can be shown further that H ≥ (N/(9rp1/(2r))− 1)(rp1/(2r) − 1) > N/10, using
the inequalities in (2.1) and recalling that p ≥ 5 and that c will be taken to be 30. Therefore, we have

|Sχ(N)| ≤
(

10 +
2

3
c

)

N1−1/rp
r+1

4r
2 (log p)

1/r
.

Again remembering that c = 30, we have the desired result.

3. The Heart of the Proof

It still remains to prove (2.7) which is at the heart of Burgess’s result. Again recalling that B < p from
the inequalities in (2.1).

Expanding W , we get

(3.1) W =
∑

· · ·
∑

1≤b1···b2r≤B

∑

x mod p

χ
(

(x + b1) · · · (x + br)(x + br+1)
l−1 · · · (x + b2r)

l−1
)

,

recalling that χ is of order l. Now we write

(3.2) (x + b1) · · · (x + br)(x + br+1)
l−1 · · · (x + b2r)

l−1

as

(3.3) (x + m1)
β1 · · · (x + mu)βu ,

where m1, · · · , mu are all distinct. Therefore, m1, ·, mu as also all distinct modulo p as B < p. Now we
reduce β1, · · · , βu modulo l and have them lie between 0 and l − 1. Now the product in (3.3) becomes,
possiblly empty,

(3.4) (x + c1)
γ1 · · · (x + cv)

γv ,

where c1, · · · , cv are all distinct and 0 < γi ≤ l − 1.

If the polynomial in (3.2) or (3.3) is a perfect l-th power, then we have the trivial bound
∣

∣

∣

∣

∣

∣

∑

x mod p

χ
(

(x + b1) · · · (x + br)(x + br+1)
l−1 · · · (x + b2r)

l−1
)

∣

∣

∣

∣

∣

∣

≤ p.

But this is only possible when b1, · · · , b2r can the arranged into r equal pairs. The number of such cases in
which we must rely on the trivial bound does not exceed

r

(

2r
r

)

Br ≤ (2rB)r.

Now note that these terms lead to the first term on the right-hand side of (2.7).



BURGESS BOUND FOR CHARACTER SUMS 5

Now assume that (3.4) is not an empty product; i.e. the polynomials in either and hence both (3.2) and
(3.3) is not an l-th power. Keep in mind that the number of such polynomials does not exceed B2r. We
note that

∑

x mod p

χ ((x + c1)
γ1 · · · (x + cv)γv )

and
∑

x mod p

χ
(

(x + m1)
β1 · · · (x + mu)βu

)

differ only in the terms for which the latter is zero while the first is not. There are at most u− v such terms.
Assuming that

(3.5)

∣

∣

∣

∣

∣

∣

∑

x mod p

χ ((x + c1)
γ1 · · · (x + cv)

γv )

∣

∣

∣

∣

∣

∣

≤ (v − 1)p1/2.

We have
∣

∣

∣

∣

∣

∣

∑

x mod p

χ
(

(x + b1) · · · (x + br)(x + br+1)
l−1 · · · (x + b2r)

l−1
)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

x mod p

χ
(

(x + m1)
β1 · · · (x + mu)βu

)

∣

∣

∣

∣

∣

∣

≤ u − v +

∣

∣

∣

∣

∣

∣

∑

x mod p

χ ((x + c1)
γ1 · · · (x + cv)

γv )

∣

∣

∣

∣

∣

∣

≤ u − v + (v − 1)p1/2 ≤ 2rp1/2,

noting that 0 < v ≤ u ≤ 2r. This estimate gives rise to the second term on the right-hand side of (2.7).

Now it finally remains only to prove (3.5) which lies at the heart’s core of Burgess’s result.

Let Fp be the field with p elements. Let K = Fp[X ] and Z be the algebraic extension of K by adjoining
y to K, where

yl = f

where f is the polynomial in (3.4). Here we note that K is a principal ideal domain. We define a character,
á la H. Hasse [2], as follows.

If a is an ideal in K, then

χ(a) =

{

χ (Na(f)) , if a is prime to f,
0, otherwise.

Here Na(f) is the norm of f in the residue class ring K/a 1 and

f =
∏

p

p,

where the product is over prime ideals p that divide the ideal generated by f .

Now we define an L-function for Z/K as

L(s, χ) =
∏

p

(

1 − χ(p)

R(p)s

)−1

=
∑

a

χ(a)

R(a)s
,

where the product is over the prime ideals p of K and the sum is over all ideals a of K.

H. Hasse [2] showed that

p(d−1)sL(s, χ),

1It suffices to think of this as the following in this case. If a is a prime ideal, then K/a is a field and vector space over Fp. If
M is the matrix representation of the linear transformation g → fg in the said vector space, then the norm in question is the
norm of the matrix M . This norm is then extended to all ideal a, prime or not, by multiplicity.
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where d is the degree of f, is a polynomial of degree d − 1 in ps with roots ̟1, · · · , ̟d−1 and if σ(χ) is the
coefficient of p−s in L(s, χ), then

(3.6) σ(χ) =
∑

p

χ(p) = −
d−1
∑

k=1

̟k,

where the sum over p is over all primes ideals of degree one in K. In our case, these ideals are exactly those
generated by polynomials in K that are linear and monic. Moreover, if p is generated by such a polynomial,
x − a say, then it is easy to compute that

χ(p) = χ(Na(f)) = χ(f(a)).

Therefore, we have

(3.7)
∑

p of degree 1

χ(p) =
∑

a mod p

χ(f(a))

Now it is due to A. Weil that L(s, χ) satisfies the Riemann hypothesis; i.e. all the zeros of L(s, χ) have real
part 1/2. This is to say that |̟k| = p1/2. From this, we infer that

(3.8)

∣

∣

∣

∣

∣

∣

∑

p of degree 1

χ(p)

∣

∣

∣

∣

∣

∣

≤ (d − 1)p1/2.

Now, noting that d = v and putting together (3.7) and (3.8), we get (3.5) and hence the desired theorem.
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