ON THE FIXED POINTS OF THE MAP z +— z*
MODULO A PRIME, II

ADAM TYLER FELIX AND PAR KURLBERG

ABSTRACT. We study number theoretic properties of the map x —
2% (mod p), where z € {1,2,...,p — 1}, and improve on some
recent upper bounds, due to Kurlberg, Luca, and Shparlinski, on
the number of primes p < N for which the map only has the trivial
fixed point x = 1. A key technical result, possibly of independent
interest, is the existence of subsets .4, C {2,3,...,¢ — 1} such
that almost all k-tuples of distinct integers ny,n2,...,n, € A7 are
multiplicatively independent (if k is not too large), and | 4| =
q-(1+0(1)) as ¢ — oo. For g a large prime, this is used to show
that the number of solutions to a certain large and sparse system
of F-linear forms {.%,}2~} “behaves randomly” in the sense that
{veFl: Z(v)=1n=23,...,¢-1} ~q¢(1-1/9)7 ~ ¢%/e.
(Here d = w(q — 1) and the coefficents of .%, are given by the
exponents in the prime power factorization of n.)

1. INTRODUCTION

For a prime p, let ¢, : {1,2,...,p— 1} — {1,2,...,p — 1} be the
remainder of ” divided by p. The function ¢, has cryptographic ap-
plications related to variations of the ElGamal signature scheme (see
9, Notes 11.70 and 11.71}); our main focus is studying the number of
non-trivial fixed points of v, as p varies. Let

F(p) =4#{zr e {1,2,...,p— 1} : ¢p(z) = 2}

denote the number of fixed points of v,. For convenience, we will
slightly abuse notation and simply write 1,(z) = 2z*(mod p) (note
that 2 is not well defined modulo p.) As 1 is always a fixed point of
Y, we will say it is trivial; all other fixed points are said to be nontrivial.
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Kurlberg, Luca and Shparlinski [7] gave bounds on the number of
primes p for which 1, only has trivial fixed points. More specifically,
they show most primes p have at least one fixed point besides 1: with
A(N) ={p < N : F(p) = 1} they proved that (cf. [7, Theorem 1])

m(N)
(logg N )?+o(1)

as N — oo, where 7(z) := #{p < x : p is prime} is the prime counting
function and

(1.1) #A(N) <

1 1 672 — 18
€2 222
log z := max{Inx, 2}, and log,, := log(log,_, z) for k € N and k > 2.

In (1.1), the exponent ¥ is related to the number of solutions to a
certain system of linear forms modulo ¢, where ¢ is a prime. For the
convenience of the reader, we briefly describe how solutions to linear
forms modulo ¢ are related to fixed points of v, (cf. [7, Section 2] for
more details): For primes p = 1 mod ¢, it turns out that 1, has a
nontrivial fixed point if n/q is a g-th power modulo p, for some integer
n € [1,q — 1]. This in turn can be characterised in terms of the image
of Frobenius, acting on Gal (Q(V/1,V/2,..., ¥/q — 1, e*™/1) /Q(e*""/1)),
lying in a certain union of conjugacy classes. The cardinality of said
union is related to the number of solutions, modulo ¢, to the following
system of linear equations. Let d = m(¢—1), and for 1 <n < ¢g—1, let

d
n= H p; i
i=1

be the prime power factorization of n, where we have ordered the primes
p<q—1sothat py <py<---<pg<gq. ForneZn]|l q—1], define
linear forms %, : Fg — [F, by

(1.2) 9=

~ 0.4231394212- - - |

d
(1.3) Lo(v) =Y pi(n)v;,
i—1
where v := (vy,vs,...,v4) € FY. For xy € FY fixed, let
N, := Ny(zo) = #{V € IFZ 1 Zn(v) # xo for all n € {1,2,3, ... 797_1}}

and put ¢(q) := N,/q?. Kurlberg, Luca and Shparlinski showed that

#A(N) < oms Ngl(ivc)(q)%m, gave the bound (cf. [7, Lemma 3])

(1.4) c(q) <1—194o0(1)
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and conjectured! that c¢(q) = e~ +o0(1). The basis for the conjecture is
the following probabilistic heuristic: if ¢ is large, v # 0, and the linear
forms {.%,}9_} are random, then the probability that .%Z,(v) # z for
all n equals (1—1/¢)92 = 1/e+0(1). Summing over all nonzero v and
using the linearity of expectations, we find that the expected value of
Ny(w) s ¢ (1/e +o(1))

Of course the collection of linear forms is far from random, e.g.,
the number of nonzero coefficients of ., equals w(n) (the number of
distinct prime divisors of n); for n < ¢ we find that w(n) < logq = d°V)
and hence {2,179} is a collection of quite sparse linear forms (in the
sense that most coefficients are zero). Moreover, as u;(n) < 1 if p; >
v/, most coefficients of the linear forms are very small. Nonetheless,
the above heuristic turns out to give the correct answer.

Theorem 1.1. As g — oo,

(1.5) lg) == +0 (10;(1)'

Remark 1.1. The method of proof would give a similar result in
(roughly) the following setting. Assume that L, is a finite collection
of non-zero distinct linear forms modulo ¢ having the properties that
(1): there exists a subset L) C Ly such that |L;| = (14 0(1/q))|Le| =
(1 +o(1))g. (2): for almost all k-tuples Ly, of distinct forms in L,
the forms in Ly, are linearly independent, for 2 < k£ < K, where
K, (slowly) tends to infinity with ¢. (3): The number of k tuples of

distinct forms Ly, whose rank r < k — 1 is |L,|"°W.

We have the following corollary of Theorem 1.1 and [7, pp. 154-155]:

Corollary 1.2. As N — oo,

m(N)

A(N) < —
FAN) = (logg N)!e+eld

For comparison with (1.2), note that 1—% ~ 0.63212---. Also, if one

wishes to be explicit, then o(1) in the exponent becomes O (}EEUNV) )

For more details, see [7, §2].

IThe conjecture was mistakenly stated for any z € Fg, but it is essential to
assume that z¢ # 0 since the form 2] is the zero form, and hence . (v) = 0 for
all v e IFZ. The upper bound (1.4) is valid without any assumption on xg, as it is
based on examining square-free values of n > 2.
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1.1. Outline of the proof. Since .Z] is the zero form and zy # 0,
it is enough to consider v € F? such that .Z,(v) # xo foralln €
{2,...,¢—1}. In §3, we then reduce the problem of determining N, (zo)
for xo € F to that of finding N, := Ny(1). We further note that for
any subset A4 C {2,3,4,...,q— 1},

Nq:#{ve]}?‘j:.ﬂn(v) #1forallne{2,...,q—1}}

g#{ve]ngfn(v)%lforallnEJV}

N
= Mg = Z(_l)k Z My,s,
k=0

scH
ST=k

where

Mys:=#{veFl: £ (v)=1forallne S}
In particular, truncating the inclusion/exclusion at an odd, or even,
number of terms gives the following bounds on M, 4, for any K € N:

2K—1 2K
DEDEY T Mys < My <> (=15 Y Mys.
k=0 Sc. k=0 ScH

IS|=k |S|=k

(These combinatorial bounds appears in many places in number theory,
e.g. in Brun’s pure sieve.) Let

K

Di=Yg= ) (D)F Y M.

k=0 ScHN
|ST=k

Observe that, if S is a set of F-independent linear forms, then M, g =
¢%~151 and this quickly yields the main term. Estimating the error term
is more difficult; it amounts to determining the contribution from M, g
as S ranges over sets of F,-dependent forms. Our strategy is to first
reduce the problem of IF-independence of subsets of forms {.2,}7_}, to
multiplicative independence of subsets of {2,3,...,¢ — 1} (see Lemma
3.2). A key technical result, perhaps of independent interest, is then
that there exists large subsets A; C {2,3,...,¢ — 1} such that es-
sentially all k-tuples of distinct elements of .4, are multiplicatively
independent, provided k is not too large. Before stating the result we
introduce the following convenient notation: given a set & and k € N,

let W = {% C o :|B| =k}

Theorem 1.3. For each integer q there exists N, C {2,3,...,q — 1}
such that, as ¢ — o0,

#N,=q+ O(q/logy q)
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(where the implied constant is less than 1) and

(1.6) # {5’ € ,/1{1[’“] . is multiplicatively mdependent}

B #M, k—3/240(1) _i (L)
_( . )+O((#=/%) ! )—k!+0 (k—1)'ogyq /"

provided that k = o(+/10gs q).

Using Theorem 1.3 we easily obtain a sufficiently good upper bound
on N,. To obtain a lower bound we remove all v & ]Fg such that
Z,(v) = 1 for some n in the complementary set A4,¢ = {2,3,...,q —
1} \ A As #4° = O(q/logyq), a sufficient upper bound on the
number of removed v follows easily (see §5.2.)

Remark 1.2. For recent results on asymptotics for the number of mul-
tiplicatively dependent k-tuples (not necessarily distinct) whose coordi-
nates are algebraic numbers of bounded height, see [10]. In particular,
[10, Theorem 1.1] gives an asymptotic for the number of multiplica-
tively dependent k-tuples, though not uniform in k. On the other
hand, using [8, Corollary 3.2] (due to K. Yu) to find “short” exponent
vectors in multiplicative relations leads to a good upper bound with a
significant improvement in the level of uniformity in k. We thank Igor
Shparlinski for pointing this out.

1.2. Related results. Little is known about the dynamics and distri-
bution of ¢,. The proof technique for [1, Theorem 4] implies F(p) <
p%“(l). In [6], Friedrichsen and Holden introduced a probabilistic
model for F(p): the distribution of F'(p) should be closely related to
> dlp—1 X4, where X, ranges over independent random variables hav-
ing binomial distributions with parameters (¢(d), 1/d); they also gave
numerical evidence for the validity of this model. See §6 for further nu-
merical investigations. Further, in [7, Section 3], a heuristic argument
that >y F(p) = (1 +0o(1))N was given.

As for lower and upper bounds on the size of the image, by Crocker
[5] and Somer [11], we know that

2

-1 3
p—] < #{@/Jp(w) re{l,2,...,p— 1}} <p+0 (p%“(”) :
There are also upper bounds on the cardinality of preimages: with

N(p,a) := #{m €{1,2,...,p— 1} : ¢,(x) = a(mod p)},
and

M(p) = #{(w,y) € {1.2,....p = 1}*: (@) = % (») |-
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Balog, Broughan and Shparlinski [1, Corollary 5, Theorem 7 and The-
orem 8| showed the following uniform bounds for a with ged(a,p) =1
and multiplicative order ¢:

(1.7) N(p,a) < min {ph+eid, prromyi |

and
48

M(p) < p+o®,
Let a = 1. Then, as noted in [1], (1.7) implies N(p,1) < p3+od),
Cilleruelo and Garaev [4, 3] improve these bounds to N (p, 1) < psz*o)
and M (p) < pizto®),

Acknowledgements. We would like to thank Florian Luca and Igor
Shparlinski for their comments on an early version of the paper. We
would also like to thank the two anonymous referees for their care-
ful reading of the paper and for comments that greatly improved the
exposition, as well as leading to a sharper formulation of Theorem 1.3.

2. NOTATION

The letters p, ¢ and ¢ denote prime numbers. The letters d, k, m,
n, r, s and t denote natural numbers. Letters of the form v and w
denote vectors in F¢. For n € N, rad(n) and P(n) respectively de-
note the largest squarefree divisor and the largest prime divisor of n.
We write p®||n if p* | n and p*™' { n, and the function vy(n) de-
notes the maximum power of ¢ that divides n. That is, v,(n) = k
means (*||n. We say that ny,ns,...,n, are multiplicatively inde-
pendent if a3 = ay = -+ = «a, = 0 is the only integer solution to
n{'ng? - -nd" = 1. Otherwise, ny, no, ..., n, are multiplicatively de-
pendent. The linear form .Z,, where n € N, is defined in (1.3). We
say ZLn,, L,y -, Ly, are Fi-independent if a1 =ay =---=a; =0
with a; € F, for all i € {1,2,...,k} is the only solution to

1%, (V) + 0, (V) + -+ oL, (V) =0(v) =0

forall v e IE";. Otherwise, .Z,,, %,,, ..., %y, are called F,-dependent.

Recall that 7(z) := #{p < x}, and that we define log,,(z) for x € R+,
and k € N iteratively: logz = log;x = max{lnz,2} and log,z =
log(log,,_, ) for k€ Nand k > 2. Let f: X - Cand g: X — Ryg
be functions. By the equivalent notations f(x) = O(g(z)) or f < g,
we mean there exists a constant C' such |f(z)| < Cg(z) for all z € X.
The constant C' is called the implied constant when writing f(z) =
O(g(x)). If the implied constant is dependent on some parameter P,
then we write f(z) = Op(g(z)) or f(z) <p g(z). We write f(z) <
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g(x), f(x) ~g(x) and f(x) = o(g(x)) to signify f(z) < g(z) < f(z),
f(z)/g(z) = Land f(x)/g(x) — 0 as x — oo with x € X, respectively.

3. LEMMATA

We first reduce the problem using the following lemmas.
Lemma 3.1. If zg € F) then Ny(x) = Ny(1).

Proof. The statements follow since T}, : F — F? defined by Ty, (v) =
To - v is an isomorphism if zy € F . ]

As such, denote N, = N,(1).

Lemma 3.2. Let k € N.

(a) If ny,na, ..., nyg are multiplicatively dependent, then the forms
Loy Ly, - Ly, are Fy-dependent.

(b) Suppose k < 101?(‘;5;2(]. Then, ny,ng,...,ng € {2,3,...,q—1} are
multiplicatively independent if and only if £, , %, . .., %, are

F,-independent.

Proof. Let ny,ng,...,ng € {2,3,...,¢ — 1} be distinct. Suppose n;

. . . €; €; €; .
has prime power factorization n; = p;"'py"* - - pd”d, where ¢, ; = 0 is
permissible.

(a) Suppose nqy,ns,...,n, are multiplicatively dependent. Then,

there exist integers oy, ag, ..., ag such that n{'ng?---ny* = 1.

In particular,
o €1,1_ €1,2 €1,d) X1 €2,1 €22 €2.d\ &2 €k,1_ €Lk,2 €k,d\ Ok
1= (pi"'ps"® - pd )™ (052 - o)™ (0 s )
_areri1tozerittageg 1 aiel2tazez o+ tageg o L aiey gtazeg g++areg d
=D 2 Py :
S0, 161 m + Qo€+ - -+ agepm = 0 for eachm € {1,2,...,d}.
As such,
d k k
0= E E Qi€ | Vj = E a; E €V = Oéigni (V)
j=1 i=1 =1 j=1 i=1

for all v = (vy,v9,...,0q) € IFf]l. That is, L, Ly, - - -, L, are
F,-dependent.

(b) Suppose k < %4 By (a), it suffices to show that multi-

10logy q°
plicative independence implies F,-independence. Suppose that
n1, Mg, - - ., Ny are multiplicatively independent. If we let F :=

(€)= then rankz(E) = rankg(E) = k. In particular,
there exists an invertible k x k matrix £’ which consists of k in-
dependent columns of . Without loss of generality, the first k
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columns of E are independent. Suppose .Z,,,.%,,.,...,Z,, are
F,-dependent. Let o = (ay, as, ..., a;) € Fi\ {0} be such that
o L+l + - +apZ,, =0. Then, E'a = 0. In particular,
q | det(E"). Recall that Hadamard’s inequality states

k
[det(E) < ] ] llesll,
j=1

where e; is the j™ row of £’ and || - || is the Euclidean norm
(e.g., see [2, §2.11].) Note that ||e;|| < kl/Qﬁ)‘)giqu. Thus,
k
1 k72 (log q)*
q divides |det(E")| < kF/? H %84 (log ¢)
ey log p; log 2
since k < lg?fgiq. Thus, det(£’) = 0, which implies rank(E’) <

k, which is a contradiction. So, no such « exists and the forms
Ly Ly, - .- Ly, are Fy-independent.

O

4. PROOF OF THEOREM 1.3

To simplify the notation we will denote .4 := .4, and let

N :=#N.

4.1. The subset /. Recall the following notation: for m € N and /¢
a fixed prime,

P(m) := max{p : p|m} (the largest prime divisor of m)
ve(m) := max{a € NU{0} : ¢*|m} (the ¢(-adic valuation of m)

The following parameters will be determined later: B, respectively
f(q), are parameters giving bounds on the exponents of large, respec-
tively small, primes dividing elements of 4.

N = {n€{2,3,...,q—1}:n:sr, Whereseyandre,%’},

S = {5 €{1,2,...,q—1}: P(s) < B and v,(s) < f(q) for all primes p}

%:: {7“6 {172a7q_1}p|T a’ndeBlmpheSpH/r}
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We then find (recall that N = #.47, cf. (4.1))
q—2—N§#{n<q:p|nforsomep§Band vp(n) Zf(q)}
+#{n<q:p2|nf0rsomep>B}.
These quantities can be bounded as follows:
#{n < q:p|nfor some p < B and v,(n) > f(q)}

< Z#{n < ¢ :p|nimplies v,(n) > f(q)}

p<B
1 q
SQZW = Qf(q)W(B)'
p<B
and
" q 3q
#{n<q.p |nf0rsomep>B}§p>ZB?§BlogB

for all B > 1. In particular,

qr(B) 3q qB 3q

_9-N< < .
1 T BlogB = 27@ 11og B | Blog B

— 9f()

Define

(4.2) B :=cilog,q, f(q) = calogsq,

where ¢, co > 0 are constants to be chosen later. Then,

c1qlog, q 3¢
_9_N<
q — 2c2(logloglogg)—1 = ¢ (log, q)(log ¢z + logs q)
3q

<9 1 (1 c2 log2
< 2c1q exp (logs g — (logs q) )+ c1(log, q)(log ¢z + logs q)

<c
-~ 310g2q7

where ¢3 is a constant and ¢z € (0,1) if ¢o > 2/log 2. In particular, for
cy > 2/log 2,

(4.3) N:q+0( d )

log, q

where the implied constant in (4.3) is less than 1.
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4.2. Multiplicatively dependent k-tuples of .#". Assume that we

are given distinct multiplicatively dependent integers ny,no, ..., ng €
A, and suppose that r < k is the (multiplicative) rank of these in-
tegers. That is, there exists mqy,mo,...,m, € {ny,na,...,n;} such
that

(a) mq, ma, ..., m, are multiplicatively independent and

(b) for any n € {ny,ng,...,ng} \ {m1,ma,...,m,}, the enlarged

set {my, ma, ..., m,,n} is multiplicatively dependent.
Without loss of generality, n; = m; for all ¢ € {1,2,...,r}. Then, for
every j € {r+1,r+2,...,k}, there exists a; € Nand oy, agj, ..., o €
Z such that
n?j =ny T ny® -l

For convenience, let j = r+1, o = a,41, a5 = o; and n = n,1;. Then,

(4.4) n® =ni'ng?---ny.

Let Jy ={je{l,2,...,r}:a; >0}, J_={j€{1,2,...,r}:a; <0}
and Jo ={j € {1,2,...,r} : a;j = 0}. Note that |Jo| +|J_| +|Jo| =7
and

rad(n)

rad H n;
JEJ+
as ny,Nag,...,n, € N.

Case 1: |J_| = 0. In this case, rad(n;) € {d € N : d | rad(n)}.
Thus, there are 7(rad(n))!”+! choices for the radicals of elements corre-
sponding to J,. There are also N7l choices for elements corresponding
to Jo.

For any squarefree number ny € .47, the number of elements in
m € A with radical ng is bounded as follows: recall m € .4 satisfies
the condition that v,(m) <1 for all p > B. So, the only place where
rad(m) = ng and m differ is in the prime factors p < B. Thus, by the

definition of 4", the number of choices for the difference of m and ng
is bounded by (recall (4.2))

lO c2logs q
7(B)f@ « <—1o§23) < exp (c2(logs )?) -
3

So, the number of choices for n; with j € J; corresponding to n is
< (rad(n))”+ exp (ea| J4|(logs )?) -
The classical bound

(4.5) 7(m) < exp(C-logm/log, m),
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where C; > 0 is a constant, yields

logq>
T(rad(n)) < exp | C- )
(ad(n)) < oxp (€21

As such, the number of choices of n; with j € J, given n is

log q
log, q

So, the number of overall choices is

< exp <CT]J+| + ¢o| J1|(logs Q)Z) :

log q
log, q

< Nl exp (CTU+| + c2|J4|(logs Q)2) '

Case 2: |J_| > 0. Then,

I = T o
i T i

jeJ— JjeJ+

Let m =rad(n,, ). Hence, rad(n) | rad(m) and rad(n;) | rad(m) for all
J € J_. As before, the number of choices for the radical of n,n; with
j € J_ is bounded by 7(m)*’-I. Also, from the computation for the
number of elements in .4~ with radical m, we have that the number of
overall choices in this case is bounded by

1
<« N9+ o (mof(r — 1)t 4 o] J|(log Q>2>
q

2

lo
< N W-Texp (OTT2 84 cr(logg q)2> :
log, ¢
Note that, for the remaining elements my in {n, o, n,43,...,n%} in

Cases 1 and 2, we have

rad(m;) | rad (H nl> .

i=1
In particular, there are 7(ning - - - nT)'“_’“_l choices for the radical of m;.
Using the previous bound on the number of ways an element in .4” can
have a fixed radical, we find that the total number of ways to chose the

remaining n,.yo, Nyy3, - .., Nk 18
lo
< exp (kQCT &4 ) )
log, ¢

From the bounds in the two different cases it follows that the number
of distinct k-tuples of elements in 4", having multiplicative rank r < k,
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and J_, Jy, J fixed, is

(4.6)
Nl exp (C’T(k:2 + |J+|)11)Oggqq + 9| J 4| (logs Q)2> if |J_| =0,

<
N1-lexp (C’T(k:2 +r >llooggq + cr(logs Q)Q) if [J-[ > 0.

We claim that (4.6) is O(N"~1/2+°() for suitably small r; this clearly
holds if |J_| > 0. If |J_| = 0 the supposition would hold if |J0| <r—1L1
Suppose, on the contrary, that |Jy| = r — 1. Then, (4.4) yields n,\}" =
ngt for some i < r, and a,41,0; > 0. Without loss of generality
we can assume that (o117, ;) = 1, and a,41 > «; (the case a1 <
«; is similar.) Since (a,41,;) = 1 we must have n,.; = M* and
n; = M+ for some integer M > 1; as a,;1 > 2 and n; < ¢, there
are at most ¢/? choices for M, and consequently there are a total of
O(q"/?*°W) choices for n,;1 and n;, and at most N"~! choices for the
remaining ni, N, . .., Mi_1, Nii1, Ny

Thus (4.6) is O(N7~1/2+°W) if r is sufficiently small, and since r < k,
a choice of k = o(y/log, ¢) will suffice. For more explicit error terms
we will argue as follows. Recall that an initial choice of a basis of size r
was chosen. Now, for r fixed, the number of possible choices of triples,
Jy,J_ and Jy are bounded by the combinatorial factor 3". We thus
find that
(4.7)

#{7 € N rank () = r} < (k> 3" N2+ exp (20 k210g + cor(logs ) ) )
24

and hence

#{5” e ¥/ . 7 is multiplicatively dependent}

k—1
k
< E ( )STNT_I/Q’LO( exp (QC’ )2 =2
= \r logzq

] > (3k)"
<< Nk‘73/2+0(1) eXp (QCTkQIqu + C2k(10g3 q)2> Z ( l)
0g,y q =

+ eor(log, q>2)

< Nk73/2+0(1) exp (3k. + 2CTk,2 IOg q
log, ¢

+ ok (log q)2> .
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In particular, for k = o(y/log, q),
# {Y e A/ . 7 is multiplicatively independent}

N 1
_ ( ) L0 (Nk—3/2+o(1) exp (3]{; +2C. k? o84 + cok(log, q)2)>
k log, ¢

_ (-Z) +0 (Nk—3/2+o(l))) :

thus proving the first equality in (1.6). Then, (4.3) and the comment
following it imply, for k = o(log, q), that

(4.8)
(]1:;]) = NN =1)(N=2)- (N k1) = o (q+0 <10g(]2q>)k

q¢" ko 4" ¢ ¢
= 17(1+0(1/logy ¢))" = 5 (1+0(k/ logy ¢)) = +7+0 (m) -

Moreover, if k = o(y/log, q), then
# {Y e /M . 7 is multiplicatively independent}

k k
q q k—2 » logq 2
. S S— N k+2C.k k(1
k!+0<(k:—l)!log2q>+0< exp(?) +2C 10g2q+c2 (oggq))>

k k
4q q

= — O B —
k! i <(k’_1)!10gQQ>7

where the implied constant is absolute. The proof of Theorem 1.3 is
thus concluded.

5. PROOF OF THEOREM 1.1

Denote A = A, and N = #.4, with .4, as in Theorem 1.3. Recall
from §1.1 that N, < M, 4, and that

2K -1 2K
Z (_1)k Z Mgs < Mgy < Z(_l)k Z M,s,
k=0 sScH k=0 scH

|S|=k |ST=k

where My s := #{v € F!: Z,(v) = 1 for all n € S}. Let

K

Di=Yg= ) (D)F Y Mys.

k=0 scH
ST=k
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Then,
K
k
Y= § (_1) § Mq,S
k=0 S={n1,na,....,ng €N
{ZLn1Lng s .i”nk} is Fg4-independent
(5.1)

+ Z(_l)k Z Mqﬁ

k=0 S={n1ino,...mx Nl
{Zn1,%nyysZny, } is Fg-dependent

= 21 + 227

say. Now, for K < logq/(10log,q), Lemma 3.2 together with the
rank-nullity theorem of linear algebra implies that

K
(5.2) Si=) (—1)fgt* > 1

k=0 {ni,n2,..., nk}Ee/V[k]

n1,n2,...,N are
multiplicatively independent
and
K
k

(5.3) Sp =) (1) S M,s.

k=0 S={ni,na,...,n, e

multiplicatively dependent
5.1. The Upper Bound. For K even (recall (5.1)-(5.3)), we have
N, <#{veFl: Z(v)#1forallne #} <5+ .
Theorem 1.3, together with (5.2), gives

I e (5 +0 (=)

log, g

q! 1 q

==+0(¢") —]+0

e k! log, q
k>K

d L d
_ 4 23?4 q
~Cro((2) #) o (iLy)

for K growing with ¢ so that K = o (\ /log, q).
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For 35, there are no multiplicatively dependent sets of size 1 unless
n = 1. By (4.7), together with the rank-nullity theorem, we have

(5.5)

K K k-1
neY Y mesYY Y
k=2 S={ni,na,..., nk}EJV[k] k=2 r=1 S={n1i,n2,..., nk}EJV[k]
multi&}éggiy\}éf;%sgzndent ranks(S)=r
Y d—r arr—1 5 logg 2
< Z ( )3’"q "N""" exp (207-7‘ + cor(logs q) )
=2 r—1 \| logy q
< ¢ lexp <3K + 20, K? log ¢ + co K (log, q)2> :
log, ¢
Thus, by (5.4) and (5.5),
5

N<M/<q—d+0 2 @) +0 ¢
=777 = e K log, q

|
o (qd‘l exp (3K +20, K2 22% 4 ¢, K (log, q)2)>
log, q

¢ 2\ 2 . ¢
== — O
crol(®) o) o)
for K =0 (\/log2 q), and taking K = (log, q)'/? yields

d d
A@W§i+o<q )
e log, q

A similar argument with K odd gives a lower bound of the same form,
and thus

d d

q q
. N, <M, y=—+0 )
(5:6) ¢ = el € (10g2 ‘.7)

5.2. The Lower Bound. In §5.1, we proved
N, := #{V EF? L (v) £ 1 foralln e {2,3,...,q— 1}}

d d
SMq/:q—+O a
7 € log, g

by restricting the set {2,3,...,¢ — 1} to .4 and showing (cf. (5.6))

d d
#{VGIFd:gn(V)7é1foralln€JV}=q—+O a :
! e log, q
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Let Aaa = {2,3,...,¢— 1} \ A". Then,

d d

N, = q——i—O ( g )+O({V € IFf]l : Zn(v) =1 for some m € J%)ad}).
€ log, ¢

Note that Npaq = #Maq K loquq by (4.3). The number of w € {v €

F: 2, (v) =1 for some m € M,q} is bounded by

d

< Y #UeEF: Z(v) =1} € ¢ Nopa < ——.
log, ¢

meMpad
In particular, N, = ¢%/e + O(q?/ log, q); after dividing by ¢¢ the proof
of Theorem 1.1 is concluded.

6. STATISTICS

We have compared the model introduced by Friedrichsen and Holden
with the data from the problem. Below (cf. Figures 1 and 2) are the
histograms and the quantile-quantile plots for some seven and ten-digits
primes. The quantile-quantile plots compare the theoretical quantiles
(red line, Gaussian with mean 0 and standard deviation 1) with the
observed ones (coloured dots) from our experiment. The data is broken
up based on how large w(p — 1) is. The datasets sizes are 7216 (seven)
and 241148 (ten). The red curve in the histograms is the Gaussian
with mean and standard deviation p and o, respectively, as reported.

The model for the problem is as follows: we wish to count

F(p) = #{:c €{1,2,...,p—1}: 2" = x(mod p)}
Consider the following lemma:

Lemma 6.1. Let p be a prime, y € {1,2,...,p(p—1)} an integer such
that p{y, and let d be a divisor of p — 1 such that ord,y | d. Then,

-1
#{a: e{lL,2,....p(p—1)} : ptx,2° = y(mod p),ord,z = d} = pT

Here ord,(y) denotes the multiplicative order of y modulo p, i.e., the
smallest integer & > 0 such that y* =1 mod p.

This lemma implies that the number of solutions to z* = xz(mod p)
with 1 <z <p(p—1)is

(p—l)Z#
dln
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(see Friedrichesen and Holden [6]). The above result suggests that F'(p)
should be distributed as a binomial random variable with mean g and
variance o2, where

d 9 d)(d—1
,u—dlpzl# and o —dgl%.

The histograms in Figure 1 represent the normalized statistic for F(p)
according to this model.

7-digit primes

10 10-digit primes

0.5 = —0.19411 0.8}
o= 0.9490
4 )
06y u=-02146 |
o= 09340 | =
04} I
0.2}
0.0 - - :
4 -4 -3 -2 -1 0 1 2 3 4
0.5 . . . . : . . 1.0
p=—0.1198
04} o= 0.9920 08}
€
0.3 0.6 <
I
p=-01127 | =
0.2 0.4} o= 09872 I
.
0.1 0.2} J
00— =AU ] 00 | \ LT
-4 -3 -2 -1 0 1 2 3 4 T3 2 1 0 1 2 3 1
0.45 T T T T 1.0
0.40 | = 70 0442 |
0.35 o= 10283 | 0sl
0.30 €
0.25 06y 3
0.20 04l p=—00541| =
0.15 o= 10106 |
0.10+ 0.2}
ot ] il |
000 fll 00 4l L
-4 -3 -2 -1 0 4 T3 2 1 o0 1 2 3 1

Ficure 1. Histograms for seven- and ten-digit primes
broken up into subgroups (w(p — 1) =3, w(p —1) =4
and w(p — 1) > 5).

That is, for a prime p, we compute F'(p) using primitive roots and
index calculus. Then, we normalize F'(p) to z = (F(p) — ) /o, where u
and o are as above. The resulting histograms are presented in Figure
1. As can be seen from the histograms, the data seems to be tending
to a normal distribution N(0, 1), especially in the mean pu.
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The probability plots below compare our observed data with the the-
oretical model N(0,1) as follows. The i* order (descending) statistic
for the theoretical values is defined according to Filliben’s estimate:

(0.5)%/n if i = n,
it order statistic = 2?6?:31675? ifi €{2,3,...,n—1},

1—(0.5)Y" ifi=1,

where n is the size of the dataset. As the quantile function is the
inverse of the cumulative distribution function, we obtain the red line
in Figure 2. For the observed data, we sort the corresponding values
for z = (F(p) — v)/o and plot these values according to their values on
the y-axis (observed values).

7-digit primes 10-digit primes

(1—dm

¢ =

-4 -3 -2 -1 0 1 2 3 4 —4 -2 0 2 4

(1—dpm

¥

R? = 0.9918

¢ < (T—d)m

-4 -3 -2 -1 0 1 2 3 4 —4 -2 0 2 4

FI1GURE 2. Probability plots for seven- and ten-digit
primes broken up into subgroups (w(p—1) = 3, w(p—1) =
4 and w(p — 1) > 5).
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The high values of R? in Figure 2 indicate the model explains the
observed variation very well. We note that, as can be seen in all the
probability plots, there is a tendency for the data to have a higher
standard deviation on the tails. We have not been able to determine
a satisfactory explanation for this behaviour. We finally remark that
the group w(p — 1) = 2 was computed but the data gives rise to many
outliers for reasons that are readily ascertainable.

REFERENCES

[1] Antal Balog, Kevin A. Broughan, and Igor E. Shparlinski. On the number of
solutions of exponential congruences. Acta Arith., 148(1):93-103, 2011.

[2] Edwin F. Beckenbach and Richard Bellman. Inequalities. Second revised print-
ing. Ergebnisse der Mathematik und ihrer Grenzgebiete. Neue Folge, Band 30.
Springer-Verlag, New York, Inc., 1965.

[3] J. Cilleruelo and M. Z. Garaev. Congruences involving product of intervals
and sets with small multiplicative doubling modulo a prime and applications.
Math. Proc. Cambridge Philos. Soc., 160(3):477-494, 2016.

[4] Javier Cilleruelo and Moubariz Z. Garaev. On the congruence z* = A (mod p),
2015.

[5] Roger Crocker. On residues of n™. Amer. Math. Monthly, 76:1028-1029, 1969.

[6] Matthew Friedrichsen and Joshua Holden. Statistics for fixed points of the
self-power map, arxiv:1403.5548, 2014.

[7] Par Kurlberg, Florian Luca, and Igor E. Shparlinski. On the fixed points of
the map = — 2% modulo a prime. Math. Res. Lett., 22(1):141-168, 2015.

[8] Thomas Loher and David Masser. Uniformly counting points of bounded
height. Acta Arith., 111(3):277-297, 2004.

[9] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook
of applied cryptography. CRC Press Series on Discrete Mathematics and its
Applications. CRC Press, Boca Raton, FL, 1997. With a foreword by Ronald
L. Rivest.

[10] Francesco Pappalardi, Min Sha, Igor E. Shparlinski, and Cameron L. Stewart.
On multiplicatively dependent vectors of algebraic numbers, arxiv:1606.02874,
2016.

[11] Lawrence Somer. The residues of n™ modulo p. Fibonacci Quart., 19(2):110-
117, 1981.

DEPARTMENT OF MATHEMATICS, KTH, ROYAL INSTITUTE OF TECHNOLOGY,
100 44 STOCKHOLM, SWEDEN
E-mail address: atfelix@kth.se

DEPARTMENT OF MATHEMATICS, KTH, ROYAL INSTITUTE OF TECHNOLOGY,
100 44 STOCKHOLM, SWEDEN
E-mail address: kurlberg@kth.se



	1. Introduction
	1.1. Outline of the proof
	1.2. Related results
	Acknowledgements

	2. Notation
	3. Lemmata
	4. Proof of Theorem ??
	4.1. The subset N
	4.2. Multiplicatively dependent k-tuples of N

	5. Proof of Theorem ??
	5.1. The Upper Bound
	5.2. The Lower Bound

	6. Statistics
	References

