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Abstract

In single particle analysis (SPA), the task is to recover the scattering potential of a
macromolecular structure from cryo-electron microscope images of many copies of the
structure in unknown orientations. The idealized, noise-free SPA inverse problem has
been shown to be uniquely solvable — up to hand — when the forward model is based
on the Ray-transform. More accurate forward models take the non-zero curvature of
the Ewald sphere into account. We analyze an Ewald sphere corrected forward model
for SPA and use the diffraction slice theorem to prove that the corresponding inverse
problem is uniquely solvable, including the hand of the structure.

1 Introduction

A central problem in biology is to determine the structure of biological macromolecules.
Single particle analysis (SPA) can be used to reveal the structure of molecules for which
the traditional techniques of X-ray crystallography and nuclear magnetic resonance
spectroscopy have proved hard to use [ACGS14, VBLVB17, Pep17].

SPA is an imaging technique in which a large number of ideally identical “particles”
(e.g. protein molecules) in different relative orientations are imaged by a transmission
electron microscope. The inverse problem of recovering the 3D structure of the par-
ticle from the resulting images is similar to other tomographic inverse problems such
as X-ray computerized tomography, but what makes SPA rather special is that the
projection directions are unknown.

Let SE(3) and SO(3) denote the special Euclidean and special orthogonal groups in
three dimensions, respectively. We use the convention that SE(3) acts first by rotation
and then by translation. More precisely, SE(3) and SO(3) act on a function f : R3 → R
via

R · f(x) := f(R−1(x)), R ∈ SO(3) (1)

(R, c) · f(x) := f(R−1(x− c)), (R, c) ∈ SE(3) (2)

If the center of mass of f is at the origin, which we will assume in this text, then c
equals the center of mass of (R, c) · f .

In the absence of noise, SPA data are often modeled as [CGPW15, BBS20]:

gj = PSF ∗ P((Rj , cj) · f), j ∈ J, (3)
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where f : R3 → R≥0 represents the unknown particle, J is some index set, gj : R2 → R
are the data, (Rj , cj) ∈ SE(3) are unknown rigid body motions, P is a single-angle
ray-transform:

P(f)(x1, x2) :=

∫
R
f(x1, x2, x3)dx3, (4)

and PSF, the point spread function, is a given convolution kernel.
Clearly, SPA data from (3) can not distinguish f from elements in the SE(3)-orbit

of f . In fact we may only ever hope to recover the E(3)-orbit of f . In more practical
terms, information of the hand of f (i.e. the orientation of f) is missing in data as
in (3). To see why this is the case, let O := diag(1, 1,−1) ∈ O(3), R ∈ SO(3) and
RO = ORO ∈ SO(3). Then

P(RO · (O · f)) = P((ROO) · f) = P((OR) · f) = P(O · (R · f)) = P(R · f), (5)

where we used that P(O · f) = P(f). Hence, SPA data corresponding to f and
{Rj}j∈J , is identical to data corresponding to O · f and {(Rj)O}j∈J .

Apart from these obstructions to uniqueness, the SPA inverse problem of recovering
the structure f from data given by (3) has been shown to be uniquely solvable using
several different techniques. The method of common lines [VG86, VH87] is based
on the fact that the Fourier transform of any two projection images will agree on
at least one central line. For a generic triplet of projections this enables recovery
of their mutual orientations (up to hand). In Kam’s method [Kam80, BBSK+17]
one computes correlations of the Fourier transform of the structure using averaged
correlations of the Fourier transforms of the projection images. Uniqueness was studied
from a probabilistic point of view in [Pan09], where the author proved that a pair
of distinct objects induce mutually singular probability measures in the data space.
Finally, there is the class of methods to which this paper belongs. It is based on relating
moments of data to moments of the particle [Gon88, Sal90, BB00, LY07, Lam08].
While it has not been widely used in practical reconstructions, it is useful for rigorously
analyzing uniqueness.

The aforementioned studies all assume that data are originating from line inte-
grals as in (3). This projection assumption corresponds to the assumption of a flat
Ewald sphere, which limits the reconstruction quality at high resolutions [Gla19].
More accurate image formation models that better account for the wave properties
of the imaging electron therefore take the curvature of the Ewald sphere into account
[DeR00, FÖ08, RH18, LYZJ10, WDG06, JK00, WCZ04, KKHC10, Voo14]. In fre-
quency space, these models provide data on half-spheres, rather than on planes1.

Prior work on structure recovery based on Ewald sphere corrected models has
mainly focused on the development of algorithms. However, to the best of our knowl-
edge, there does not exist any explicit precise statement of uniqueness in the literature.

In this paper we focus on the noise-free and continuous setting. (The latter means
that we do not introduce any discretization of the detector). In this setting we provide
a mathematically rigorous proof that accounting for a non-zero curvature of the Ewald
sphere renders the SPA inverse problem generically uniquely solvable.

Our theorem treats a continuum limit where all SO(3) elements are realized in the
data (this assumption can be relaxed: the proof is valid with minor modifications if
the set of rotations in data is only assumed to be a countable dense subset of SO(3)).
The theorem also assumes that all particles are located at the same distance from
the detector, that the real- and imaginary parts are related by a non-zero constant
amplitude contrast ratio, that f has compact support and that the first few moments
of f satisfy some generically valid conditions (c.f. Assumption 3.3). However, our

1 Some models [WCZ04, Voo14] yield Fourier space data on paraboloids rather than on
spheres.
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result is valid for any defocus and we assume neither that orientations are known a
priori, nor that the particle belongs to a certain symmetry group, nor that multiple
projections were recorded with varying defocus.

Since the intersection of two half-spheres is a circular segment, one could, perhaps,
envision a uniqueness result based on finding the common curve associated to each
pair of projection images. Orientation estimation based on such common curves has
been considered in X-ray free electron laser imaging [BT11], see also [RG17] for a
discussion of the common curve problem in the context of cryoEM.

The basic strategy here is to use the method of moments. Since the model we
work with is more amenable for analysis in frequency space, we compute moments by
differentiating the Fourier transform of data. A key element is to find the second order
moments of f by looking at extremal values of the second order moments of data, a
technique which was also used in [Sal90].

The paper is organized as follows. In section 2 we define our Ewald sphere corrected
forward model. In section 3 we state and prove our uniqueness theorem. Finally, in
section 4 we give a conclusion.

2 Forward model

We start out with the assumption that the unknown structure is described by a
complex-valued and compactly supported scattering potential fC ∈ L2(R3;C) whose
real- and imaginary part respectively determine the elastic- and inelastic scattering
properties of the specimen. As mentioned in the introduction we assume that there
exists a known constant Q ∈ R>0, called the amplitude contrast ratio, such that real-
and imaginary parts f and f Im of fC are related via

f Im = Qf. (6)

The incoming electron is a spatial monochromatic plane wave uin(x) := e−ikx3

with wave number k > 0 traveling in the direction of −e3. Its interaction with the
specimen is modeled by the Schrödinger equation. Stationary solutions to the latter
are given as solutions to a Helmholtz equation. In biological applications the spec-
imen is typically weakly scattering and in this case the Born approximation, which
linearizes the dependence on the scattering potential of the (approximate) solution to
the Helmholtz equation, is applicable [FÖ08, KL11]. Under the Born approximation,
which we use in this paper, the interaction of uin with fC results in an outgoing wave
uout at the specimen exit plane Πout := e⊥3 ∼= R2. The scattering operator T sc maps
fC to the corresponding uout:

T sc
(
fC
)

(x) := uout(x) = 1 + k−1U
(
fC
)

(x), x ∈ R2 (7)

where U is the so-called propagation operator [NW01, FÖ08] that is defined as

U
(
fC
)

:=
k

uin
Gk ∗

(
uinfC

) ∣∣∣∣
e⊥3

. (8)

Here ∗ denotes convolution on R3 and

Gk(x) :=
1

4π

eik|x|

|x| , x ∈ R3 \ {0}. (9)

The outgoing wave then passes through the optics of the electron microscope. The
effect of the optics is here modelled by the convolution2

uout 7→ h ∗ uout, (10)

2 Formally, we define convolution by point-wise multiplication in frequency space.
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Fig. 1: Schematic representation of the SPA set-up. For the uniqueness theorem we assume
that the relative shifts along the optical axis are small enough to be considered equal to zero.

where the point spread function h is defined by its Fourier transform:

F [h] (ξ) := A(ξ)eiχ(ξ), χ(ξ) := a|ξ|2 + b|ξ|4. (11)

In the above, the aperture function A is the indicator function of some ball and

a :=
∆z

2k
∈ R (12)

b := − Cs
4k3
∈ R, (13)

where Cs is a constant that encodes spherical aberrations of the optics and ∆z is the
defocus. We have assumed perfectly coherent illumination for simplicity. Finally, the
wave forms an intensity distribution in the detector plane. This leads to the following
total non-linear model for the measured intensity:

Inon-lin
(
fC
)

(x) :=
∣∣∣h ∗ {1 + k−1U

(
fC
)}

(x)
∣∣∣2 , x ∈ R2. (14)

Next, we assume that the quadratic term is negligible and study instead the lin-
earized model

I0(fC) := k−1h ∗ U
(
fC
)

+ k−1h ∗ U (fC). (15)

With assumption (6) in place we define our final intensity operator I that acts directly
on a real-valued potential via

I(f) := I0((1 + iQ)f) = k−1(1 + iQ)h ∗ U (f) + k−1(1 + iQ)h ∗ U (f). (16)

Remark 2.1. It can be shown [FÖ08, NW01] that, point-wise in frequency space,
one has

2 · U (f)
k→∞−−−−→ iP (f) , (17)

so for large k the Born approximation reproduces the classical model:

I (f) ≈ k−1Re ((i−Q)h) ∗ P (f) = −k−1PSFQ ∗ P (f) , (18)

F [PSFQ] (ξ) := 1B(0,r)(ξ) [Q cosχ(ξ) + sinχ(ξ)] . (19)
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So far we have defined the forward model corresponding to the electron microscope
image of a single particle. In single particle analysis, the complete data is a collection

{I ((Rj , cj) · f) | j ∈ J} (20)

of rotated and translated copies of f , where the Rj ’s and cj ’s are unknown and J is
some index set. A schematic drawing of the set-up is given in Fig. 1.

3 A uniqueness result

3.1 Some preparatory definitions, lemmas and assumptions

The moments of a function f : Rn → C are defined as

mαf :=

∫
Rn
xαfdx, α ∈ Nn, (21)

where α = (α1, . . . , αn) ∈ Nn is a multi-index, and xα :=
∏
i x

αi
i . The order of a

multi-index α is the natural number |α| defined by |α| :=
∑
i αi. We define the matrix

Λ(f) :=

m200f m110f m101f
m110f m020f m011f
m101f m011f m002f

 . (22)

For f : Rn → C we use the following version of the Fourier transform:

F(f)(ξ) := f̂(ξ) :=

∫
Rn
f(x)e−iξ·xdx. (23)

In order to carry out our analysis in frequency space, we need the following two basic
lemmas.

Lemma 3.1.

(−i)|α|mαf = ∂αf̂(0), α ∈ Nn. (24)

Lemma 3.2.

F [(R, c) · f)] (ξ) = e−ic·ξ
(
R · f̂

)
(ξ), (R, c) ∈ SE(3). (25)

The space of functions that may serve as real-valued scattering potentials is

X0 :=
{
f ∈ L2(R3)

∣∣ f has compact support and f ≥ 0
}
. (26)

We will require the following mild generic asymmetry assumptions on the scattering
potential.

Assumption 3.3.

1. Λ(f) has three distinct (real) eigenvalues.

2. In a coordinate-system where Λ(f) is diagonal, neither of the third order mo-
ments m300 and m210 vanish.

Finally, let

X := {f ∈ X0 | f satisifies Assumption 3.3} . (27)
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3.2 Theorem statement and proof

Theorem 3.4. Consider the data

y := {I ((Rj , cj) · f) | (Rj , cj) ∈ SE(3), j ∈ J} , (28)

for some index set J . If {Rj | j ∈ J} = SO(3) and there exits a known positive
constant c0 such that ∀j : cj · e3 = c0, then y determines f ∈ X uniquely up to a rigid
body motion.

Remark 3.5. As already mentioned, a minor modification of the argument shows
that the conclusion holds for any countable set J such that {Rj | j ∈ J} is dense in
SO(3). We leave the details to the interested reader.

Proof. To fix the position and pose of f , we assume that

1. f has center of mass in the origin, which implies that ∇f̂(0) = 0.

2. Λ(f) = diag(m200,m020,m002), with m002 < m020 < m200.

3. m300,m210 > 0.

Since f is compactly supported, its Fourier transform is analytic and therefore uniquely
determined by its Taylor series coefficients. The basic idea of the proof is to show
that (up to a rigid body motion) these coefficients can be uniquely recovered from y
via a system of polynomial equations whose unknowns are given by the coefficients
along with the particle translations and rotations. The uniqueness of the solution
to the system of equations is established by induction over the order of the Taylor
coefficients. Once a coefficient order is fixed, we are able to reduce our system to
the one that corresponds to the Ray transform, and the latter is known to have a
unique solution. Unless otherwise stated, in the proof below, “. . . is known” should be
interpreted as “. . . is uniquely determined by y up to a rigid body motion”.

Step 1: Fourier transform data and apply the diffraction slice theorem

For ξ small enough so that the aperture function satisfies A(ξ) = 1, the Fourier
transform of (15) is given by

F
[
I0(fC)

]
= eiχF

[
U
(
fC
)]

+ e−iχF
[
U (fC)

]
. (29)

Assuming a constant amplitude contrast ratio (i.e. fC = (1 + iQ)f), (29) can be
expressed as

ω1F [U (f)] + ω1F
[
U (f)

]
, (30)

where ω1 := (1 + iQ)eiχ. We further rewrite this using the identity F [h](ξ) =
F
[
h̄
]

(−ξ) as

ω1F [U (f)] + ω1F [U (f)](−·). (31)

The diffraction slice theorem [NW01] provides us with the following expression for
F [U (f)]:

F [U (f)] (ξ) = φ(ξ)f̂
(
γ+(ξ)

)
, (32)

where

φ(ξ) :=
i

2

k

k − γ3(ξ)
(33)
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and γ+ is the map that lifts the plane to a half-sphere:

γ+(ξ) := (ξ1, ξ2, γ3(ξ)) (34)

γ3(ξ) := k −
√
k2 − |ξ|2 (35)

Next, again using the identity F [h](ξ) = F
[
h̄
]

(−ξ), we compute:

F [U (f)](−ξ) = φ̄(−ξ)f̂ (γ+(−ξ)) = φ̄(ξ)f̂
(
−γ+(−ξ)

)
= φ̄(ξ)f̂

(
γ−(ξ)

)
, (36)

where γ− maps the plane to a half-sphere that extends downwards. More precisely, it
is defined as

γ−(ξ) := (ξ1, ξ2,−γ3(ξ)) . (37)

Hence, from (31) it follows that

F
[
I0
(
fC
)]

= ω2f̂ ◦ γ+ + ω2f̂ ◦ γ−, (38)

where

ω2 := − 1

k
ω1φ =

1

2
(Q− i)eiχ 1

k − γ3
. (39)

Hence we obtain the Fourier space model

2 (k − γ3)F
[
I0
(
fC
)]

= zeiχf̂ ◦ γ+ + z̄e−iχf̂ ◦ γ−, (40)

where

z := (Q− i). (41)

Step 2: Handle in-plane translations

For (R, c) ∈ SE(3) we introduce the notation

h
(1)
R,c(ξ) := 2 (k − γ3)F [I((R, c) · f)] (ξ) (42)

= zeiχF [(R, c) · f ] ◦ γ+ + z̄e−iχF [(R, c) · f ] ◦ γ− (43)

= zeiχe−ic·γ
+
(
R · f̂

)
◦ γ+ + z̄e−iχe−ic·γ

− (
R · f̂

)
◦ γ− (44)

= e−i(c1,c2)·ξ
[
zeiχe−ic0γ3

(
R · f̂

)
◦ γ+ + z̄e−iχe+ic0γ3

(
R · f̂

)
◦ γ−

]
. (45)

(To simplify the notation we suppress the dependence on ξ and simply write γ±, γ3,

ξ and f̂ .)

Set aα := ∂αf̂(0)/α!. Since f has compact support, it follows from the Paley-

Wiener theorem (see e.g. [Hör03, Theorem 7.1.14]) that f̂ can be extended to an
entire function on Cn, and in particular the following Taylor expansions in ξ ∈ R2 are
well-defined.

γ3 =
1

2k
|ξ|2 +O

(
|ξ|4
)

(46)

ei(±χ(ξ)∓c0γ3) = 1± i
(
a− c0

2k

)
|ξ|2 +O

(
|ξ|4
)

(47)

f̂ = f̂(0) +
∑
|α|=2,3

aαξ
α +O

(
|ξ|4
)

(48)
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Hence (45) implies that

h
(1)
R,c(ξ) = (z + z)f̂(0)− i(z + z)f̂(0)(c1, c2) · ξ +O

(
|ξ|2
)
. (49)

We note that since Q is assumed to be known, f̂(0) is known from the zeroth order
term of (49). Therefore, (c1, c2) can be read of from the first order term of (49). Thus
((cj)1, (cj)2)j∈J is known, hence the set

H1 :=
{
h
(2)
R (ξ) | R ∈ SO(3)

}
(50)

is known, where

h
(2)
R (ξ) := zeiχe−ic0γ3

(
R · f̂

)
◦ γ+ + z̄e−iχe+ic0γ3

(
R · f̂

)
◦ γ−. (51)

Step 3: Extract a one-parameter subset of data

Note that

h
(2)
R (ξ) = z

(
1 + i

(
a− c0

2k

)
|ξ|2
)f̂(0) +

∑
|α|=2,3

aα(R−1γ+(ξ))α

 (52)

+ z̄
(

1− i
(
a− c0

2k

)
|ξ|2
)f̂(0) +

∑
|α|=2,3

aα(R−1γ−(ξ))α

+ (53)

+O
(
|ξ|4
)

(54)

= (z + z̄)f̂(0) + C|ξ|2 (55)

+ z
(
a200(R−1γ+(ξ))21 + a020(R−1γ+(ξ))22 + a002(R−1γ+(ξ))23

)
(56)

+ z̄
(
a200(R−1γ−(ξ))21 + a020(R−1γ−(ξ))22 + a002(R−1γ−(ξ))23

)
(57)

+ z
∑
|α|=3

aα(R−1γ+(ξ))α + z̄
∑
|α|=3

aα(R−1γ−(ξ))α +O
(
|ξ|4
)
, (58)

where C := 2f̂(0)Re
(
zi
(
a− c0

2k

))
Since f̂(0) is known, C is known. Now if

R−1 =

R11 R12 R13

R21 R22 R23

R31 R32 R33

 , (59)

then [
R−1γ±(ξ)

]2
j

=

(
Rj1ξ1 +Rj2ξ2 ±Rj3

1

2k
(ξ21 + ξ22)

)2

+O(|ξ|3) (60)

= R2
j1ξ

2
1 + 2Rj1Rj2ξ1ξ2 +R2

j2ξ
2
2 +O(|ξ|3), (61)

and therefore the ξ21-term in the expansion of h
(2)
R is

(z + z̄)
(
a200R

2
11 + a020R

2
21 + a002R

2
31

)
+ C. (62)

Note that Lemma 3.1 and m200f > m020f > m002f together imply that a200 < a020 <
a002, so the ξ21-term has a minimal value of (z+ z̄)a200 +C, which is achieved exactly
when R11 = ±1, R21 = R31 = 0. The maximal value is (z + z̄)a002 + C. Minimizing
the ξ21-term thus forces R−1 to have the form

R−1 = R−1
S1,θ

:=

S1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 , (63)
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for some θ ∈ [0, 2π) and S1 ∈ {−1, 1}.
This means that the set

H2 :=
{
h
(2)
RS1 ,θ

(ξ) | θ ∈ [0, 2π), S1 ∈ {−1, 1}
}

(64)

is known.
Now we take a closer look at the third-order expansion of h

(2)
RS1,θ

:

h
(2)
RS1,θ

(ξ) = (z + z̄)f̂(0) + ((z + z̄)a200 + C) ξ21 (65)

+
(
(z + z̄)a020 cos2(θ) + (z + z̄)a002 sin2(θ) + C

)
ξ22 (66)

+

(
(z + z̄)a210 cos(θ) + (z + z̄)a201 sin(θ) (67)

+
z − z̄
k

(a002 − a020) cos(θ) sin(θ)

)
ξ21ξ2 (68)

+ (z + z̄)S1a300ξ
3
1 + β1(S1, θ)ξ1ξ

2
2 + β2(S1, θ)ξ

3
2 +O

(
|ξ|4
)
, (69)

for some functions β1, β2 : {−1, 1} × [0, 2π)→ iR. Observe that the sign of the imagi-
nary part of the ξ31-coefficient equals S1. Hence, with Rθ := R1,θ, the following set is
known:

H3 :=
{
h
(2)
Rθ

(ξ) | θ ∈ [0, 2π)
}
. (70)

Step 4: Compute the second order moments of f

In what follows, unless otherwise is stated, “coefficient” refers to a Taylor coefficient
of h

(2)
Rθ

. Note first that a200 is determined by the ξ21 coefficient. Likewise, a020 and

a002 are known, since the minimal and maximal values (recall that the ξ21 coefficient
is minimal) of the ξ22 coefficients equals a020 +C and a002 +C, respectively (note that
C was determined in step 3).

Step 5: Compute some third order moments of f

The ξ22-coefficient is minimized exactly when cos (θ) = ±1 and sin (θ) = 0. Hence, an
examination of the ξ21ξ2-coefficient shows that |a210| is known. Thus a210 is known,
since the sign of a210 was fixed in the beginning of this proof. Similarly, by maximizing
the ξ22-coefficient, we can determine |a201|.

Step 6: Recover the hand of f along with some rotations

The ξ22-coefficient determines cos2 (θ), hence each θ is determined up to a most four
possibilities. More precisely, each θ is determined up to sign and a shift by π.

We will now see that all small θ may be determined. There exists a known positive
constant ε = ε(z, a020, a002, a210, |a201|) < π/2 such that if min{|θ|, |θ − π|} < ε, then
the sign of the imaginary part of the ξ21ξ2-coefficient3 equals the sign of its pure cosine
term. Let

σ(θ) := (z + z̄)a020 cos2(θ) + (z + z̄)a002 sin2(θ) + C (71)

and for 0 < θ < ε consider the known set

y1(θ) :=
{
h ∈ H3

∣∣∣ The ξ22-coefficent of h equals σ(θ) and the (72)

imag. part of the ξ21ξ2-coefficent of h is negative
}
. (73)

3 Note that the ξ21ξ2-coefficient is purely imaginary.
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Recall that m210 > 0 by assumption 3 in the beginning of this proof. It then follows
from Lemma 3.1 and the discussion above that for any ϕ and any θ ∈ (0, ε):

h
(2)
Rϕ
∈ y1(θ)⇒ cos(ϕ) > 0, (74)

so we have that

y1(θ) =
{
h
(2)
Rθ
, h

(2)
R−θ

}
, 0 < θ < ε. (75)

To remove the final sign-ambiguity, we study the ξ21ξ2-coefficient. Note that | sin(θ)| =
sin(|θ|) is known for |θ| < ε, since |θ| is known. We fix some θ0 ∈ (0, ε) and further fix
some h0 ∈ y1(θ0). Let h21 denote the ξ21ξ2-coefficient of h0 and let

D :=
|h21 − cos(θ0)(z + z̄)a210|

| sin(θ0)| . (76)

Note that

D = |A+B|, (77)

A = (z + z̄)a201, (78)

B =
z − z̄
k

(a002 − a020) cos(θ0). (79)

In the above |A|, B and D are known and |A|, B 6= 04. Thus A is known, so a201 is
known.

For θ ∈ (0, ε) and h ∈ y1(θ), let h21(θ) denote the ξ21ξ2-coefficient of h. Then

h21(θ)− cos(θ)(z + z̄)a210 =
(
± sin(θ)

)(
(z + z̄)a201 +

z − z̄
k

(a002 − a020) cos(θ)
)
.

(80)

Hence sin(θ) is known for 0 < θ < ε (the right factor in the RHS of (80) might vanish
for some θ: in this case we shrink ε accordingly.). Since cos(θ) was already known, θ
is known. More precisely, for θ ∈ (0, ε) we now know

h
(2)
Rθ

(ξ) = zeiχe−ic0γ3
(
Rθ · f̂

)
◦ γ+ + z̄e−iχe+ic0γ3

(
Rθ · f̂

)
◦ γ−. (81)

Step 7: Recover all moments of f

Since [
R−1
θ γ±(ξ)

]i
1

[
R−1
θ γ±(ξ)

]j
2

[
R−1
θ γ±(ξ)

]k
3

(82)

equals

ξi1
(
cos(θ)ξ2 +O

(
|ξ|2
))j (

sin(θ)ξ2 +O
(
|ξ|2
))k

(83)

= ξi1 cosj(θ) sink(θ)ξj+k2 +O
(
|ξ|i+j+k+1

)
, (84)

it follows that the Taylor series for h
(2)
Rθ

admits the decomposition

(z + z̄)−1h
(2)
Rθ

=
∑
i,j,k

aijkξ
i
1 cosj(θ) sink(θ)ξj+k2 +

∑
r,s

brs(θ)ξ
r
1ξ
s
2, (85)

where aijk denotes the ijk:th Taylor coefficient of f̂ and brs only depends on aijk for
i, j, k such that i+ j + k < r + s.

4 Recall that Q > 0 by assumption, so z + z̄ 6= 0.
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Hence, if cij is defined as the ξi1ξ
j
2-coefficient in the known Taylor series of (z +

z̄)−1h
(2)
Rθ

, then

j∑
k=0

aik(j−k) cosk(θ) sinj−k(θ) = cij − bij(θ), (86)

where bij(θ) depends only on arst for r, s, t such that r + s+ t < i+ j.
Fix a moment-order m ∈ N and assume that aijk has been determined for all

i, j, k such that i + j + k < m. Moreover fix i and j such that i + j = m and
let θ1, . . . , θj+1 ∈ (0, ε) be distinct angles. We consider the linear system of j + 1

equations in the j + 1 variables
(
aik(j−k)

)j
k=0

that results from inserting those angles
in (86):

j∑
k=0

aik(j−k) cosk(θ`) sinj−k(θ`) = cij − bij(θ`), ` = 1, . . . , j + 1. (87)

The system of equations (87) is known (c.f. [MKW96]) to be uniquely solvable for the

variables
(
aik(j−k)

)j
k=0

.5

Consequently, aijk is known for all i, j, k such that i+ j+k = m, and by induction
aijk is known for any i, j, k ∈ N. Since f̂ can be extended to an entire function, it is
uniquely determined by its Taylor series coefficients (aijk)∞i,j,k=0. Hence f̂ is known,
which implies that f is known. This concludes the proof.

4 Conclusion

Existing uniqueness results for SPA applies to a forward model that is based on the ray-
transform. A more accurate diffraction tomographic model that accounts for the cur-
vature of the Ewald sphere is offered in the Born approximation framework. Although
models based on the ray-transform have been used successfully for SPA structure re-
covery, the attainable resolution is ultimately limited by the incorrect assumption of
a flat Ewald sphere.

We extend the classical method of moments, which is based on relating moments
of data to moments of the unknown 3D structure, from the ray-transform model to a
model based on the Born approximation. Through the diffraction slice theorem this
allows us to prove that the SPA inverse problem based on an Ewald sphere corrected
model is uniquely solvable, including the hand of the structure.

We believe that several sharpenings and extensions of the theorem are possible,
e.g. it seems likely that some of the assumptions (e.g. on the set of needed rotations
and translations) can be relaxed.
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