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MANJUNATH KRISHNAPUR, PÄR KURLBERG, AND IGOR WIGMAN

Abstract. Using the spectral multiplicities of the standard torus, we
endow the Laplace eigenspaces with Gaussian probability measures.
This induces a notion of random Gaussian Laplace eigenfunctions on
the torus (“arithmetic random waves”). We study the distribution of
the nodal length of random eigenfunctions for large eigenvalues, and our
primary result is that the asymptotics for the variance is non-universal,
and is intimately related to the arithmetic of lattice points lying on a
circle with radius corresponding to the energy.

1. Introduction

The purpose of this paper is to investigate the variance of the fluctations
of nodal lengths of random Laplace eigenfunctions on the standard 2-torus
T := R2/Z2. The nodal set of a function f is simply the zero set of f , and
if f : T→ R is a Laplace eigenfunction, i.e., if f is non-constant and

(1) ∆f + Ef = 0, E > 0,

then the nodal set of f consists of a union of smooth curves outside a finite
set of singular points (see [12]) and hence length(f−1(0)), the nodal length
of f , is well defined.

A fundamental conjecture by Yau [27, 28] asserts that for any smooth
compact Riemannian manifold M , there exist constants c2(M) ≥ c1(M) > 0
such that

(2) c1(M) ·
√
E ≤ Vol(f−1(0)) ≤ c2(M) ·

√
E

for any Laplace eigenfunction f on M with eigenvalue E. By the work of
Donnelly & Fefferman [15] and Brüning & Gromes [9, 10], Yau’s conjecture is
known to be true for manifolds with real analytic metrics, and in particular
for M = T.

For T = R2/Z2 the sequence of eigenvalues, or energy levels, are related
to integers expressible as a sum of two integer squares; if we define S := {n :
n = a2 + b2, a, b ∈ Z}, the eigenvalues are all of the form

(3) En := 4π2n, n ∈ S.
For n ∈ S, let

Λn :=
{
λ ∈ Z2 : ‖λ‖2 = n

}
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denote the corresponding frequency set. Using the standard notation e(z) :=
exp(2πiz), the C-eigenspace En corresponding to En is spanned by the L2-
orthonormal set of functions {e (〈λ, x〉)}λ∈Λn

. The dimension of En, denoted
by

Nn := dim En = r2(n) = |Λn|
is equal to the number r2(n) of different ways n may be expressed as a sum
of two squares.

1.1. Arithmetic random waves. The set Λn can be identified with the
set of lattice points lying on a circle with radius

√
n, and its properties are

intimately related to representations of integers by the quadratic form x2 +
y2. The frequency set is thus of arithmetic nature. A particular consequence
is that the sequence of spectral multiplicities {Nn}n≥1 is unbounded. It is
thus natural to consider properties of “generic”, or “random”, eigenfunctions
fn ∈ En, and our primary interest is the high energy asymptotics of the
distribution of their nodal length L(fn) as n tends to infinity in such a way
that Nn →∞. More precisely, let fn : T→ R be the random Gaussian field
of (real valued) En-functions with eigenvalue En, i.e.,

(4) fn(x) =
1√
2Nn

∑
λ∈Λn

aλe (〈λ, x〉) ,

where aλ = bλ + icλ are independent standard complex Gaussian random
variables, save for the relations a−λ = aλ. This just means that bλ, cλ ∼
N (0, 1) are standard real Gaussians satisfying the relation b−λ = bλ, c−λ =
−cλ and otherwise independent. Our object of study is the random variable

Ln := L(fn) = length(f−1
n (0)),

henceforth called the nodal length of fn.

1.2. Prior work on this model. In this setting, Rudnick and Wigman [24]
computed the expected nodal length of fn to be E[Ln] = 1

2
√

2
·
√
En, in

agreement with Yau’s conjecture (2). They also gave the bound

(5) Var(Ln) = O

(
En√
Nn

)
for the variance, and conjectured that the stronger bound

(6) Var(Ln) = O

(
En
Nn

)
holds. A nice consequence of (5) is that L(fn) concentrates around its mean.
More precisely, there is a sequence δn → 0 such that

P

(
(1− δn)

√
En

2
√

2
≤ L(fn) ≤ (1 + δn)

√
En

2
√

2

)
→ 1 as Nn →∞.

In this paper we shall determine the leading order asymptotic of Var(Ln)
as Nn →∞. As consequence we improve on the conjectured bound (6) and
obtain the sharp bounds

En
N 2
n

� Var(Ln)� En
N 2
n

.
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It turns out that the asymptotic behaviour of the variance is non-universal
in the sense that it depends on the angular distribution of the points in the
frequency set Λn. In the proof, a leading order sum involving many terms
of size En/Nn surprisingly cancels perfectly, and the variance is therefore
much smaller than expected! We may say that T exhibits “arithmetic Berry
cancellation” (cf. Section 1.6.2).

1.3. Our results. In order to describe our results we shall need some fur-
ther notation. The set Λn induces a discrete probability measure µn on the
circle S1 = {z ∈ C : |z| = 1} by defining

(7) µn :=
1

Nn

∑
λ∈Λn

δ λ√
n
,

where δx is the Dirac delta measure supported at x. The Fourier transform
of µn is, for any k ∈ Z, as usual given by µ̂n(k) :=

∫
S1 z

−kdµn(z). For n ∈ S,
we define

(8) cn :=
1 + µ̂n(4)2

512
;

it is then easy to see that cn is real and that cn ∈ [1/512, 1/256]. (Since
Λn is invariant under the transformations z → z and z → i · z, the same
holds for µn, hence µ̂n(4) ∈ R. Further, since µn is a probability measure,
|µ̂n(4)| ≤ 1, and consequently µ̂n(4)2 ∈ [0, 1].)

We can now formulate our principal result.

Theorem 1.1. If (ni)i≥1 is any sequence of elements in S such that Nni →
∞, then

(9) Var (Lni) = cni ·
Eni
N 2
ni

(1 + o(1)).

Further, given any c ∈ [1/512, 1/256], there exists a sequence (ni)i≥1 of
elements in S such that as i→∞, we have Nni →∞ together with cni → c
so that

Var (Lni) = c · Eni
N 2
ni

(1 + o(1)).

1.4. Attainable measures. The second part of the theorem, in light of
the first one, amounts to the following: given any α ∈ [0, 1], there exists a
sequence (ni)i≥1 such that µ̂ni(4)2 → α. We briefly describe the measures µn
giving rise to the extremal points as well intermediate values attainable by
cn (cf. Section 7 for full details, in particular the precise notions of generic
and thin used below.)

It is well known that the lattice points Λn are equidistributed on S1 along
generic subsequences of energy levels, see e.g. [16], Proposition 6. Thus, for
(ni)i≥1 a generic sequence of elements in S the variance is minimal in the
limit since µ̂ni(4)→ 0, and thus cni → 1/512. It is also worthwhile mention-
ing that the nodal length variance of fn for such generic sequences differs by
an order of magnitude from the corresponding quantity for superposition of
random planar waves with same wavelength and directions chosen uniformly
on the unit circle (especially noteworthy in light of the fact that both have
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the same scaling properties. See the last paragraph of Section 1.6.1 for a
more detailed explanation).

As for the maximum, Cilleruelo [13] has shown that there are thin se-
quences (ni)i≥1, with Nni → ∞, such that µni converges weakly to an
atomic probability measure supported at the 4 symmetric points ±1, ±i;
hence µ̂ni(4) → 1 and cni → 1/256. For the intermediate values we con-
struct thin sequences (ni)i≥1 of elements in S such that µni converges weakly
to the uniform probability measure supported on a union of four arcs.

More precisely, for a ∈ [0, π4 ] define a probability measure νa on S1 by

(10) νa :=

(
1

4

3∑
k=0

δik

)
? ν̃a

where ? stands for convolutions of measures, and ν̃a is the uniform measure
on [−a, a] (identifying S1 ∼= R/2πZ). More explicitly,

ν̃a(f) =
1

2a

∫ a

−a
f
(
eiθ
)
dθ, νa(f) =

1

8a

3∑
k=0

a+k π
2∫

−a+k π
2

f
(
eiθ
)
dθ.

For a = 0, we shall use the notational convention that ν0 = 1
4

∑3
k=0 δik .

Proposition 1.2. For every a ∈ [0, π4 ] there exists a sequence Eni of energy
levels, such that µni ⇒ νa with νa as in (10). In particular, for every

b ∈ [0, 1], there exists a sequence Eni of energy levels such that cni → 1+b
512 .

Note that the second statement follows from the first because the values
of ν̂a(4) ranges over the whole of [0, 1] as a ranges over [0, π4 ] (in fact, an

easy computation shows that ν̂a(4) = sin(4a)
4a .) Further, the extremal values

b = 0 and b = 1 are attained by ν = νπ
4
, the uniform measure on S1, and

ν = ν0, the atomic symmetrized measure. The proof of Proposition 1.2 will
be given in Section 7.

1.5. Independence of eigenbasis choice and the covariance function.
The random field (4) is centered, Gaussian and stationary in the sense that
for any x1, . . . , xk ∈ T and y ∈ T, the random vector

(fn(x1 + y), . . . , fn(xk + y)) ∈ Rk

is a mean zero multivariate Gaussian, whose distribution does not depend on
y. The covariance function1 r(x) = rn(x) := E[fn(y)fn(x+y)] thus depends
only on x, and we may express it explicitly as

(11) rn(x) =
1

Nn

∑
λ∈Λ

e (〈λ, x〉) =
1

Nn

∑
λ∈Λ

cos (2π〈λ, x〉) .

Though the normalizing factor in the definition (4) of fn has no bearing
on the nodal length, it is convenient to work with, and we have chosen to
have rn(0) = 1, or, equivalently, for every x ∈ T, E[fn(x)2] = 1.

1The covariance function is widely referred to as the 2-point function in the physics
literature.
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The covariance function determines the distribution of a centered Gauss-
ian random field, and, in principle, one may express any aspect of the geom-
etry of fn in terms of rn only (cf. Kolmogorov’s Theorem, [14] Chapter 3.3).
This important fact also shows that we would get the same random field in
(4) had we chosen a different orthonormal basis of En in the Gaussian linear
combination.

1.6. Background and results in related models. The question of dis-
tribution of various local quantities such as the nodal length, or the total
curvature of nodal lines in different settings, has been extensively studied.
It is widely believed [2] that for generic chaotic billiards, one can model the
nodal lines for eigenfunctions of eigenvalue of order ≈ E with nodal lines
of planar monochromatic random waves of wavenumber

√
E (this is called

Berry’s Random Wave Model or RWM, see (12) for the definition). Hence
the importance of the (random) nodal length and other properties of the
RWM. Berry [3] found that the expected nodal length (per unit area) for

the RWM is of size approximately
√
E, and argued that the variance should

be of order logE.
The 2-dimensional unit sphere S2 is another manifold with degenerate

Laplace spectrum. Here the Laplace eigenvalues are all the numbers E =
m(m + 1) with m ≥ 0 an integer, and the corresponding eigenspace is the
space of degree m spherical harmonics; its dimension is 2m + 1. One may
define the random field of degreem spherical harmonics similarly to the torus
(4) with the plane waves (exponentials) replaced by any L2-orthonormal
basis {ηm;1, . . . ηm;2m+1} of real valued spherical harmonics of degree m:

fS
2

m (x) =
1√

2m+ 1

2m+1∑
k=1

akηm;k(x)

with ak i.i.d standard Gaussian. Setting L
(
fS

2

m

)
to be the nodal length of

fS
2

m , Berard [1] computed the expected nodal length

E
[
L
(
fS

2

m

)]
=
√

2π ·
√
E.

Wigman [30] found that the nodal length variance is asymptotic to

Var
(
L
(
fS

2

m

))
∼ c logm,

which is consistent with Berry’s prediction for the RWM.

1.6.1. Comparing the random wave model to the torus and the sphere. The
logarithmic variance is much smaller than one would expect: taking into
account that the wavelength for either the sphere or the RWM scales as 1√

E
,

one may rescale them to unit wavelength to argue that the nodal length
variance should be proportional to

√
E. However, a computation reveals that

the coefficient in front of the expected leading term
√
E surprisingly vanishes

due to “Berry’s Cancellation Phenomenon” — the leading term for nodal
length variance is in fact logarithmic. A similar cancellation phenomenon is
responsible for the variance (9) in our situation being of order of magnitude
En
N 2
n

, rather than of order En
Nn as was originally conjectured in [24].
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As already remarked, in general, defining a centered (or mean zero) Gauss-
ian random field f on an arbitrary domain T is equivalent to specifying its
covariance function rf (x, y) := E[f(x)f(y)] on T×T . For the planar random
waves (RWM) the covariance function is

(12) rRWM(x, y) = J0(
√
E‖x− y‖)

with J0 the standard Bessel function, and

rS2(x, y) = Pm(cos d(x, y))

for the degree m spherical harmonics, where Pm are the usual Legendre
polynomials, and d is the (spherical) distance. The latter scales as

Pm(cos(ψ/m)) ≈ J0(d),

uniformly for ψ ∈
[
0,m · π2

]
. As the corresponding eigenvalues are m(m+1),

this is consistent to the RWM scaling. The covariance function rn(x) for
our ensemble fn of random toral eigenfunctions given by (4) is of arithmetic
flavour: it is given by the summation (11) over lattice points Λn lying on a
circle.

The equidistribution of Λn along generic sequences of energy levels on the
torus mentioned earlier implies that for any fixed y ∈ R2 one may approxi-
mate

rn(y/(2π
√
ni)) ≈

∫
S1

cos(〈y, z〉)dz = J0(‖y‖)

for a generic sequence {ni} ⊆ S. Although it is the same scaling limit as
before, the latter holds for y of fixed size only, and by no means uniformly
for y ∈ [0, n]2. In particular, as opposed to the other cases, no “intermediate
range asymptotic” for rn(x) is known, i.e. for x ·

√
n→∞. It is remarkable

that even in this case, in spite of the fact that the covariance function for
fn has the same scaling limit as the RWM and random spherical harmonics
random fields, the nodal length variance (9) of random arithmetic waves is
of different order of magnitude compared to the other cases.

1.6.2. Berry’s cancellation phenomenon and the 2-point correlation func-
tion. In order to evaluate moments of the nodal length of a random field f
we exploit a suitable Kac-Rice type formula (see Section 2.1). For the vari-
ance it means that we need to understand the fluctuations of the so called
2-point correlation function (defined on the domain of f) around its scaled
asymptotic value at infinity. For both R2 (RWM) and S2 the main con-
tribution for the variance comes from the “intermediate range” (i.e. a few
wavelengths away from the origin), where the asymptotic behaviour of the
covariance function and its first two derivatives translates to asymptotics
for the 2-point correlation function. No analogous asymptotics is known
for the torus. The cancellation phenomenon amounts to the fact that the
leading term in the intermediate range asymptotics for the 2-point corre-
lation function is purely oscilliatory and its contribution to the integral is
negligible. Then, the main contribution comes from the second term in the
asymptotics.

As a substitute for pointwise asymptotics for the 2-point correlation func-
tion, we use an arithmetic formula (see (33)) valid outside a suitably defined
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“singular set” (arithmetic in nature; its analogue for R2 and sphere is a
neighbourhood of the origin, with radius of order wavelength). Although the
arithmetic formula does not give the pointwise behaviour of the 2-point cor-
relation function, its arithmetic structure is exploited for averaging over the
torus and is essential for evaluating the variance. The “arithmetic Berry’s
cancellation” amounts to the Fourier expansion of the highest magnitude
term of the 2-point correlation function vanishing at the origin, an artifact
of the seemingly unrelated trigonometric identity

4 cos(θ/2)4 = 1 + 2 cos θ + cos(θ)2

(see Section 4.2 for more details).

1.7. Some other related results. For a generic compact manifoldM with
no spectral degeneracies, one can also consider random Gaussian linear com-
binations of eigenfunctions with different eigenvalues (sometimes referred to
as “random wave on M”). Berard [1] and Zelditch [32] found that, given
a spectral parameter E, the expected nodal length for random Gaussian
superpositions of eigenfunctions with eigenvalues lying either about E or
below2 E is of order

√
E, consistent with Berry’s RWM. The subtle ques-

tion of the nodal length variance in this generic setup is to be addressed
in [23].

Some other generic results concerning random waves with spectral pa-
rameter E: Toth and Wigman [26] found that the expected number of open
nodal lines, i.e., the connected component of the zero set that intersect
the boundary, of the random wave with spectral parameter E on a generic
surface with boundary is again of order

√
E. Moreover, Nicolaescu [20] eval-

uated the expected number of critical points to be of order E; the latter is
also an upper bound for the number of nodal domains.

For other related or relevant result we refer the interested reader to the
recent survey [31]. Also, for recent very interesting results and conjectures on
non-local quantities, such as nodal domains (i.e. the connected components
of the complement M\ f−1(0) of the nodal line) see [4, 21, 6, 7, 8].

1.8. Outline of the paper. The paper is organized as follows. The proof
of Theorem 1.1 assuming certain preparatory results is given in Section 2;
this proof relies on an arithmetic formula (16) in Proposition 2.1, whose
proof is commenced in Section 4. The proof of the formula (16) is based on
studying the behaviour of the so-called 2-point correlation function intro-
duced in Section 3; its subtle asymptotic analysis is given in sections 4, 5
and 8, with the latter containing a certain technical computation essential
for understanding the asymptotic properties.

Section 6 is dedicated to the proof of Theorem 2.2, an arithmetic bound,
due to Bourgain, needed for the admissability of the error term in (16). In
Section 7 sequences of energy levels with corresponding discrete probability
measures (7) converging to the measures νa as in (10) are constructed to
prove the attainability of the latter.

2Called the short or long energy window random combinations respectively.
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2. Proof of Theorem 1.1

2.1. Kac-Rice formulas. Moments of the nodal length for smooth random
fields can be computed using the Kac-Rice formulas [14]. To state them, we
need some notation. For f = fn, we define its first and second correlations
as follows:

K1 = E
[
‖∇f(y)‖

∣∣∣ f(y) = 0
]
,

K̃2(x) = E
[
‖∇f(y)‖ · ‖∇f(y + x)‖

∣∣∣ f(y) = f(y + x) = 0
]
,(13)

K2(x) =
2

En
K̃2(x).

Observe that K1 and K2 are independent of y because fn is stationary (for

general smooth Gaussian fields, they become K1(y) and K̃2(x, y)). They are
called the first and second correlations of the nodal set f−1

n (0). K2 is just a
scaled version of the second correlation. As we are dealing with Gaussians,
it is possible to write analytical expressions for these as Gaussian integrals
in terms of rn and its derivatives (see (29), (25) and (24)).

Then, the Kac-Rice formulas say that

E[Ln] =

∫
T
K1dy = K1, E[L2

n] =

∫
T

K̃2(x)dx.

The first of these formulas gives E[Ln] = 1
2
√

2
·
√
En as was quoted earlier.

Using this and the second gives

Var(Ln) =
En
2

∫
T

(
K2(x)− 1

4

)
dx.(14)

Full justification of their validity in our context may be found in [24]. For
the Kac-Rice formulas in general, consult [14].

It is instructive to intuitively understand the function K̃2(x) in the fol-
lowing way. Let x ∈ T, and take a small positive number ε > 0. We define
the random variables

Lx,εn = length
(
f−1
n (0) ∩B(x, ε)

)
,

where B(x, ε) is the disk of radius ε centered at x; Lx,εn measures the nodal
length of fn inside the corresponding disk. Then we have

K̃2(x) =
2

En
lim
ε→0

1

π2ε4
E
[
Lx,εn L0,ε

n

]
.
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2.2. Computing the variance - the Gaussian integral. To understand
Var(Ln) we need to understand the integral in (14). The function K2 may be
implicitly expressed in terms of the covariance function rn of fn as a Gauss-
ian expectation of a 4-variate centered Gaussian (∇fn(0),∇fn(x)) condi-
tioned on fn(0) = fn(x) = 0, with 4× 4 covariance matrix Ωn(x) depending
on r and its derivatives (see (29), (25) and (24)). In our case the covariance
function is the arithmetic function (11).

In order to study the asymptotic behaviour of the integral above, we use
some ideas from [22, 24] and divide the torus into a singular set B and the
nonsingular complement T\B; only the latter is convenient to work with, so
it is essential make the former as small as possible. We improve the analysis
of the earlier paper [24] on both B and T \B.

A better upper bound for the measure of B is proved using the 6th mo-
ment of r rather than the 4th one. As an artifact of the definition of B,
one has a lower bound for the values |r(x)| on B; using a Chebyshev-like
inequality on the 6-th moment of r(x), we will bound the measure of B, so
that its contribution to the variance is negligible.

On T\B, where the main contribution comes from, we establish a precise
asymptotic expression for the 2-point correlation function compared to a
partial upper bound as in [24] (see Proposition 4.5). Here the (scaled)
covariance matrix Ωn(x), defined by (25), is a perturbation of the identity
matrix. In order to understand its contribution to the integral, we expand
K2(x) as a function of Ωn into a 4-variate Taylor polynomial around Ωn = I4,
the identity matrix. In principle, this could be performed using brute force;
we choose to work with Berry’s elegant method [3].

The computation above culminates in the “arithmetic formula” given in
the following proposition. It is of arithmetic essence and at the heart of the
variance being non-universal, but the derivation itself involves no arithmetic.
Before stating the proposition, we define

(15) Rk(n) :=

∫
T

|rn(x)|kdx.

Proposition 2.1. The nodal length variance is given by the asymptotic
formula

(16) Var(Ln) = cn ·
En
N 2
n

+O (En · R5(n)) ,

where we used the notation (8) for cn.

The reason we refer to (16) as “arithmetic” is that both the main term
and the error term in (16) are of arithmetic nature: cn is related to the
distribution of lattice points Λn on the circle (see Section 8), and R5 is
controlled in terms of arithmetics of spectrum correlation.

The proof of Proposition 2.1 will commence in Section 4. It is lengthy
and quite technical, so it may be omitted on a first reading of the paper.

In case of random spherical harmonics or the random wave model, one
arrives at analogous propositions for the variance. The proof essentially ends
there as the error term may be checked to be smaller that the main term.
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2.3. Computing the variance - the arithmetic part. In our setting
however, the main obstacle is in proving the admissability of the error term.
We will control various error terms in terms of the moments Rk(n) :=∫
T |rn(x)|kdx (cf. (15).) The even moments are naturally related to the

spectral correlations; for example, it is straightforward to check that

(17) R6(n) =
1

N 6
n

|S6(n)|,

where S6 is the 6-correlation set of frequencies

(18) S6(n) =

{
(λ1, . . . λ6) ∈ Λn :

6∑
i=1

λi = 0

}
.

Since for any choice of λ1, . . . , λ4 ∈ Λn there are at most 4 possible choices
for λ5, λ6 ∈ Λn, it follows that |S6(n)| = O

(
N 4
n

)
, or, equivalently

(19) R6(n) = O

(
1

N 2
n

)
.

The latter bound is not quite sufficient for our purposes, but the following
result, due to J. Bourgain is sufficiently strong for our purposes.

Theorem 2.2. As Nn →∞, we have the following estimate:

(20) |S6(n)| = o
(
N 4
n

)
.

Consequently, R6(n) = o
(

1
N 2
n

)
.

Theorem 2.2 will be proven in Section 6.
We give a brief preview of the proof of Theorem 2.2. To refute the possi-

bility that |S6(n)| � N 4
n , we invoke some techniques from additive combi-

natorics (see Section 6). Utilizing a notion of “additive energy” defined in
Section 6, a certain set A related to the sum set of Λn is shown to contain
a large subset A1 with “bounded doubling”. Using a suitable version of
Freiman’s Theorem, this implies that A1 is essentially a generalized arith-
metic progression (GAP - see Theorem 6.3), i.e., is contained inside a slightly
larger GAP. This then leads to a contradiction via an application of Chang’s
result [11] on the number of representations of a complex number as a prod-
uct of elements inside a GAP.

We note that the bound |S6(n)| = o(N 4
n) is quite far from the truth;

Bombieri and Bourgain [5] have recently obtained an exponent savings. We
further remark that a trivial lower bound is that |S6(n)| � N 3

n ; taking
any λ1, λ2, λ3 ∈ Λn and letting λ4 = −λ1, λ5 = −λ2, and λ6 = −λ3 yields
|Λn|3 = N 3

n solutions of “diagonal type”. We believe that essentially all
solutions arise like this, and conjecture that for every ε > 0,

|S6(n)| = Oε
(
N 3+ε
n

)
.

(Possibly the even stronger bound |S6(n)| = O
(
N 3
n

)
holds.)
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2.4. Proof of Theorem 1.1 assuming the preparatory results. Given
Proposition 1.2, Proposition 2.1, and Theorem 2.2, it is now straightforward
to deduce Theorem 1.1, our main result. Recall that Rk are the moments
(15) of rn. Using the Cauchy-Schwarz inequality on |r(x)|5 = r2(x) · |r(x)|3
together with the bound R4 = O

(
1
N 2

)
(which follows from the same argu-

ment that yielded (19)), and the bound R6(n) = o
(

1
N 2
n

)
from Theorem 2.2,

we obtain

(21) R5(n) = o

(
1

N 2
n

)
.

Now, using (16) together with (21) we obtain (9).
Finally, using the second part of Proposition 1.2 and the definition of cn

(see (7)) we find that any c ∈ [1/512, 1/256] is attainable as a limit.

3. The 2-point correlation function of fn

In this section we use the Kac-Rice formula (14) that expresses Var(Ln)
as an integral of the (scaled) 2-point correlation K2 defined in (13). For
this we will need to study some aspects of the random field fn first. From
this point on we fix n and will usually suppress the n-dependency with no
further note.

3.1. Joint distribution of values and gradients. In order to study the
variance, we shall need to study the random vector

W = Wn;x = (u1, u2, v1, v2) = (fn(0), fn(x),∇fn(0),∇fn(x)) ∈ R6.

Since W is a linear transformation of the standard Gaussian a = (aλ) ∈
RNn , its distribution is also centered (or mean zero) Gaussian, and by the
stationarity, 0 and x may be replaced by any y and y + x.

Let

(22) D = D1×2(x) = ∇r(x) =
2πi

Nn

∑
λ∈Λ

e (〈λ, x〉) · λ

(cf. (11)). The vector W is centered Gaussian with covariance matrix
(cf. [24], Section 5.1)

Σ =

(
A B
Bt C

)
,

where

A(x) =

(
1 r(x)

r(x) 1

)
,

B(x) =

(
0 D(x)

−D(x) 0

)
and

C(x) =

(
E
2 I2 −H(x)
−H(x) E

2 I2

)
,

where H2×2(x) is the Hessian

(23) H(x) =

(
∂2r

∂xi∂xj

)
= −4π2

Nn

∑
λ∈Λ

e (〈λ, x〉) · (λtλ),
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by (11) (note that λ is a row vector so that λtλ is a 2× 2 matrix).
The covariance matrix of (∇f(0),∇f(x)), conditioned on f(0) = f(x) = 0

is

(24) Ω̃4×4 = C −BtA−1B =

(
E
2 I2 −H
−H E

2 I2

)
− 1

1− r2

(
DtD rDtD
rDtD DtD

)
,

where we write r = r(x) for brevity. Thus, K2(x) = E[‖Ṽ1‖ · ‖Ṽ2‖] where Ṽi
are 2-dimensional random vectors with (Ṽ1, Ṽ2) having Gaussian distribution

with zero mean and covariance matrix Ω̃(x).

3.2. The scaled 2-point correlation function. It is more convenient to
work with the scaled covariance matrix

(25) Ω(x) = Ωn(x) =
2

En
Ω̃n(x).

Then, the scaled 2-point correlation function defined in (13) may be written
as

K2(x) =
1

2π
√

1− rn(x)2
E[‖V1‖ · ‖V2‖],

where V1, V2 are centered Gaussians with covariance matrix Ω(x).
At the origin x = 0 the matrix Ω(x) is singular and hence corresponds

to a covariance matrix of a degenerate Gaussian. However for almost all
x ∈ T, Ω(x) is nonsingular, see [24, Proposition A.1]. We claim that Ω(x) is
a small perturbation of the 4 × 4 identity matrix I4, at least, for “generic”
x. To quantify the latter statement, write

(26) Ω(x) = I +

(
X Y
Y X

)
,

where

(27) X = − 2

En(1− r2)
DtD, Y = − 2

En

(
H +

r

1− r2
DtD

)
,

and both X = Xn(x) and Y = Yn(x) are small for “typical” x.
With these computations, we may rewrite the Kac-Rice formula (14) as

follows.

Proposition 3.1 (Cf. [24], Proposition 5.2). The nodal length variance is
given by

(28) Var(Ln) =
En
2

∫
T

(
K2(x)− 1

4

)
dx,

where K2 is the scaled 2-point correlation function given by

(29) K2(x) = K2;n(x) =
1

2π
√

1− rn(x)2
E[‖V1‖ · ‖V2‖];

here V1, V2 ∈ R2 are centered Gaussians with covariance matrix given by
(26), with X and Y as in (27).

We shall need the following lemma later.
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Lemma 3.2. The matrices Xn and Yn are uniformly bounded (entry-wise),
i.e.

(30) Xn(x), Yn(x) = O(1),

where the constant involved in the ′O′-notation is universal. In particular,

(31) K2;n(x)� 1√
1− rn(x)2

.

Proof. To prove that (30) holds it is sufficient to show that the diagonal
entries of X are uniformly bounded, by (26) (the non-diagonal entries of
a covariance matrix are dominated by the diagonal ones, by the Cauchy-
Schwarz inequality). For the latter, it is sufficient to notice that the diagonal
entries of Ω are positive, and the diagonal entries of X are ≤ 0 (recall (27)).

To prove that the bound in (31) holds, we use (29), the Cauchy-Schwarz
inequality and (30). �

4. Proof of Proposition 2.1

To find the asymptotics of the integral (28), we will study the pointwise
asymptotic behaviour of K2. Even though we will only be able to determine
the precise asymptotics outside the so-called singular set, already used in [22]
and [24], we will prove that the exceptional singular set is small, so that its
contribution is negligible (see Lemma 4.4). To quantify the last statement,
we will control the contribution using a Chebyshev-like inequality, so that
the corresponding error term will naturally involve the moments (15) of the
covariance function (11). We improve upon the analysis of [22] by working
with the 6th moment R6(n) rather than R4(n).

4.1. The singular set. For r(x) bounded away from 1 we may expand the
1√

1−r2 factor in (29) and related expressions into the Taylor series around r =

0. Since the moments of r are “small” (by Theorem 2.2, say), a Chebyshev-
like inequality, implies that r(x) is small outside a small set. This is the
main idea behind the notion of the singular set to follow. We use a slightly
stronger definition in order to endow the exceptional set with a structure as
a union of squares, necessary in order to find its contribution to the integral
(28). The following definitions are borrowed directly from [22], Section 6.1.

Definition 4.1. A point x ∈ T is a positive singular point if there is a set
of frequencies Λx ⊆ Λ with density

|Λx|
|Λ|

>
7

8

for which cos(2π〈λ, x〉) > 3/4 for all λ ∈ Λx. Similarly we define a negative

singular point to be a point x where there is a set Λ̃x ⊆ Λ of density > 7
8

for which cos(2π〈λ, x〉) < −3/4 for all λ ∈ Λ̃x.

Let M ≈
√
En be a large integer. We decompose the torus T as a union

of M2 closed squares I~k of side length 1/M centered at ~k/M , ~k ∈ Z2. The
squares have disjoint interiors.

Definition 4.2. A square I~k is a positive (resp. negative) singular square
if it contains a positive (resp. negative) singular point.
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Definition 4.3. The singular set B = Bn is the union of all singular squares.

Note that, by the definition, each singular square contains a singular
point; however, points in B are not necessarily all singular. Let y ∈ B be
a point lying in a positive singular cube, x be the corresponding positive
singular point lying in the same singular cube and Λx ⊆ Λ the frequency
set prescribed by the definition of a positive singular point. It is easy to see
that

|cos(2π〈λ, y〉)− cos(2π〈λ, x〉)| �
√
En
M

,

where the implied constant is absolute, so that one may choose M ≈
√
En

for which the latter expression is ≤ 1
4 ; it will then imply

cos(2π〈λ, y〉) ≥ 1

2

for every λ ∈ Λx. We then conclude that

r(y) =
1

|Λ|
∑
λ∈Λx

cos(2π〈λ, y〉) +
1

|Λ|
∑

λ∈Λ\Λx

cos(2π〈λ, y〉)

≥ 1

|Λ|
∑
λ∈Λx

1

2
− 1

|Λ|
∑

λ∈Λ\Λx

1 ≥ 7

16
− 1

8
=

5

16

and, similarly, if y is lying in a negative square then r(y) ≤ − 5
16 . Hence we

have |r(y)| ≥ 5
16 on all of B. We then write

R6(n) ≥ meas(B) ·
(

5

16

)4

to obtain the Chebyshev-type inequality

(32) meas(B)� R6(n).

It was proven ([22], Section 6.5) that if S is any singular square then its
contribution to the integral (28) is

�
∫
S

|K2(x)|dx� 1

M
√
En

.

Since the number of the singular cubes is

�M2 meas(B),

the total contribution of B to (28) is bounded by∫
B

|K2(x)|dx�M2 meas(B) · 1

M
√
En

= meas(B)
M√
En
� R6(n)

by (32) and M ≈
√
En. The latter is summarized in the following lemma:

Lemma 4.4 (Cf. [22], Section 6.3). The contribution of the singular set to
(28) is bounded by ∫

B

|K2(x)|dx = O (R6(n)) .
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Lemma 4.4 bounds the contribution of the singular set to the integral
in (28). The main contribution comes from the nonsingular set; in order to
evaluate it we will need a precise point-wise estimate for K2(x) in this range;
this is given by the following proposition, up to admissible error terms. (To
verify the admissibility, see Lemmas 4.6 and 5.4).

Proposition 4.5 (“Intermediate range” asymptotics for K2). For x ∈ T\B
we have

(33) K2(x) =
1

4
+ L2(x) + ε(x),

where the main term L2(x) is given by

L2(x) =
1

4

(
r2

2
+

trX

2
+

tr(Y 2)

8
+

3

8
r4 − tr(XY 2)

16
− tr(X2)

32

+
tr(Y 4)

256
+

tr(Y 2)2

512
− trX tr(Y 2)

32
+

1

4
r2 trX +

1

16
r2 tr(Y 2)

)(34)

with X = Xn(x), Y = Yn(x) and r = rn(x), and the error term ε(x) is
bounded by

(35) |ε(x)| = O
(
r(x)6 + tr(X3) + tr(Y 6)

)
Proposition 4.5 will be proved in Section 5. Assuming it, we arrive at the

proof of Proposition 2.1.

Proof of Proposition 2.1 assuming Proposition 4.5. We invoke Proposition
3.1 to express the nodal length variance. Since the contribution of K2(x) to
the integral (28) on B is

O (En · R6(n))

by Lemma 4.4, we have

Var(Ln) =
En
2

 ∫
T\B

(
K2(x)− 1

4

)
dx

+O (En · R6(n))

=
En
2

∫
T\B

L2(x)dx+O

En · ∫
T\B

|ε(x)|dx

+O (En · R6(n)) ,

(36)

by Proposition 4.5. Note that∫
T\B
|ε(x)|dx ≤

∫
T
|ε(x)|dx = O (En · R6(n)) ,

by (35) and Lemma 4.6 to follow (see parts 10-11), so that (36) is

(37) Var(Ln) =
En
2

∫
T\B

L2(x)dx+O (En · R6(n)) .
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We may further note that, since L2(x) is uniformly bounded thanks to
Lemma 3.2,

En
2

∫
B

L2(x)dx = O (En ·meas(B)) = O (En · R6(n)) ,

so that we may rewrite (37) as

(38) Var(Ln) =
En
2

∫
T

L2(x)dx+O (En · R6(n)) ,

the upshot being that we are now able to use the definition (34) of L2 and
integrate the RHS of (34) term by term, as in Lemma 4.6 (where the domain
of integration is the whole of torus T rather than T \B). We then perform
the term-wise integration of (34) to obtain (with Lemma 4.6)

4 ·
∫
T

L2(x)dx =
1

Nn

(
1

2
− 1

2
· 2 +

1

8
· 4
)

+
1

N 2
n

(
− 1

2
· 2− 1

8
· 4 +

3

8
· 3 +

1

16
· 4− 1

32
· 8 +

1

256
· 2(11 + µ̂n(4)2)

+
1

512
· 4(7 + µ̂n(4)2) +

1

32
· 8− 1

4
· 2 +

1

16
· 8
)

+O (R5(n))

=
1

N 2
n

· 1 + µ̂n(4)2

64
+O (R5(n)) .

Collecting all the constants encountered and bearing in mind (38) yields
(16), which is the statement of the present proposition. �

4.2. Some remarks on arithmetic Berry cancellation. While the con-
stant term 1

4 cancels out with the expectation squared, the leading noncon-
stant term of the scaled 2-point correlation function (i.e. the leading term
of K2(x)− 1

4) is

1

8

(
r2 + trX +

tr(Y 2)

4

)
≈ 1

8

(
r2 − 2

En
DDt +

1

E2
n

trH2

)
,

where we neglected some lower-order terms. Denote the expression in paren-
thesis

(39) v(x) := r2 − 2

En
DDt +

1

E2
n

trH2.

We may substitute (11), (22) and (23) into (39) to rewrite v(x) as

v(x) =
1

N 2

∑
λ1,λ2∈Λn

e (〈λ1 + λ2, x〉) +
2

N 2

∑
λ1,λ2∈Λn

λ1λ
t
2

En/4π2
e (〈λ1 + λ2, x〉)

+
1

N 2

∑
λ1,λ2∈Λn

(λ1λ
t
2)2

(En/4π2)2
e (〈λ1 + λ2, x〉)

=
1

N 2

∑
λ1,λ2∈Λn

(
1 + 2

λ1λ
t
2

n
+

(λ1λ
t
2)2

n2

)
e (〈λ1 + λ2, x〉) ,

on recalling (3).
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Note that
λ1λ

t
2

n
= cos θ(λ1, λ2),

where θ(·, ·) is the angle between two vectors in R2. Thus we may write, up
to lower order terms,

v(x) =
1

N 2

∑
λ1,λ2∈Λn

(
1 + 2 cos θ(λ1, λ2) + cos (θ(λ1, λ2))2

)
e (〈λ1 + λ2, x〉)

=
4

N 2

∑
λ1,λ2∈Λn

cos

(
θ(λ1, λ2)

2

)4

e (〈λ1 + λ2, x〉) ,

by the usual trigonometric identities. Upon integrating (28), all the sum-
mands vanish except for λ1 + λ2 = 0; the corresponding angle θ is given
by

θ = θ(λ1, λ2) = π,

so that cos(θ/2) = 0. Thus the arithmetic cancellation phenomenon in the
length variance amounts to cos(θ/2)4 vanishing at θ = π.

4.3. Integrating matrix elements. We may obtain an asymptotic ex-
pression for the nodal length variance upon using (28) with Proposition 4.5,
provided that we are able to integrate the expressions on the RHS of (33),
term-wise. This is done in Lemma 4.6 to follow immediately. We choose
to control the various error terms encountered in terms of the moments of
r, Rk (recall the notation (15)). It will turn out that we will be able to
control the error terms in terms of R5 (and R6 ≤ R5), admissible thanks
to Theorem 2.2 via a simple Cauchy-Schwarz argument (see the proof of
Theorem 1.1 in Section 2.4). The proof of Lemma 4.6 is left to Section 5.1.

Lemma 4.6. As Nn →∞ we have the following estimates.

1.
∫
T

trX(x)dx = − 2
Nn −

2
N 2
n

+O (R6(n)) .

2.
∫
T

tr(Y (x)2)dx = 4
Nn −

4
N 2
n

+O (R6(n)) .

3.
∫
T

tr(X(x)Y (x)2)dx = − 4
N 2
n

+O (R5(n))

4.
∫
T

tr(X(x)2)dx = 8
N 2
n

+O (R6(n))

5.
∫
T

tr(Y (x)4)dx = 2
N 2
n

(11 + µ̂n(4)2) +O (R6(n)) .

6.
∫
T

tr(Y (x)2)2dx = 4
N 2
n

(3 + µ̂n(4)2) +O (R6(n))

7.
∫
T

trX(x) tr(Y (x)2)dx = − 8
N 2
n

+O (R6(n))

8.
∫
T
r(x)2 trX(x)dx = − 2

N 2
n

+O (R6(n))

9.
∫
T
r(x)2 tr(Y (x)2)dx = 8

N 2
n

+O (R6(n)) .

10.
∫
T

tr(X(x)3)dx = O(R6(n)).
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11.
∫
T

tr(Y (x)6)dx = O (R6(n)) .

5. Asymptotics for the 2-point correlation function

The ultimate goal of this section is to prove Proposition 4.5. To establish
the desired asymptotics for (29), one needs to understand the behaviour
of E[‖V1‖ · ‖V2‖] where (V1, V2) is a centered Gaussian with covariance Ωn,
the latter being a small perturbation of the indentity matrix, given by (26),
where both X and Y are small. That is, we expand F (X,Y ) = E[‖V1‖·‖V2‖]
into a Taylor polynomial of the entries of X,Y , about X = Y = 0.

The degree of the required Taylor polynomial in each of the variables is
determined according to its (average) order of magnitude and the admissible
error term. In principle, one may compute the polynomial by brute force,
computing each derivative separately, but this approach results in a long and
tedious computation. In this manuscript we employ Berry’s method [3] in or-
der to compute the nodal length fluctuations for the random monochromatic
planar waves. The following lemma provides the Taylor approximation of
F (X,Y ) for perturbed standard Gaussian.

Lemma 5.1. Let ∆ ∈M4(R) be a positive definite matrix such that

∆ = I +

(
X Y
Y X

)
,

where X,Y ∈M2(R) are symmetric, rank(X) = 1. Define

F (X,Y ) = E [‖W1‖ · ‖W2‖] ,

where (W1,W2) ∈ R2 × R2 is centered Gaussian with covariance ∆. Then

F (X,Y ) =
π

2

(
1 +

trX

2
+

tr(Y 2)

8
− tr(XY 2)

16
− tr(X2)

32
+

tr(Y 4)

256

+
tr(Y 2)2

512
− trX tr(Y 2)

32

)
+O

(
tr(X3) + tr(Y 6)

)
.

Proof of Proposition 4.5 assuming Lemma 5.1. Note that sinceDtD is a rank
1 matrix, it satisfies

tr(DtD) = DDt.

A straightforward application of Lemma 5.1 with X and Y given by (27)
yields (for x ∈ T \B, r is bounded away from ±1, so we may write 1√

1−r2 =
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1 + 1
2r

2 + 3
8r

4 +O(r6))

K2(x) =
1

2π
√

1− r2
· F (X,Y )

=
1

4
√

1− r2

(
1 +

trX

2
+

tr(Y 2)

8
− tr(XY 2)

16
− tr(X2)

32

+
tr(Y 4)

256
+

tr(Y 2)2

512
− trX tr(Y 2)

32

)
+O

(
tr(X3) + tr(Y 6)

)
=

1

4

(
1 +

r2

2
+

trX

2
+

tr(Y 2)

8
+

3

8
r4 − tr(XY 2)

16
− tr(X2)

32

+
tr(Y 4)

256
+

tr(Y 2)2

512
− trX tr(Y 2)

32
+

1

4
r2 trX +

1

16
r2 tr(Y 2)

)
+O

(
r6 + tr(X3) + tr(Y 6)

)
.

�

To present the proof of Lemma 5.1 we need some notation.

Notation 5.2. For a matrix A and a number a we write A = O(a) if the
corresponding inequality holds entry-wise.

Notation 5.3. For t ∈ 0 we denote m(t) := min{t, 1}, and for t, s ∈ R,

m(t, s) := m(t) ·m(s).

Proof of Lemma 5.1. Following Berry, see [3, Eq. (24)],

√
α =

1√
2π

∞∫
0

(1− e−
αt
2 )

dt

t3/2
,

we have

(40) E[‖W1‖ · ‖W2‖] =
1

2π

∫∫
R2
+

[f(0, 0)− f(t, 0)− f(0, s) + f(t, s)]
dtds

(ts)3/2
,

where
(41)

fX,Y (t, s) = f(x, y) := E
[
exp

(
−1

2

(
‖W1‖2 + ‖W2‖2

))]
=

1

det(I +M)
,

with

M =

(√
tI 0
0

√
sI

)
∆

(√
tI 0
0

√
sI

)
.

Now by the well-known formula for the determinant of a block matrix (see
e.g. [14], p. 210), we have

det(I+M) = det ((1 + t)I + tX)·det
(
(1 + s)I + sX − stY ((1 + t)I + tX)−1Y

)
,

so that

det(I +M)−1/2 = det ((1 + t)I + tX)−1/2×

× det
(
(1 + s)I + sX − stY ((1 + t)I + tX)−1Y

)−1/2
.

(42)
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Now we compute each of the two factors of the RHS of (42), up to the
admissible error terms X3 and Y 6, as in the formulation of Lemma 5.1:

(43) det(I +A)−1/2 = 1− 1

2
trA+

1

4
tr(A2) +

1

8
(trA)2 +O(A3),

so that the first factor in the RHS of (42) is

det ((1 + t)I + tX)−1/2 =
1

1 + t
det

(
I +

t

1 + t
X

)−1/2

=
1

1 + t
·
(

1− t

2(1 + t)
trX +

t2

4(1 + t)2
tr(X2) +

t2

8(1 + t)2
(trX)2 +O(X3)

)
.

(44)

To compute the second factor in the RHS of (42) we write

(I +A)−1 = I −A+O(A2),

and we then have

1

1 + s
det

(
I +

s

1 + s
X − st

(1 + s)(1 + t)
Y

(
I +

t

1 + t
X

)−1

Y

)−1/2

=
1

1 + s
det

(
I +

s

1 + s
X − st

(1 + s)(1 + t)
Y 2 +

st2

(1 + s)(1 + t)2
Y XY +O(Y X2Y )

)−1/2

=
1

1 + s

(
1− 1

2

s

1 + s
trX +

1

2

st

(1 + s)(1 + t)
tr(Y 2)− 1

2

st2

(1 + s)(1 + t)2
tr(Y XY )

+
1

4

s2

(1 + s)2
tr(X2) +

1

4

s2t2

(1 + s)2(1 + t)2
tr(Y 4)− 1

2

s2t

(1 + s)2(1 + t)
tr(XY 2)

+
1

8

s2

(1 + s)2
tr(X)2 +

1

8

s2t2

(1 + s)2(1 + t)2
tr(Y 2)2 − 1

4

s2t

(1 + s)2(1 + t)
trX tr(Y 2)

+O(tr(X3) + tr(Y 6))

)

(45)

upon using (43) with

A =
s

1 + s
X − st

(1 + s)(1 + t)
Y 2 +

st2

(1 + s)(1 + t)2
Y XY +O(Y X2Y ).
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Cross multiplying (44) and (45) and substituting into (42) and finally into
(41), we obtain an asymptotic expression for fX,Y (t, s) of the form

fX,Y (t, s) =
1

(1 + t)(1 + s)

(
1− 1

2

s

1 + s
trX +

1

2

st

(1 + s)(1 + t)
tr(Y 2)−

1

2

st2

(1 + s)(1 + t)2
tr(Y XY ) +

1

4

s2

(1 + s)2
tr(X2) +

1

4

s2t2

(1 + s)2(1 + t)2
tr(Y 4)

− 1

2

s2t

(1 + s)2(1 + t)
tr(XY 2) +

1

8

s2

(1 + s)2
(trX)2 +

1

8

s2t2

(1 + s)2(1 + t)2
tr(Y 2)2

− 1

4

s2t

(1 + s)2(1 + t)
trX tr(Y 2)− t

2(1 + t)
trX +

t2

4(1 + t)2
tr(X2) +

t2

8(1 + t)2
(trX)2

+
1

4

ts

(1 + t)(1 + s)
(trX)2 − 1

4

st2

(1 + s)(1 + t)2
trX tr(Y 2) +O((tr(X3) + tr(Y 6))

)
=

1

(1 + t)(1 + s)

(
1− 1

2

(
s

1 + s
+

t

1 + t

)
trX +

1

2

st

(1 + s)(1 + t)
tr(Y 2)

− 1

2

(
st2

(1 + s)(1 + t)2
+

s2t

(1 + s)2(1 + t)

)
tr(XY 2)

+

(
3

8

s2

(1 + s)2
+

3

8

t2

(1 + t)2
+

1

4

ts

(1 + t)(1 + s)

)
tr(X2) +

1

4

s2t2

(1 + s)2(1 + t)2
tr(Y 4)

+
1

8

s2t2

(1 + s)2(1 + t)2
tr(Y 2)2 − 1

4

(
s2t

(1 + s)2(1 + t)
+

st2

(1 + s)(1 + t)2

)
trX tr(Y 2)

+O(tr(X3) + tr(Y 6))

)

(46)

where we used

(47) tr(Y XY ) = tr(XY 2), tr(X2) = (trX)2,

the latter thanks to rkX = 1.
It is important to identify (46) as the Taylor expansion of fX,Y (t, s) for

fixed t, s, as a function of X,Y around X = Y = 0 (i.e. a Taylor poly-
nomial in terms of the entries of X and Y ). In the next step we perform
the integration in (40) by integrating the various terms in (46). The main
problem is that the error term does not depend on t, s, so that its integral
against 1

t3/2s3/2
is divergent at the origin. We improve the error term in the

following way: define

(48) gX,Y (t, s) := f(0, 0)− f(t, 0)− f(0, s) + f(t, s),

so that under the new notation (40) is

(49) E[‖W1‖ · ‖W2‖] =
1

2π

∫∫
R2
+

gX,Y (t, s)
dtds

(ts)3/2
.

It is evident that for every X,Y the function gX,Y vanishes if either t = 0
or s = 0, so that for t, s ≥ 0,

gX,Y (t, s) = OX,Y (ts).
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We now substitute (46) into (48) in order to expand gX,Y (t, s) into a Taylor
polynomial around X = Y = 0; by the latter observation the remainder
term may be improved from O

(
tr(X3) + tr(Y 6)

)
to

O
(
m(t, s)(tr(X3) + tr(Y 6))

)
(recall Notation 5.3). To compute the contribution of each of the summands
in (46), we notice that each of summand splits into a product φ(t)ψ(s) for
some φ and ψ (that are read off directly, for example, for the constant term

1
(1+t)(1+s) , φ(t) = 1

1+t and ψ(s) = 1
1+s), so that the corresponding term of

gX,Y (t, s) in (48) is

φ(t)ψ(s)− φ(t)ψ(0)− φ(0)ψ(s) + φ(0)ψ(0) = (φ(t)− φ(0))(ψ(s)− ψ(0)).

Therefore, the corresponding term in the integral (49) splits as well. We
then finally obtain

gX,Y (t, s) =
ts

(1 + t)(1 + s)
+

1

2

(
t

1 + t

s

(1 + s)2
+

t

(1 + t)2

s

1 + s

)
trX

+
1

2

t

(1 + t)2

s

(1 + s)2
tr(Y 2)− 1

2

(
t2

(1 + t)3

s

(1 + s)2
+

t

(1 + t)2

s2

(1 + s)3

)
tr(XY 2)

−
(

3

8

t

1 + t

s2

(1 + s)3
+

3

8

t2

(1 + t)3

s

1 + s
− 1

4

t

(1 + t)2

s

(1 + s)2

)
tr(X2)

+
1

4

t2

(1 + t)3

s2

(1 + s)3
tr(Y 4) +

1

8

t2

(1 + t)3

s2

(1 + s)3
tr(Y 2)2

− 1

4

(
t2

(1 + t)3

s

(1 + s)2
+

t

(1 + t)2

s2

(1 + s)3

)
trX tr(Y 2)

+O
(
m(t, s)(tr(X3) + tr(Y 6))

)
.

(50)

Note that rather than improving the error term in the last step we may
incorporate the improvement into more precise versions of (44) and (45)
and then carry the improved error term along; it would result in the same
formula (50).

Inserting (50) into (49) yields

E[‖W1‖ · ‖W2‖] =
π

2

(
1 +

trX

2
+

tr(Y 2)

8
− tr(XY 2)

16
− tr(X2)

32

+
tr(Y 4)

256
+

tr(Y 2)2

512
− trX tr(Y 2)

32

)
+O

(
tr(X3) + tr(Y 6)

)
,

using the elementary integrals

∞∫
0

(
t

1 + t

)
dt

t3/2
= π;

∞∫
0

dt

(1 + t)2
√
t

=
π

2
;

∞∫
0

√
tdt

(1 + t)3
=
π

8
.

which is the statement of the present lemma. �
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5.1. Proof of Lemma 4.6. To prove Lemma 4.6 we will need the following
lemma (which establishes the asymptotics for some expressions involved in
X and Y - see (27)), whose proof is relegated to Section 8.

Lemma 5.4. We have the following estimates:

1.
∫
T
r(x)2dx = 1

Nn .
∫
T
r(x)4dx = 3

N 2
n

(
1 +O

(
1
Nn

))
.

2.
∫
T
D(x)D(x)tdx = En

Nn .
∫
T

(
D(x)D(x)t

)2
dx = 2·E

2
n
N 2
n

(
1 +O

(
1
Nn

))
.

3.
∫
T
r(x)2D(x)D(x)tdx = En

N 2
n

(
1 +O

(
1
Nn

))
.

4.
∫
T

tr(H(x)2)dx = E2
n
Nn .

∫
T
r(x)2 tr(H(x)2)dx = 2·E

2
n
N 2
n

(
1 +O

(
1
Nn

))
.

5.
∫
T

tr(H(x)4)dx = E4
n

8N 2
n

(11 + µ̂n(4)2) +O
(
E4
n
N 3
n

)
.∫

T
tr(H(x)2)2dx = E4

n
4N 2

n
(7 + µ̂n(4)2) +O

(
E4
n
N 3
n

)
.

6.
∫
T
D(x)D(x)t tr(H(x)2)dx = E3

n
N 2
n

(
1 +O

(
1
Nn

))
.

7.
∫
T
r(x)D(x)H(x)D(x)tdx = −1

2 ·
E2
n
N 2
n

(
1 +O

(
1
Nn

))
.

8.
∫
T
D(x)H(x)2D(x)tdx = 1

2 ·
E3
n
N 2
n

(
1 +O

(
1
Nn

))
.

9.
∫
T

(D(x)D(x)t)3dx = O
(
E3
nR6(n)

)
.

10.
∫
T
r(x)4D(x)D(x)tdx = O (EnR6(n)) .

11.
∫
T

tr(H6)dx = O
(
E6
nR6(n)

)
.

Proof of Lemma 4.6 assuming Lemma 5.4. In this proof we will suppress
the dependence on x (and n), i.e. use the shortcuts r = rn(x), X = Xn(x),
Y = Yn(x), D = Dn(x), H = Hn(x). We have∫

T

trXdx =

∫
T\B

trXdx+O(meas(B))

by the uniform boundedness (30) of X. Since meas(B) is small (32) and on
T \B we may write

1

1− r2
= 1 + r2 +O(r4),
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we have∫
T

trXdx = − 2

En

∫
T

DDtdx+

∫
T

r2DDtdx

+O (R6(n))

= − 2

Nn
− 2

N 2
n

+O (R6(n))

by parts 10, 2 and 3 of Lemma 5.4. Arguing in a similar fashion, we obtain∫
T

tr(Y 2)dx ∼ 4

E2
n

∫
T

[
tr(H2) + 2rDHDt

]
dx =

4

Nn
− 4

N 2
n

+O (R6(n)) ,

∫
T

tr(XY 2)dx ∼ − 8

E3
n

∫
T

DH2Dtdx = − 4

N 2
n

+O(R5(n)),

∫
T

tr(Y 4)dx ∼ 16

E4
n

∫
T

tr(H4) +O (R6(n)) ,

∫
T

tr(Y 2)2dx =
16

E4
n

∫
T

tr(H2)2dx+O (R6(n)) =
4

N 2
n

(7+µ̂n(4)2)+O (R6(n)) .

This shows parts 1, 2, 3, 5 and 6, parts 4, 7, 8 and 9 being similar.
To see part 10, we notice that, as X is uniformly bound (30), and meas(B)

is small (32), it is sufficient to bound the contribution on T\B only, so that
we may assume that r is bounded away from ±1:

(51)

∫
T

tr(X3)dx� 1

E3

∫
T

(DDt)3dx+R6(n).

Part 10 of Lemma 4.6 then follows upon applying part 9 of Lemma 5.4 with
(51). The proof for part 11 is very similar, using part 11 of Lemma 5.4, and
we omit it here. �

6. Proof of Theorem 2.2

We begin by recalling some needed results from additive combinatorics.
An additive set is a finite and non-empty subset of an ambient (additive)
abelian group Z. Given an additive set A, we define E(A,A), the additive
energy of A by

E(A,A) :=
∣∣{(y1, y2, y3, y4) ∈ A4 : y1 + y2 = y3 + y4

}∣∣ .
We shall use the following “large energy version” of the Balog-Szemeredi-
Gowers theorem (see [25, Ch. 2.4–5]):

Theorem 6.1 (BSG). Let A be an additive set, and let K ≥ 1. There exists
an absolute constant C with the following property: if E(A,A) ≥ |A|3/K,
then there exists a subset A1 ⊆ A satisfying

(52) |A1| > K−C |A|

and

(53) |A1 +A1| < KC |A|.
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Remark 6.2. Theorem 6.1 can easily be deduced from Proposition 2.26 and
Theorem 2.31 of [25] as follows: by Theorem 2.31, E(A,A) ≥ |A|3/K im-

plies that there exists subsets A1 ⊆ A, A2 ⊆ A with |A1| > K−C
′ |A|, |A2| >

K−C
′ |A| satisfying d(A1, A2) ≤ C ′ logK (where d(A1, A2) denotes the Rusza

distance between A1, A2, and C ′ is an absolute constant.) By Proposi-

tion 2.26, d(A1, A2) ≤ C ′ logK implies that |A1 + A1| ≤ KC′′ |A1| for some
C ′′ only depending on C ′. Taking C = max(C ′, C ′′) the result follows.

If G is a (torsion free) abelian group, a Generalized Arithmetic Progres-
sion (GAP) of dimension d, is a subset P ⊆ G of the form

(54) P =

{
ξ0 +

d∑
k=1

jkξk : 0 ≤ jk < Jk for k = 1, . . . , d

}

with ξ0, . . . , ξd ∈ G. A GAP P is called proper, if |P | =
∏d
k=1 Jk (i.e., all

elements in the sum ξ0 +
∑d

k=1 jkξk are distinct). It is easy to see that a
GAP has “bounded doubling”, i.e., that |A+A|/|A| is “small”. A surprising
converse is Freiman’s celebrated structure theorem — an additive set with
small doubling is essentially a proper GAP:

Theorem 6.3 ([25], Theorem 5.33). Let A be an additive set in a torsion
free group G such that |A+A| ≤ K|A|. Then there exists a proper generalized
arithmetic progression P , of rank at most K−1, which contains A such that

|P | ≤ exp
(
O
(
KO(1)

))
|A|.

If A ⊂ C and z ∈ C, let r2(z,A) denote the number of representations
of z as a product of two elements from A. The following result by Chang
shows that r2(z,A) is quite small when A is a GAP.

Proposition 6.4 ([11], Proposition 3). Let P ⊆ C be a GAP of the form
(54) where ξ0, . . . , ξd ∈ C. Then, for all z ∈ C,

(55) r2(z, P ) < exp

(
Cd

log J

log log J

)
where J = max1≤k<d Jk and the constant Cd only depends on the dimension
d of P .

Proof of Theorem 2.2. Assume that |Sn| = o(N 4
n) does not hold, i.e., that

there exists some δ > 0 such that

(56) |S6(n)| > δN 4
n

for Nn arbitrarily large. Using sum-product type estimates, we will show
that this leads to a contradiction.

To simplify the notation, let S = S6(n), and N = Nn. From this point
on in this proof we assume that δ is fixed; we will write F . G for some
expressions F , G (resp. F & G), if there exists a constant C (which may
depend on δ only), such that F ≤ C ·G (resp. F ≥ C ·G).

Define

(57) A = An := (Λn + Λn) \ {0};
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note that A then consists of elements that have two (or exactly one for
elements of the form 2λ, λ ∈ Λn) representations as sums of elements of Λn,
and we also note that A is symmetric around the origin. Thus

(58) |A| = N2/2 +O(N)

and (56) implies

(59) |{(y1, y2) ∈ A×A : y1 + y2 ∈ A}| & N4.

(Note that the number of solutions to
∑6

i=1 λi = 0 with the additional
constraint that one of λ1 + λ2, λ3 + λ4, λ5 + λ6 equals zero is O(N3); this
follows immediately on noting that λi + λj = z has at most four solutions if
z 6= 0.)

Letting 1A denote the characteristic function of the set A ⊆ Z2, we have

(60) |{(y1, y2) ∈ A×A : y1 + y2 ∈ A}| = 〈1A ? 1A,1A〉,
where we understand both the inner product and the convolution as de-
fined on L2(Z2). Together with (59) and the Cauchy-Schwarz inequality the
observation (60) yields

N4 . 〈1A ? 1A,1A〉 ≤ ‖1A ? 1A‖2 · |A|1/2 ∼
1√
2
‖1A ? 1A‖2 ·N.

We may hence estimate the additive energy of A as

E(A,A) = |{(y1, y2, y3, y4) ∈ A4 : y1 + y2 = y3 + y4}|
= ‖1A ? 1A‖22 & N6 & |A|3.

We now apply Theorem 6.1 on A with K = K(δ) constant, to construct
a large subset A1 ⊆ A having the “bounded doubling” property (53), and,
in addition (52); together with (58) the latter implies

(61) |A1| & N2.

Hence, by applying Theorem 6.3 with G = Z2 and A1 ⊂ G, there exists a
proper GAP

(62) P =

{
ξ0 +

d∑
k=1

jkξk : 0 ≤ jk < Jk for k = 1, . . . , d

}
as in (54), of bounded dimension (depending on δ only),

(63) d(δ) = d(K(δ)),

so that A ⊆ P and

|P | ≤ exp
(
O
(
KO(1)

))
|A1| . |A1|.

We then have

|A1| = |P ∩A1| ≤ |P ∩A| ≤
∑
x∈Λn

|(P − x) ∩ Λn|,

where for the latter inequality we used the definition (57) of A. Hence, by
(61),

N2 .
∑
x∈Λn

|(P − x) ∩ Λn|
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and therefore (the length of summation being N),

|(P − x) ∩ Λn| & N
for some x ∈ Λn. Replacing P by P − x if necessary, we may assume that

(64) |P ∩ Λn| & N.
Using Chang’s Proposition 6.4 the latter leads to a contradiction as fol-

lows. If P =
{
ξ0 +

∑d
k=1 jkξk : 0 ≤ jk < Jk for k = 1, . . . , d

}
, then P ∪P is

contained in a GAP, of dimension 2d+ 1, of the form

P ′ =

{
ξ0 + j0(ξ0 − ξ0) +

d∑
k=1

jkξk +

2d∑
k=d+1

jkξk−d

}
where 0 ≤ j0 < 2, 0 ≤ jk < Jk for k = 1, . . . , d, and 0 ≤ jk < Jk−d for
k = d+ 1, . . . , 2d.

Considering P ′ as a subset of Z + iZ it is clear (since for every z ∈ Λn,
z · z = n) that

(65) r2(n, P ′) ≥ |P ′ ∩ Λn| & N
by (64). On the other hand, Proposition 6.4 applied on P ′ implies that

r2(n, P ′) < exp

(
C2d+1

log J

log log J

)
where

J = max
1≤k≤d

Jk ≤ |P | . N2,

with Jk as in (62), and thus

r2(n, P ′) < exp

(
C2d+1

logN

log logN

)
.

Combined with (65) the latter estimate implies

N . exp

(
C2d+1

logN

log logN

)
,

or, taking logarithm of both sides,

logN ≤ C logN

log logN

for some C = C(δ) that may depend on δ only (by (63)). This is clearly
impossible for N arbitrarily large, and the desired contradiction concludes
the proof. �

7. Probability measures on S1 arising from Λn

Recalling that S = {n ∈ Z : n = a2 + b2, a, b ∈ Z}, define

S(x) := {n ∈ S : n ≤ x},
and for a subset S′ ⊆ S similarly define S′(x) := {n ∈ S′ : n ≤ x}. We

say that a set S′ ⊆ S has asymptotic density s ∈ [0, 1] if lim
x→∞

S′(x)
S(x) = s.

Further, we say that a subsequence (ni)i≥1 of elements in S is thin if the
subset {ni}i≥1 ⊂ S has asymptotic density zero.
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It is known [19], that as x → ∞, S(x) ∼ cx√
log x

where c > 0 is known as

the Landau-Ramanujan constant; in particular Nn grows as ∼ c
√

log x on
average for n ≤ x. Moreover, a straightforward modification of an Erdös-
Kac type argument to the set S shows that

|{n ∈ S(x) : logNn � log logn}| = |S(x)| · (1 + o(1))

as x → ∞, and consequently there exists a density one subset S′ ⊂ S such
that Nn →∞ if n ∈ S′ and n→∞.

Further, the lattice points Λn are equidistributed on S1 along generic
subsequences of energy levels (see e.g. [16, Proposition 6] in the following
sense3: there exists a density 1 subsequence S′′ ⊆ S so that µn ⇒

n∈S′′
ν,

where ν is the uniform probability measure dν(θ) = 1
2πdθ on S1 ∼= R/2πZ.

(As usual, the notation υi ⇒ υ stands for weak convergence of probability
measures on S1, i.e., that

∫
fdυi →

∫
fdυ for every continuous bounded

test function f .) In particular, for a generic sequence of elements n ∈ S,
Nn →∞ and the points in Λn are equidistributed in S1.

In the other direction, Cilleruelo [13] has shown that there are thin se-
quences (Eni)i≥1 with Nni → ∞, such that µni converges to the atomic
probability measure supported at the 4 symmetric points ±1, ±i:

(66) µni ⇒ ν0 :=
1

4

3∑
k=0

δik .

7.1. Some number theoretic prerequisites on Gaussian integers.
Before proceeding with the proof of Proposition 1.2 we begin with some
number theoretic preliminaries on µn (see e.g. [13]).

To describe µn we recall some basic facts about Gaussian integers. Given
a prime p ≡ 1 mod 4, the equation x2 + y2 = p has exactly eight solutions
in integers x, y, and there is a unique solution satisfying 0 ≤ yp ≤ xp. We
can hence attach an angle θp ∈ [0, π/4] to each such p by writing xp + iyp =√
peiθp . On the other hand, given a prime q ≡ 3 mod 4, the equation

x2 +y2 = q has no solutions; whereas x2 +y2 = 2 has exactly four solutions.
Moreover, the following holds for the ring of Gaussian integers: the units are
given by ik for k ∈ {0, 1, 2, 3}, the set of Gaussian primes are, up to units,
given by 1 + i, primes q ∈ Z+ with q ≡ 3 mod 4, and to each prime p ≡ 1
mod 4 there corresponds two Gaussian primes, namely xp + iyp =

√
peiθp

and xp − iyp =
√
pe−iθp .

The elements of Λn can then be parametrized as follows: let

n = 2e2 ·
∏
pep ||n

p
ep
i ·

∏
q
2eq
i ||n

q
2eq
i

where pi and qi are all the primes satisfying pi ≡ 1 mod 4 and q ≡ 3 mod 4.
Each pair (x, y) arises as follows: with z = x+ iy, we have

z = x+ iy = ik · (1 + i)e2 ·
∏
pep ||n

(
√
pepei(ep−2lp)θp) ·

∏
q
2eq
i ||n

q
eq
i

3Proposition 6 in [16] implies that all the exponential sums are o(1) for a density one
sequence of energy levels. The equidistribution follows from the Weyl’s criterion.



NODAL LENGTH FLUCTUATIONS 29

where k ∈ {0, 1, 2, 3}, and 0 ≤ lp ≤ ep for each p|n.
We can now describe µn as convolutions over prime powers: define

µ1 :=
1

4

3∑
k=0

δik

(µ1 = ν0 as in (66)), µ̃2e2 := δ((1+i)/
√

2)e2 , and

µ̃pep :=
1

ep + 1

ep∑
lp=0

δei(ep−2lp)θp ,

(the “desymmetrized” version of µn). Then

µn = µ1 ? (?p|nµ̃pep )

where the convolution of two measures µ, µ′ on S1 is given by

(µ ? µ′)(z) =

∫
S1

µ(w)µ′(z/w)dw.

7.2. Proof of Proposition 1.2.

Proof. That ν0 and νπ/4 arise as weak limits of (µni)i≥1 was already noted
in the introduction of Section 7.

To show that the same is true for νa for a ∈ (0, π/4) we argue as follows:
An easy consequence of Gaussian primes being equidistributed in sectors
(cf. [17, 18]) is that there exists an infinite sequence of primes p1 < p2 < . . .
such that θpj → 0, where each pj ≡ 1 mod 4 (also see [13].) To proceed we
construct a sequence of integers nj such that

(67) µ̃nk → ν̃a;

this will immediately imply that µnk → νa since µnk and νa are the sym-
metrized versions of µ̃nk and ν̃a respectively.

Thus, let ek = [a/θpk ], where [a/θpk ] denotes the integer part of a/θpk ,
and define

nk = pekk .

Then, for f any continuous function on S1,

(68)

∫
S1

f(θ)dµ̃nk(θ) =
1

ek + 1

ek∑
l=0

f(ei(ek−2l)θpk ).

The latter is the 2θpk -spaced Riemann sum for the integral

1

2αk

αk∫
−αk

f(eiθ)dθ

with

αk = θpk · [a/θpk ] = a− θpk · {a/θpk},
where {·} is the fractional part of a real number.

Note that since θpk → 0 (so that the Riemann sum spacing vanishes),

|θpk · {a/θpk}| ≤ θpk → 0,



30 MANJUNATH KRISHNAPUR, PÄR KURLBERG, AND IGOR WIGMAN

and so αk → a. Therefore, as k →∞, we have∫
S1

f(θ)dµ̃nk(θ) =
1

ek + 1

ek∑
l=0

f(ei(ek−2l)θpk )→ 1

2a

a∫
−a

f(eiθ)dθ

for any continuous test function f . Thus all νa are attainable as limiting
measures, and the proof of the first statement is concluded.

To see that the Fourier coefficent ν̂a(4), for a ∈ [0, π4 ], attains all values
in [0, 1] it is sufficient to notice that

ν̂0(4) = µ̂1(4) = 1, ν̂π/4(4) = 0,

and clearly the function a 7→ ν̂a(4) is continuous. Therefore, by the inter-
mediate value theorem, given any value b ∈ [0, 1], there exists a number
a = a(b) so that νa(4) = b. Since νa is attainable for all a, the second
statement of Proposition 1.2 follows. �

8. Proof of Lemma 5.4

For a probability measure µ on S1 we define

B4(µ) :=

∫
z1,z2∈S1

〈z1, z2〉4dµ(z1)dµ(z2),

the 4th moment of cosine of the angle between two random points on S1

drawn independently according to µ. For instance, if µ = µn are the atomic
measures in (7),

(69) B4(µn) =
1

N 2
nn

4

∑
λ1,λ2∈Λn

〈λ1, λ2〉4 =
1

N 2
n

∑
λ1,λ2∈Λn

cos(θ(λ1, λ2))4

is the 4th moment of cosine of the angle θ(λ1, λ2) between two random
uniformly and independently drawn Λn-points λ1, λ2. While the expression
B4(n) comes up naturally from some of the expressions evaluated in Lemma
5.4, it is simply related to µ̂n(4) as in the following lemma.

Lemma 8.1. For any probability measure µ on S1, invariant w.r.t. x 7→ ix
and x 7→ x̄, we have

B4(µ) =
3

8
+

1

8
µ̂(4)2.

Proof. Use for z1, z2 ∈ S1

〈z1, z2〉 =
z1z̄2 + z̄1z2

2

together with the binomial formula for 〈z1, z2〉4 or, alternatively, the stan-
dard identity

cos(θ)4 =
3

8
+

1

8
cos(4θ) +

1

2
cos(2θ)

to rewrite B4(µ) as

B4(µ) =
3

8
+

∫
z1,z2∈S1

(
1

8
<
(
z4

1 z̄2
4
)

+
1

2
<
(
z2

1 z̄2
2
))

dµ(z1)dµ(z2).
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The statement of the present lemma follows upon noting that
∫
S
z4dµ(z) =∫

S
z̄4dµ(z) = µ̂(4) ∈ R and

∫
S
z2dµ(z) =

∫
S
z̄2dµ(z) vanish by the symmetry

assumptions. �

Proof of Lemma 5.4. In order to evaluate the integrals we will use (11), (22)
and (23), and the orthogonality relations of the exponentials

(70)

∫
T

e (〈λ, x〉) dx =

{
1 λ = 0,

0 otherwise.

Most of the computations are similar in nature, and we will only show a few
examples in detail, omitting the rest.

The statement of part 1 of the present lemma concerning the second
moment of r is evident in light of (11) and (70). For the 4th moment, we
have

(71)

∫
T

r(x)4dx =
1

N 4
n

|S4(n)|,

where

S4(n) =

{
(λ1, . . . λ4) ∈ Λn :

4∑
i=1

λi = 0

}
is the length-4 correlation set of frequencies (cf. (18)). Note that since two
circles may have at most 2 intersections (i.e. circles of radius

√
n centered

at 0 and λ1 + λ2), (λ1, . . . , λ4) ∈ S4(n) implies that either of the following
holds:

(λ1 = −λ2 and λ3 = −λ4) or

(λ1 = −λ3 and λ2 = −λ4) or

(λ1 = −λ4 and λ2 = −λ3).

(72)

Conversely, every tuple of either of the forms above is lying inside S4(4). In
particular,

|S4(n)| = 3N 2
n

(
1 +O

(
1

Nn

))
,

the error term being an artifact of the existence of degenerate tuples of the
form

(±λ,±λ,±λ,±λ) ∈ S4(4)

(with precisely two plus and two minus signs). Part 1 of the present lemma
then follows upon substituting the latter into (71). We will use the fine struc-
ture (72) of S4(n) in the course of the proof of most of the other statements
of the present lemma.

Now we turn to part 2 of the present lemma. While the first statement
is clear from (22) and (70), to show the other statement, we invoke the fine
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structure (72) of S4(n). We have∫
T

(D(x)D(x)t)2dx =
(2π)4

N 4
n

∑
(λ1,...,λ4)∈S4(n)

λ1λ
t
2λ3λ

t
4

=
(2π)4

N 4
n

N 2
nn

2 +
∑

λ1,λ2∈Λn

〈λ1, λ2〉2 +
∑

λ1,λ2∈Λn

λ1λ
t
2λ2λ1 +O

(
Nn2

) .
The result of the present computation then follows upon making the simple
observations ∑

λ∈Λn

〈λ, ξ〉2 =
1

2
Nnn‖ξ‖2

for every ξ ∈ R2 (see [22], Lemma 5.2) and∑
λ∈Λn

λtλ =
1

2
Nnn · I2.

To show part 3 we note∫
T

r(x)2D(x)D(x)tdx = −(2π)2

N 4

∑
(λ1,...,λ4)∈S4(n)

λ3λ
t
4,

and only tuples with λ3 = −λ4 contribute to the latter summation, i.e.
those of the first type in (72). The computation for part 4 is very similar
to what we encountered before, using (23) with (70) for the first statement,
and exploiting the fine structure (72) of S4(n) for the second one∫

T

tr(H(x)2)dx =
(4π2)2

N 2

∑
(λ1,...,λ4)∈S4(n)

λt3λ3λ
t
4λ4.

To compute the integrals in part 5 we exploit Lemma 8.1. Similarly to
the previous computations, we have by (23) and (70)∫
T

tr(H(x)4)dx =
(4π2)4

N 4
n

∑
(λ1,...,λ4)∈S4(n)

tr(λt1λ1λ
t
2λ2λ

t
3λ3λ

t
4λ4)

=
(4π2)4

N 4
n

[ ∑
λ1,λ2∈Λn

tr
(
λt1λ1λ

t
1λ1λ

t
2λ2λ

t
2λ2

)
+

∑
λ1,λ2∈Λn

tr
(
λt1λ1λ

t
2λ2λ

t
1λ1λ

t
2λ2

)
+

∑
λ1,λ2∈Λn

tr
(
λt1λ1λ

t
2λ2λ

t
2λ2λ

t
1λ1

) ]
+O

(
E4
n

N 3
n

)

=
(4π2)4

N 4
n

[
n2

∑
λ1,λ2∈Λn

〈λ1, λ2〉2 +
∑

λ1,λ2∈Λn

〈λ1, λ2〉4 + n2
∑

λ1,λ2∈Λn

〈λ1, λ2〉2
]

+O

(
E4
n

N 3
n

)

=
E4
n

N 2
n

(1 +B4(n)) +O

(
E4
n

N 3
n

)
,

where we used sums as above and the definition (69) of B4(n). Using Lemma
8.1 we may then rewrite the latter expression in terms of µ̂n(4), as in the
statement of the present lemma.
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A similar computation shows that the second integral in part 5 is given
by ∫

T

tr(H(x)2)2dx =
E4
n

N 2
n

(1 + 2B4(n)) +O

(
E4
n

N 3
n

)
and using Lemma 8.1 again yields the result given. Evaluating the integrals
for parts 6-8 of the present lemma is straightforward and very similar to the
above computations, and we omit it here.

We now prove part 9 of the present lemma. We have by symmetry

(73)

∫
T

(D(x)D(x)t)3dx =

∫
T

‖D(x)‖6dx�
∫
T

(
∂r

∂x1

)6

dx,

whence ∫
T

(
∂r

∂x1

)6

dx =
(2π)6

N 6
n

∫
T

 ∑
λ=(λ1,λ2)∈Λ

λ1 sin(2π〈λ, x〉)

6

dx

=
(2π)6

N 6
n

∑
λ1,...,λ6∈Λ

6∑
i=1

λi=0

λ1
1 · . . . · λ1

6 �
E3

N 6
n

· |S6(n)| = E3

∫
T

r(x)6dx,
(74)

by (17), where we used the uniform bound

|λ1
i | ≤

√
n�

√
E.

The present statement of Lemma 5.4 then follows upon substituting (74)
into (73). The proofs for the last parts 10 and 11 of the present lemma are
very similar and we omit them here. �
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