THE DEFECT OF TORAL LAPLACE EIGENFUNCTIONS AND ARITHMETIC
RANDOM WAVES
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ABSTRACT. We study the defect (or “signed area”) distribution of standard toral Laplace eigenfunctions
restricted to shrinking balls of radius above the Planck scale, either for deterministic eigenfunctions
averaged w.r.t. the spatial variable, or in a random Gaussian scenario (“Arithmetic Random Waves”).
In either case we exploit the associated symmetry of the eigenfunctions to show that the expectation
(spatial or Gaussian) vanishes.

In the deterministic setting, we prove that the variance of the defect of flat eigenfunctions, restricted to
balls shrinking above the Planck scale, vanishes for “most” energies. Hence the defect of eigenfunctions
restricted to most of the said balls is small. We also construct “esoteric” eigenfunctions with large defect
variance, by choosing our eigenfunctions so that to mimic the situation on the hexagonal torus, thus
breaking the symmetries associated to the standard torus. In the random Gaussian setting, we establish
various upper and lower bounds for the defect variance w.r.t. the Gaussian probability measure. A
crucial ingredient in the proof of the lower bound is the use of Schmidt’s subspace theorem.

1. INTRODUCTION

1.1. Toral Laplace eigenfunctions and Arithmetic Random Waves. Toral Laplace eigenfunctions
are an important model in Quantum Chaos since they capture many aspects of Laplace eigenfunction
behaviour on generic manifolds. Toral eigenfunctions enjoy two significant privileges over the general
case, making them attractive to address, in addition to their own sake, being Fourier sums with partic-
ular frequencies. First, its number theoretic ingredient makes them susceptible to methods borrowed
from Analytic Number Theory. Second, their (slowly in 2 dimensions) growing spectral degeneracies
allow for the study of the “typical” case, for example endowing the linear space of Laplace eigenfunc-
tions with the same eigenvalue with a Gaussian probability measure (thus giving rise to “Arithmetic
Random Waves”).
Let T? = R?/Z? be the standard 2-torus, let

S :={a®>+b*: a,bc 7}

be the set of all integers expressible as sum of two squares (“‘sequence of toral energies”), and for
n € S let

N, :=ro(n) = #{(a,b) € Z*: n=a*+b*}
be the number of ways to express n as sum of two squares. Then every function of the form

1
(1.1) fal®) = ——= > ax-e((z,))
2Ny AEZ2: | A||2=n
1

with convenience only pre-factor eI A= (A1, \) €Z2, x = (11, 15) € T?,
<ZL’, )\> = ZL’l)\l + 1'2)\27
e(y) := e*™, and a, € C some complex coefficients subject to

(1.2) a_x = ax,
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2 TORAL DEFECT

is a real-valued Laplace eigenfunction with eigenvalue E = E,, = 47°n, i.e. it satisfies the Helmholtz
equation

(1.3) Af,+ Ef, = 0.

Conversely, every real-valued function satisfying the equation (1.3)) is necessarily of the form (1.1)
for some n € S, and {ay }|x2=n as above.

Given n € S, the linear space of functions (I.I]) subject to (1.2) is of real dimension N,. The
sequence NN, is subject to large and erratic ﬂuctuatlons It is on average N,, ~ E Vvl1ogn with
kgrr, > 0 the Ramanujan-Landau constant [[18]], but its normal order is N,, = log n'°% 2/2+0(1) je. for
every € > 0, for “most” numbers n € S, the inequality log n'°¢2/2=¢ < N,, < log n'°8?/2+¢ holds (cf.
[13, §22.11]). Moreover,

(1.4) N, = O(n°),

by an elementary argument.

We denote by
En=1{(\,X) €Z*: X2+ )2 =n}

the representations of n as sum of two squares, or, what is equivalent, £, are all Z2-lattice points lying
on the radius-/n circle. One may endow this space with a probability measure by assuming that
the {a)}aes, are standard (complex) Gaussiatﬂ i.i.d. save to (1.2), turning { f,, },cs into a Gaussian
ensemble of random fields [23] 26]], all defined on T2, usually referred to as “Arithmetic Random

Waves” [16]. Alternatively, f,, are unit variance stationary random fields on T2, uniquely defined via
their covariance function

(1.5) ro(x) =1y, 2+ y) = Elfu(y) - fulz +y)] Z cos(2m(\, )

1.2. Defect. The (total) defect of a smooth, not identically vanishing, function ¢ : T? — R, (called
“signed area” in the physics literature) is

D(g) := Area(g (0, +o0)) — Area(g~'(—o0,0)) /H ))dy,

with H (-) denoting the sign function

1 y >0,
(1.6) H(y):=40 y=0,
-1 y<O.

The defect of Laplace eigenfunctions was first addressed in the physics literature [4] for random
planar monochromatic waves. A precise asymptotic expression for the defect variance, and a Central
Limit Theorem was established, along with generic nonlinear functionals, for the ensemble {Tl}lzl
of random Gaussian spherical harmonics [[19, 20] with mathematical rigour. The T} : S* — R is the
important ensemble of spherical random fields defined by the covariance functions

E[Ti(z) - Ti(y)] = Ficos(d(x,y))),

where P,(-) are the Legendre polynomials and d(-,-) is the spherical distance; 7T;(-) scales asymp-
totically like Berry’s Random Waves around every point of S, the main findings of [19, 20] being
consistent with [4], up to the said scaling. The sign distribution of Laplace eigenfunctions on closed
surfaces in the high energy limit was further addressed in [22], where it was shown that if one re-
stricts an eigenfunction to any disc centred at the nodal line, then the defect can be at most inversely
logarithmically close to £1.

I'We work under the convention that a » = b +icy, where the by and ¢, are standard real-valued Gaussians.
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We are interested in the defect of f,(-), with f,,(-) defined as in (I.I)). We claim that for every
such function f,,, the corresponding defect

(1.7) D(fn) =0

vanishes, so the study of D( f,,) trivialises, and, accordingly, below we will pass to subdomains of T?.
First, if n is odd, then for every A = (\y, \y) € &, precisely one of \; and ), is odd. Hence, f,
changes its sign under the involution 7 : T? — T? mapping - — - + (1/2,1/2), i.e.

fu(T2) = = ful2),

which readily implies D(f,,) = 0. Otherwise, if n is even, we may assume w.l.o.g. thalﬂ n = 2(4),
whence for all A € &,, both i, \, are odd, and then f,, changes its sign under the involution p : T? —
T? mapping - — - + (1/2,0) (or - — - + (0,1/2)), also yielding D(f,,) = 0.

It is therefore essential to pass to, possibly shrinking, subdomains of T2, most canonically, the
radius-s discs B,(s) C T? centred at z € T?, 0 < s < 1/2, and B(s) := By(s), with s = s(n)
allowed to depend on n, (possibly with s(n) — 0). Since Quantum Chaos should exhibit itself above
the Planck scale s > \/Lﬁ [2]], it makes sense to take, as an example, s = n~Y2+¢ or, perhaps, replace
the e-power of n with a slower growing function of n (such as a power of log n). Our principal results
concern the defect distribution corresponding to both individual deterministic cases, w.r.t. space aver-
age in section [1.3|below, and the Arithmetic Random Waves (random Gaussian toral eigenfunctions)
in section [L4] below.

1.3. Statement of principal results: spatial defect distribution. We work with a sequence of de-
terministic eigenfunctions f,, of the form (1.1, and study the defect distribution of f,, restricted to
B,(s), where x is random uniform on T2, and s is above the Planck scale. That is, given a function
[, of the form (T.1)), z € T? and s > 0, we consider

(1.8) Yy, s(x) = ! /H(fn(y))dy,
B (s)

82

the defect of f,, restricted to B,(s), with the normalisation making Y7, () invariant w.r.t. homoth-
eties. Such an approach was recently taken by Sarnak [27] and Humphries [[14]] for modular forms,
and Granville-Wigman [12] and Wigman-Yesha [34] for toral Laplace eigenfunctions (I.1), in study-
ing the mass distribution of the respective models, showing, in particular, that if there exist discs
observing unproportionately large or small L?-mass of f,,, then these are not “typical”.

Our principal interest here is the distribution of the values of Y}, .(-) in as x distributes
randomly uniformly on T?; we denote accordingly the “spatial defect expectation”

ETQ[anys} ::/an75<x>dx7
T2

and the “spatial defect variance”

Varg: (Y}, o) = / (Y}, s(x) — Ege[Y5, J])? d.
T2
The degeneracy argument identical to the argument we used to establish (1.7) that the total defect of

every function (I.1)) vanishes, yields that, in general, the spatial defect expectation vanishes precisely,
i.e. that

(1.9) Er2[Y}, ] = 0.

2Otherwise both the entries A1, A are even, which yields that f,, is invariant under the involutions - — -+ (1/2,0) and
-+ -+ (0,1/2), and we may pass from n to n/4.
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In what follows, we will restrict ourselves to Bourgain’s class [[7] of eigenfunctions

B, = {fn = Za,\~e(<:c,)\)) VA€ &, Jax] =1 anda_y :a_A}.
AEEL

Bourgain’s class eigenfunctions are the first deterministic “implementation” of Berry’s Random Wave
Model [7]. Our first principal result asserts that for generic n € S, and f,, € %, a Bourgain class
function, the spatial defect variance vanishes uniformly for s slightly above the Planck scale. Since
Y}, s is bounded, this is equivalent to the statement that, in the said scenario, the proportion of positive
values of f, in “most” discs of radius above the Planck scale is asymptotic to 1/2 (see Lemma
below). It is likely that the proof of the principal result immediately below holds for a more general
family of flat eigenfunctions of the type considered in [34] (an event of almost full Gaussian proba-
bility); despite that we abandon the possible generality for the sake of the elegance of presentation.
That some flatness condition is essential for the defect variance vanishing is asserted in Theorem
to follow immediately after the announced principal result.

Theorem 1.1. There exists a sequence S’ C S of relative densityﬂ 1, so that for all € > 0 there exists
R = R(€) > 0 and ng = ny(€) sufficiently large, so that for all n > ny withn € S’,

Varr(Yy, 5) < €
holds uniformly for all f, € B,, s > R/+/n. Equivalently,

]%im sup Varr2(Yy, s) = 0.
n%o:%oes/ S;fé{%\{f
The arithmetic conditions on the sequence S” as postulated in Theorem 1.1 will be explicated in
section [2.2] below, as part of Theorem [2.5] Finally, the result on the flatness being of essence for the
spatial defect variance vanishing announced above is stated, with radii vanishing arbitrarily slowly,
or even for fixed sufficiently small radii.

Theorem 1.2. There exists a (thin) sequence S” C S, a deterministic sequence { f,, }nesn of eigen-
functions (1.1), and numbers , €y > 0, so that the inequality

lim Sinf Varr(Yy, wn)) > €o
ne 1

holds for every function V : Zq — (0, min(vy, 1/2)), subject to W(n)n'/?> — oo.

1.4. Statement of principal results: defect variance for Arithmetic Random Waves. Rather than
averaging w.r.t. the spatial variable, we can take f, () to be the Arithmetic Random Waves (i.e. the
random Gaussian model associated to (1.1])), and denote

1
(1.10) Dy = / H(f.(y))dy.
B(s)

82

We observe that, by the stationarity of f,,, the law of D,, ; is independent of the centre of the disc, so
that, in what follows, we will assume that the disc on the r.h.s. of (I.10)) is centred. Since, for a given
y € T?, the law of f,,(y) is symmetric around the origin, and H(-) is odd, we have E[H (f,.(y))] = 0,
and, by inverting the integral on the r.h.s. of (I.10), it is evident that for every n € S and s > 0,

(1.11) E[D,.] = 0.

3A subset S’ C S is of relative density & in .S, if

#5'(X)

Xhee #S(X)
where for A C N we define A(X) :={n<X: ne A}
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Our next principal result asserts that Var(D,,.;) — 0 as long as the ball radius is above the Planck
scale, i.e. s - /n — 0.

Theorem 1.3. Fix € > 0 sufficiently small. For every 0 < § < 4¢ one has
Var (Dn;s) < W
uniformly for all s > n~/*¢. Equivalently,

sup sup Var (D) N’ < +oo.

nes S>n71/2+e
If one is willing to excise a thin sequence of energies, that is, a subsequence S; of S whose
relative asymptotic density in S is 0, so that whatever generic energy levels are remaining satisfy

certain arithmetic conditions explicated in Theorem [2.6]of section [2.4] below, then the asserted rate of
decay is significantly more rapid, namely, faster than polynomial in /N,,.

Theorem 1.4. For every ¢ > 0 there exists a subsequence S = 5" (¢) C S of energy levels of
relative density 1, so that, along n € S", the inequality
1
1.12 sup Var(D,s) <4 —,
( ) $>n_lr/)2"'6 ( ’ ) 4 Nr?

holds for every A > (.

To the other end, we claim the following lower bound for Var(D,, ;) above the Planck scale, valid
foralln € S.

Theorem 1.5. Let s = s(n) be a sequence of radii so that T := s - \/n — o0.
a. For every § > 0 there exists a sufficiently large number A = A(9) so that

(1.13) Var (D,,.s) >

NA . T3+
b. If, in addition, 27T’ is uniformly bounded away from the zeros of the Bessel J; function, then
1
(1.14) Var (D,,.s) > T3

For comparison of the generic upper bound (1.12)) with the lower bounds (I.13) and (1.14) (re-
stricted to the regime s > n~'/2*¢ all the said bounds hold) one should bear in mind (T.4), i.e. that
every arbitrarily small positive power of n dominates every power of N,,. It is well known that at
infinity, the zeros of the Bessel J; function are asymptotic to the arithmetic sequence

(1.15) {%—i—ﬂ-m}mN.

The a fortiori meaning of the condition postulated by Theorem[I.3p|is that 277" is bounded away by at
least ¢y > 0 from the said sequence (1.15)), whence the conclusions apply (with constants depending
on ¢y). In particular, given a scaling sequence s(n), after making a small perturbation (of order
O(n~1/2)), we can ensure that the lower bound in (T.14) holds.
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tine approximations. The research leading to these results has received funding from the European
Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013),
ERC grant agreement n° 335141 (I.W. and N.Y.). P.K. was partially supported by the Swedish Re-
search Council (2016-03701).
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2. OUTLINE OF THE PAPER

2.1. Number theoretic preliminaries. Before we will be able to explain the essence of our argu-
ments we will be required to bring forward some arithmetic aspects of the lattice points &,,.

2.1.1. Angular equidistribution of lattice points. First, we are interested in the angular distribution
of £,. To this end we define the sequence

1
VnZIF25)\/\/ﬁ

" X\e&n

of probability measures on S! C R?, indexed by n € S. It is well-known [[13} [10} [IT]] that generically
the angles of &, are equidistributed, i.e. along a sequence {n} C S of relative density 1,

do
(2.1) Up = —,

27
where, as usual, “ =" stands for weak-* convergence of probability measures, and % is the nor-
malised arc-length measure on the unit circle. However, even under the (generic) assumption N,, —
00, there exist sequences {n} C S so that v,, = 7 with 7 different than %; by definition, 7 can be
any “attainable” probability measure on S*, e.g. the Cilleruelo measure [9]]

1
T= 1 (041 + 044)

or “intermediate” measures (e.g. measures supported on Cantor set, cf. [[16]); for a partial classification
see [[17, 29].

Definition 2.1. For a sequence {n} C S we say that £, are asymptotically equidistributed if (2.1
holds.

2.1.2. Spectral correlations and quasi-correlations. One of the key ingredients in [16] was control-
ling the size of length-6 “spectral correlations set”. Given [ > 3, the length-/ spectral correlation set
of the torus is the set

l
(2.2) Po(l) = {(Al, LA EE DY N = 0}
j=1

of [-tuples of lattice points in &£, summing up to 0. If n is divisible by 4, then it forces all entries of
A € &, to be even, and hence A\/2 € &, /4, and in this case one can keep replacing n by n/4 until n
is no longer divisible by 4. Assuming 7 is not divisible by 4 in the first place, A € &, forces that the
number of odd entries among A, s is either 1 or 2 for n odd or even respectively (independent of
A € &,), and in either case, for [ odd, the correlation sets

(2.3) 2 () =@

are all empty [8]] by a congruence obstruction modulo 2, an argument similar to the one yielding (1.7).
Otherwise, for [ even, the number of length-/ correlations

1
7 HPl) = / () dz
n ']1‘2

is equal to the (normalized) moments of the covariance function (1.5) of the Arithmetic Random
Waves.

Since for [ = 2k, all the “diagonal” tuples (A\', —\!, ..., \¥, —\¥) and their permutations are in
Z,(1), it implies the inequality

#2,(1) > NF.
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Conversely, Bombieri—Bourgain [6]] proved, among other things, that, given [ = 2k even, the inequal-
ity

(2.4) #Pa(l) <4 NE

holds for a generic sequence {n} C S; by invoking the usual diagonal argument, (2.4) holds for all |
even, along a generic sequence {n} C S.

Definition 2.2 (Correlation-tame sequences of energies). We say sequence S’ C S is correlation-
tame, if for every [ = 2k > 6 even, the inequality (2.4) holds true.

In fact, Bombieri—-Bourgain [6] proved a stronger property satisfied by the correlations of &,,, with
n generic, i.e. that a generic sequence in S satisfies the following axiom JF () for some 0 < v < 1/2.

Definition 2.3 (Axiom F(v)). (1) Forl > 4,n € S, we say that (A\!,..., \!) € & is a minimal
! !
correlation, if Y~ M = 0 and no proper subsum of Y M vanishes.
Jj=1 =1
(2) For 0 < v < 1/2 we say that a sequence {n} C S satisfies the axiom JF(v), if for every [ > 4,
the number of length-/ minimal correlations of &, is at most N)"! for n sufficiently big.

As we will deal with moments of r,,(+) restricted to shrinking balls, we will find that, for our
purposes, the relevant notion is that of quasi-correlations 3] (see (2.11)) below). Givenn € S, e > 0
and [ > 2, the length-/ quasi-correlation set i

< n1/26} 7

note that, by the definition, &7, (1) and C, ([, €) are disjoint. It was shown [3, Theorem 1.4] that, given
[ > 2 and € > 0, the length-/ quasi-correlation set is empty C,(l,€) = & along a generic sequence
{n} C S, and, as it is the case of the correlation set, by a diagonal argument, we may choose a
density-1 subsequence {n} C S, so that along that sequence, for every [ > 2,

Cn(lye) =
holds true for n sufficiently big (depending on [).

l
2N

Jj=1

Cnll €)== {()\1,...,)\[) c&l:0<

Definition 2.4 (Axiom .4(¢) on sequences of energies). Given ¢ > (0 we say that a sequence S’ C S
satisfies the axiorrﬂ A(e), if for every [ > 2, the equality C,, (I, €) = @ holds for n sufficiently big.

2.2. Outline of the proofs for spatial fluctuations (Theorem [I.I). By a simple manipulation with
the defect definition (1.8]) and interchanging the order of integration it is straightforward to derive the
expression

1

(ms2)?

(2.5) Varg(Yy, <) = / H(fo(y)H(fu(2)) - $*W(|ly — 2||/5)dydz

T2 x T2

for the spatial defect variance, where IV is a certain weight function (“circle-circle intersection func-
tion”) supported on [0, 2], and is C* on (0,2). It is conceivable that the asymptotic vanishing of
Vary2(Y%, s) follows by a direct analysis of the r.h.s. of (2.5). However it seems very difficult, as
the appearance of H(-) on the r.h.s. of (2.5) does not allow us to capitalise on the special additive
structure (I.1) of f,,, especially, in light of the discontinuity of H(-) at the origin (so, for example,
Taylor expanding H (-) around the origin is problematic).

“Mind the slight abuse of notation as compared to [3]]
Mind again an abuse of notation compared to [5]]



8 TORAL DEFECT

We abandon such a direct approach, and instead notice that, since the random variable Y7, ; is
bounded (by 1), the variance Vary2(Y7, ;) asymptotically vanishing is equivalent to Y, ; asymptoti-
cally vanishing with high probability (i.e. for “most” of the ball centres on the torus), and recall that,
under certain flatness conditions on f,, (certainly satisfied by all f,, € 4,,) and arithmetic conditions
on n (in the spirit of the ones given in section above), f,,(-) exhibits [7, [8] Gaussian spatial value
distribution when averaged over the whole torus. Using these “de-randomisation” techniques we will
be able to prove the result to follow immediately; unlike the results of [7, 8] (and [30]), this is a
second-order result, i.e. concerning variance (as opposed to a first order one concerning expectation).
Moreover, since, unlike [/, 8], the Gaussian input for Theorem is not inherently contained within
its statement, it seems that a more direct approach might be possible for proving Theorem[2.5] Recall
axiom F(+y) in Definition and lattice points equidistribution in Definition

Theorem 2.5 (A variant of Theorem [1.1] with control over S’). Let S’ C S be a sequence of energy
levels satisfying the axiom F(7) for some v € (0,1/2), and assume further that the corresponding
&, are asymptotically equidistributed. Then the conclusions of Theorem/|l.1|apply along S', i.e.

(2.6) lim sup Varr2(Yy, s) = 0.
R=oo  s>R/Vn
n—o00, ne fnEPy,

Theorem is a direct consequence of Theorem because axiom F () holds with some
v € (0,1/2) for “generic” n € S, and &, is asymptotically distributed for “generic” n € S in the
sense of Definition The proof of Theorem proceeds in three steps. First, we reduce proving
uniformly for s > R/y/n to proving for s = R/y/n only, via an analogue of the Integral-
Geometric Sandwich, first introduced in [33} 21], adapted to our settings. Next, we exploit the said
spatial Gaussianity of f,(-) in order to reduce the variance vanishing to the analogous result for the
limit random field, which, by the equidistribution assumption for &, of Theorem is the Gaussian
random field of planar isotropic monochromatic waves (it is “Berry’s Random Wave Model”, uniquely
defined by its covariance function Jy(||z||)).

It then remains to evaluate the variance of the defect for the limit Gaussian random field restricted
to a compact domain (e.g. the unit square), which, in spirit, is already contained in [[19]] (and predicted
by [4]), where a rapid decay rate is asserted. This result is the only use of the equidistribution as-
sumption, and it should be not too technically demanding to remove this assumption, as long as some
non-degeneracy for the limit Gaussian field is imposed (i.e. our techniques do not allow for including
the case where the distribution of angles approximates the most degenerate “Cilleruelo” case), though
it benefits us in no way if we are only interested in a density-1 sequences of energy levels. Our main
result (2.6) is ineffective in terms of rate of decay for Varr(Y7, 5), as the convergence of the spatial
distribution of f,, to the Gaussian is ineffective.

2.3. Outline of constructing functions with non-vanishing defect variance (Theorem [1.2). The
prevailing symmetry obstruction, dictating that for the standard torus, the total defect of any Laplace
eigenfunction vanishes precisely does not persist for the non-standard tori. We exploit the hexagonal
torus, so that to construct a single Laplace eigenfunction with total defect non-vanishing, and scale
it to obtain a sequence of eigenfunctions of arbitrarily high energy, with defect growing on large
fragments of the torus, above the Planck scale. We then mimic that situation on the standard torus,
by appealing to the Pell equation 2 — 3y* = 1, yielding solutions approximating the hexagonal toral
eigenfunctions on the standard torus.

2.4. Outline of the proofs for Arithmetic Random Waves (theorems [1.351.5). Here we assume
that { f,, }.cs are the (Gaussian) Arithmetic Random Waves. Since it is possible to derive the identity

@) BLH (@) - HUaw)] = = aresin(ra (e — 1),
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(cf. the proof of Lemma a straightforward manipulation with the definition (I.I0) of D,,., and
inverting the order of integration, upon bearing in mind the stationarity of f,,, yields the following
precise expression for the defect variance:

2

m3sd

(2.8) Var(D,,s) = / arcsin(ry, (z — y))dzdy.
B(s)xB(s)
Now we Taylor expand the arcsine around the origin (note that the series converges absolutely at the
endpoints ¢t = £1)
(2.9) arcsin(t) = » _ apt** ",
k=0
where all the (explicit) a > 0 are positive, and substitute into (2.8)) to relate between the defect
variance and the moments of the covariance function restricted to B(s):

2 2k+1
(2.10) Var(D,,s) = 54 Z ay - / ro(x —y)*" " dady.
"L Ble)xB()

We may in turn exploit the additive structure (I.5) to relate the said odd moments of r,,(+) to the
spectral correlations (and, implicitly, the quasi-correlations) defined in section [2.1.2}
52 Z Ji(2ms - [[AL . N2

2%k+1 o
(211) / Tn(x - y) dlfdy - N2k+1 ||)\1 4+ /\2k+1||2 ’
B(s)x B(s) (AL AR g P, (2k+1)

with J;(-) the Bessel J function of the first order, so that to relate the defect variance to the spectral
correlations and quasi-correlations (where, to obtain (2.11), we separate the diagonal and use the
observation (2.3)). One may then substitute (2.11)) into (2.10) to obtain a more explicit expression
for Var(D,,s), an absolutely convergent infinite series over all (2k + 1)-tuples of lattice points. If we
assume further, that s = n~'/2*¢ (say), and a sequence {n} C S satisfies the A() axiom with some
0 < €, then all the summands on the r.h.s. of are formally decaying like a (small) power of n,
faster than any power of N, (see (I.4)).

There is a subtlety with this outlined approach though, as controlling the decay rate in this infinite
series uniformly seems difficult. Instead, we will only control finitely many summands and bound the
contribution of the higher moments. With this approach, we will encounter the odd moments of the
absolute value |7, ()| of the covariance rather than the moments of the covariance, that we will reduce
to a moment of higher order via Cauchy—Schwarz. Theorem is the result of such an application
when capping the series at the first degree Taylor approximation of the arcsine (2.9)), whereas Theorem
caps it at an arbitrarily high degree Taylor approximation, depending on the required A > 0 in
(1.12)), while also appealing to the correlation-tame property of a generic sequence of energies. We
will be able to prove the following result, which, since the claimed sequence S” is generic, thanks to
the results mentioned in section[2.1.2] clearly implies Theorem [T.4]

Theorem 2.6 (Theorem|[1.4] with control over S”(€)). Let € > 0 be given, and assume that S C S is
a sequence of energy levels satisfying the axiom A(9) with some § < €, and is correlation-tame. Then
the conclusions of Theorem|[l.4hold, i.e. along n € S",

sup Var (D) < —

A7
S>n—1/2+e NTL

for every A > 0.

For the lower bounds in Theorem [I.5] one also starts from (2.10)) and (2.11). Indeed, since the
Taylor coefficients a; in (2.10) are all positive, and, in hindsight, so are all the moments (2.11) of
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rn(+), it is sufficient to bound any of these from below. If 7' := s - \/n happens to be bounded away
from zeros of the Bessel .J; function, this readily yields the bound (I.14) of Theorem|I.5] Most of our
argument takes upon the opposite situation when 7" approaches one of the Bessel J; zeros, whence
we need to rule out the, a priori unlikely, possibility of all the terms

2k+1

2 ¥
j=1

conspiring around the Bessel zeros. To resolve this situation we exploit the higher order Taylor
approximates, whence appealing to the deep W. Schmidt’s simultaneous Diophantine approximation
theorem [32], for example, approximating V5 by rational numbers for £ = 1 or /13 and /17 for
k = 2; to attain ﬁ as in (I.13), with § > 0 arbitrarily small, we will need to focus on arbitrarily
high k; here Schmidt’s result is crucial.

27rs -

2.5. Outline of the paper. In section[3|Bourgain’s de-randomization method will be invoked to prove
Theorem [I.T|dealing with the spatial defect variance vanishing for the flat functions. Then a sequence
of “esoteric” non-flat functions with spatial defect variance non-vanishing will be constructed in sec-
tion 4| by first constructing eigenfunctions with the analogous properties defined on the hexagonal
torus (as opposed to the standard torus). Finally, Section [5]is dedicated to giving the proofs for all the
results concerning the defect of the Arithmetic Random Waves (theorems [I.3]{I.5)), appealing among
the rest to Diophantine approximations.

3. SPATIAL DEFECT DISTRIBUTION: PROOF OF THEOREM [L.1]

Recall that Theorem L. 1| follows at once from its more explicit variant, Theorem[2.5] whose proof
is the ultimate goal of this section.

3.1. Proof of Theorem The following proposition is seemingly weaker, or less general, com-

pared to Theorem as it only allows for radii s = \% with R — oo growing slowly, instead

of a uniform statement for all s > R/\/n as in (2.6). However, we will be able to infer the more
general result, using the elegant Integral-Geometric Sandwich in Proposition [3.2] below, inspired to
high extent by its counterpart introduced by Nazarov—Sodin [33, Lemma 1] for the sake of counting
the number of nodal components (see also [28, Lemma 3.7] and [21, Lemma 1]). It seems a priori
counter-intuitive that it is “easier” to first establish the spatial defect variance vanishing for smaller
radii than bigger ones. Our explanation of the said surprise is that the asymptotic Gaussianity w.r.t.
the spatial variable holds at the Planck scale only (or logarithmically above it [31]), rather than at all
scales above it.

Proposition 3.1 (Planck scale spatial defect distribution). Let S’ C S be any sequence of energy
levels satisfying the assumptions of Theorem Then for every € > 0 there exists Ry = Ry(e) > 0
sufficiently large so that for all R > Ry there exists a number ng = no(R, €) sufficiently large so that
for all n > ny, the inequality

Varqrz (Yme/\/ﬁ> <€
holds uniformly for f,, € AB,. Equivalently,

3.1 lim 1] Y, =Y
(3.1) A, ansup sup Vare: (Y, ryya) =0

The following proposition asserts the aforementioned Integral-Geometric Sandwich; unlike the
original inequality, it contains an error term. Recall that the local (normalized) defect of a function an
eigenfunction f, as in (I.1) restricted to a radius-s ball around = € T? is given by (T.8).
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Proposition 3.2 (Integral-Geometric Sandwich). For every f,, of the form (L.1), and 0 < ry < ro, the
asymptotic estimate

1
62 Viewlo) = [ Vintin+0 (7))

7T7"2
B, (7'2 )

holds, with constant associated to the ‘O’-notation absolute.
Proof of Theorem[2.5] assuming propositions[3.1{3.2] Let ¢ > 0 be given. First, we apply Proposition

B.1]to obtain a number Ry = Ry(¢) so that for all R > Ry there exists a number ng = ng(R, €) so that
for n > ng withn € S’, one has

™
N

(3.3) Vary: (Y}, pjym) < T
uniformly for all f,, € %,. We define
(3.4) R = R(e) = (Ry + 1)?,

and claim that with this choice of R, the conclusion of Theorem [2.5/holds, where the corresponding
no = no(Ro + 1, €), depending on € only, is the one we received as the output from the application
above of Proposition [3.1] For this particular choice of the parameters, the inequality (3.3) reads
2
€

(3.5) Vare: (Y, (rosn)/vi) <

valid for all n € S’, n > ng and f,, € A,,. To validate our claim we are to prove that for all n > n
with n € §’, the inequality

(3.6) Varpe (Y}, s) <€
holds for all s > \%.
Now, we invoke the Integral-Geometric Sandwich of Proposition withry = s > R/v/n and
RQ +1 T2
3.7 = <
G7) VR N

by (3.4). Hence (3.2)) reads

1 r
Vi) = Yima (@) = — / Yo rorny va(y)dy + O (;1)
By (s)
(3.8) . 1
T st / Yy, (Ro+1)/va(¥)dy + O (Ro)

By (s)

thanks to (3.7). We assume that R, is sufficiently large so that the error term on the r.h.s. of (3.8)
is O (R%)) < 3, take the absolute value of both sides of (3.8), and apply the triangle inequality to
conclude that

(39 Vil < =5 [ Vratmosnyalo)] dy + 5
B.(s)

We then integrate both sides of (3.9) w.r.t. z € T? to yield

€
[ W@l < [ (¥, n00m)] d+ 5.
2 2
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and invoke (3.5) together with Cauchy—Schwarz inequality, which gives (recalling that the spatial
expectation vanishes identically, see (1.9))

(3.10) /yyfms(x)ydx < g + g —.
T2

Finally, the inequality (3.10) certainly implies (3.6), since |Y}, s(z)| < 1 (again, upon recalling (L.9)),
which, as it was mentioned above, is sufficient to infer the statement of Theorem [2.3]
OJ

3.2. Integral-Geometric Sandwich: Proof of Proposition[3.2]
Proof. We start with the integral on the r.h.s. of (3.2), and use the definition ((1.8]) to write

1 1 1
11 — Yi o (y)dy = — — H(f,(2))dzdy,
@1 = [ Vv = [ = [ )
By (r2) Ba(r2) By(r1)
and aim at reversing the order of the integrals on the r.h.s. of (3.11)). We have
1 1 1
3.12 — Yi o (y)dy = — H(fn - — Vol (B, N B, dz.
612 = [ VW= o [ HE) 3 Vol (B N B
By (r2) By (ra+r1)

Now, upon denoting

1
Vx,z(T‘2,7"1) =—_—" Vol (Bz(ﬁ) N Ba:(TQ)) )

wry

the equality (3.12) reads
1 1
G.13) o [ Vet == [ ) Vi
B (rz) By (ro+r1)
and we notice that
1
(314) 0 < V’Z(',Tl) < ?VOI(BZ(Tl)) = 1,
Ty

and, in addition, if z € B,(ry — 1), then V(z) = 1. We then separate the range of integration in
(3.13) into B,(ry — r1) and its complement to write

(3.15)
1 1 1
™3 / Virs W)y = 25 / H(fn(2))dz + O (r Vol(By(ry 4 1) \ By(ry — 7“1)))
Bz (r2) By (r2—r1)
— Lz / H(fu(2))dz+ O (% Vol(B,(ry +171) \ By(rs — 7"1)))
T T
By (r2)

=Y} ., (z)+ O (# Vol(By(ry +11) \ Ba(ra — 7"1)))

2

thanks to (3.14), |H(-)| < 1, and the definition (I.8) of Y}, ,,(x). Now the statement (3.2)) of Propo-
sition [3.2] finally follows from substituting the estimate

LB )\ Bl ) =0 ("1) <0 (1)

into (3.15).
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3.3. Auxiliary results towards the proof of Proposition[3.1, We denote Berry’s random monochro-
matic isotropic waves g : R? — R defined on a probability space (€2, %, Pr), i.e. for w € € the cor-
responding sample function ¢(-) = g,,(-) are distributed as a centred Gaussian random field uniquely
determined via Kolmogorov’s Theorem by its covariance function

(3.16) ro(lz —yl) :== Elg(x) - 9(y)] = Jo([lx — yl]),

where J; is the Bessel .J function of order 0. Proposition [3.3|immediately below asserts that locally,
the functions f,, € %, appropriately scaled, converge to ¢(-) around a random spatial variable on the
torus, understood as random fields. It is the heart of Bourgain’s de-randomization method, originally
in [7], and is a restatement of what turned out to be the key technical propositions in [8]], in the precise
form used in that manuscript. To state this result, given a function f,, € %,,, we introduce the function
F.r(y): [-1,1]> —» Rto be

R
G.17) wl) = o (o + S0
and think of F.x(-) as a random field, as z € T? varies randomly uniformly on the torus. In what
follows we will obtain a sequence of random fields ¢g” : R? — R, that will converge in suitable sense
to g, and we will denote their scaled version

gZ;R(') = QZ(R),
that will be compared to the scaled version of g

(3.18) 9uir (") == gu(-R).

Proposition 3.3 ([8, Propositions 3.2-3.3]). Let S’ C S be a sequence of energy levels satisfying
the assumptions of Theorem [2.5] Then there exists a sequence of Gaussian stationary random fields
{g" }nes:, converging in law to g as n — oo, with the following property. For every R > 0, ¢ > 0 and
n > 0, there exists ng = no(R;n, €) sufficiently large so that for all n € S’ withn > ng and f,, € B,
there exists an event Q) = ) (n; f,, R;n, €) C Q of high probability Pr()) > 1 — € and a measure
preserving map 7 : Q' — T? so that meas(7(Q))) > 1 — ¢, and for all w € §, one has

(3.19) 195:r — Frwyrllorq-iaz) < n-

Since, as mentioned above, Proposition @ was proved in [8], there is no need to reprove it in
this manuscript. Once the reduction to the Gaussian random field was performed within Proposition
replacing ¢" () with Berry’s g(-) in (3.19)) is completely standard. That is, it is possible to couple
g"(+) with g(-) so that [|g}. p — gu:rllc1([~1,12) is arbitrarily small for n sufficiently large, see e.g. [33]
Lemma 4]. Together with and the triangle inequality it yields the following corollary.

Corollary 3.4. Let S’ C S be a sequence of energy levels satisfying the assumptions of Theorem
Then for every R > 0, € > 0 and n > 0, there exists ng = no(R;n, €) sufficiently large so that for
all n € S" withn > ng and f, € B, there exists an event Q) = Q' (n; fn, R;n,€) C Q of high
probability Pr()) > 1 — € and a measure preserving map 7 : ) — T? so that meas(7()')) > 1 —¢,
and for all w € ', one has

(3.20) 9wk — Frwyrllerq-112) < n-

Alternatively to working with g(+), one could, in principle, work directly with ¢"(-), by proving
an analogue of Lemmabelow, applicable for g™ (-) with n large, a direction we abandon. Corollary
naturally gives rise to the comparison to the defect variance of the random waves ¢(-). Note that,
for our purposes of comparing the defect of the toral eigenfunctions to that of the random gg, the
C'-estimate in (3.20) is too strong, and we could easily settle for an L>°-estimate. Recall that H(-) is
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the sign function (1.6), and let

1
(3.21) Xp=Xor= 25 / H(g(x))dx
B(R)
be the (random) defect of g(-) restricted to the ball B(R) C R2 It is obvious that the expectation

E[Xg| = 0 vanishes, whereas the following easy, most likely sub-optimal, result asserts that so does
its variance, asymptotically as R — oo.

Lemma 3.5. As R — oo, the defect variance of g(-) restricted to B(R) is vanishing:

1
(3.22) Var(Xp) = O (W) .

Proof. It is a well-known fact (see, e.g. [24, 25]) that every bivariate centred Gaussian random vector

(X,Y) with covariance matrix 3 = (}ﬂ 7£> with some |r| < 1 satisfies

E[H(X)- HY)| = 2 arcsin(r).

™

Hence, by setting X = g(z), Y = g(y) of covariance r = Jy(||z — y||), it follows that

(3.23) E[H(g(x)) - Hlg(y)] = = axcsin( e — o),

analogous to the identity (2.7). We now use the definition (3.21)) of the defect, and invert the integra-
tion order to write
2

/ arcsin(Jo(|l — yl|))dady,
B(R)xB(R)

with the use of (3.23)). Now, for each x € B(R) fixed we separate the range of integration in (3.24))
into ||z — y|| < 1and ||z — y|| > 1 (say), so that

(3.25)
2 . .
Var(Xg) = o / arcsin(Jo(||z — y||))dzdy + / arcsin(Jo(||z — yl|))dzdy
z,yeB(R) z,yeB(R)
lz—yl|<1 llz—yl>1
2
=: W . ([1 + Iz)

We bound the contribution of the former range trivially as

(3.26) L] = / arcsin(Jo(||z — yl|) dedy| = O(R?),

2YEB(R)
le—yll<1

whereas we use the standard asymptotics [1}, formula (9.2.1)] for the Bessel J, function for ||z — y|| >
1:

|arcsin(Jy(t))| < |Jo(t)| <

<)
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to bound the contribution of the latter range as

d
I, = / arcsin(Jo(||z — yl|))dzdy < / dx / m
SﬁnyB”(Rl) B(R)  yeB(R): [lz—yll>1
T—yY||>

(3.27) - ]
tdt

<R | =< R
— ﬂ

1

The statement of Lemma [3.5] finally follows upon substituting (3.26) and (3.27) into (3.25).
U

We will require the following notion, inspired by [33)21]], that will allow us to control the defect
stability under small L>°-perturbations.

Definition 3.6 (Stable event). For R > 0,7 > 0 and § > 0 we let the “(R;7, J)-unstable” event
Q1 (R;m,d) C Q2 be defined as

1
(3.28) Q1 (R;n,0) = {w €eQ: — meas{z € B(R) : |g.(z)| <n} > (5}
m
the event that the proportion of x € B(R) so that |g(z)| is small, is not negligible.

Lemma 3.7 (Stability estimate). For every d,¢ > 0, there exists an 11 > O sufficiently small, so that
for every R > 0,
Pr(Qi(R;n,9)) < e.
Proof. Let Ag.,, C B(R) be the (random) measure
Ap., = meas{z € B(R) : |g(z)| <n}
of the set g~ ([—n,n]) N B(R) C R Clearly,

(3.29) Agy = / X[=nm) (9(2))dz,
B(R)

where x[_y,., is the characteristic function of the interval [—7, 7] C R. Since, for every z € R?, g(z)
is a standard Gaussian random variable, taking the expectation of both sides of (3.29) easily yields

(3.30) E[Agy) = O(nR?),
with the constant involved in the ‘O’-notation absolute. Now, we have
1
O(R;n,0) = {w eN: —m - Apgy > 6},
and, in light of (3.30)), the conclusion of Lemma [3.7]follows from Markov’s inequality.
U

After all the preparatory results of section [3.3] we are finally in a position to prove the principal
de-randomization result.

3.4. Spatial defect distribution: Proof of Proposition 3.1 via Bourgain’s de-randomization. We
start with the following elementary lemma in probability theory, which is a criterion for the variance
vanishing of bounded random variables, whose proof is thereupon conveniently omitted.

Lemma 3.8. Let { X }i>1 be a sequence of random variables X : 0 — R on a probability space
(Q, X, Pr) satisfying | X| < 1 a.s. and E[X}] = 0 for every k > 1. Then we have Var(Xy) — 0 as
k — oo, if and only if for every 6 > 0, the probability Pr(|Xy| > ¢) — 0 vanishes as k — oc.
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Proof of Proposition[3.1} We are going to use Lemma [3.§] as a criterion for the variance vanishing,
upon both exploiting the defect variance for Berry’s random waves (Lemma [3.5), and also when
proving the same for the toral eigenfunctions; note that the prescribed rate (3.22)) is “lost” during this
process for the latter. Let ¢, > 0 be given. First, we invoke Lemma [3.7| with §/4 in place of §, and
¢/2 in place of ¢, to obtain a number 1 = n(e/2, §/4) sufficiently small so that for all R > 0,

(3.31) Pr(Q(R,n,0/4)) < ¢/2.

Next, we apply on Lemma [3.5] (along with the “only if” statement of Lemma [3.8)), to obtain a
number Ry = Ry(0/2, ¢/4) sufficiently large, so that for all R > Ry, we have

Pr{\XR] > g} <

Let 25, C 2 be the corresponding event, i.e.

=] ™

4]
of probability
(3.33) Pr(Q) < i

Finally, we apply Corollary [3.4]to obtain a number ny = ny(R; 7, €/4), so that for all n > ng and
fn € A, there exists an event ' = Q' (n; f,,, R;n, ¢/4) of probability

(3.34) Pr(Y) >1—¢/4,
and a measure preserving map 7 : € — T? so that

(3.35) 19wir — Freyrllor-112) <,
where g,,.r are the (scaled) Berry’s random waves (3.18)), and 7 (.. is the scaled version of the given
fn € A, defined in (3.17).

Recall that X, is the defect (3.21)) of Berry’s random waves restricted to B(R). In light of
(3:33), for y € [—1,1]* we have

H(gw;R(y)) = H(FT(w);R(y))a

unless |g..r(y)| < n. Hence, by the definition (3.28)) of the unstable event 2y, it is clear (the magni-
tude of change in the sign function is at most 2, and the measure of the set of = for which |g,(z)| < 7
is at most ¢/4) that for all w € '\ 2, one has

6 0
Now, by the definition of {2y, for every w ¢ ), one has
0
(3.37) [Xeirl < 5.

Hence (3.37) together with (3.32) imply that for all w € Q" := (' \ ©4) \ Q2, one has

)
Yy (W) < [Xop| + 5 < 0.
Equivalently,
(3.38) Yy, (@) <6

for all z € 7(€") of measure

(3.39) meas(7(")) > Pr(Q) — Pr(Q) — Pr() > (1 - 5) — % _ S
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R fS(R)H(g(l‘))dw (1/R2> 'fS(R) H(g(x))dx
5 [-5.10561833230128 -0.204224733292051
15 | -43.5759827038652 -0.193671034239401
25 | -116.854534058787 -0.186967254494059
35 | -247.264843494327 -0.201848851832104

TABLE 1. Integral values. Here S(R) C R? is the square [0, R] x [0, R].

thanks to (3.31)), (3.33) and (3.34)), and the measure preserving property of 7. Finally, (3.38)), (3.39),

and the “if”” direction of Lemma3.8]allow us to deduce the conclusion of Proposition 3.1}
U

4. EIGENFUNCTIONS WITH NON-VANISHING DEFECT VARIANCE: PROOF OF THEOREM [1.2]

4.1. Large negative defect on hexagonal lattices. We begin by constructing a completely flat Laplace
eigenfunction g on a certain hexagonal torus T, such that the fotal defect of g is non-vanishing. In
what follows it will be convenient to identify R? with C.

Define L := Z[1 +i/v/3,2i/v/3], and let T := C/L. Further, let L C C ~ R? denote the dual
lattice to L, generated by the sixth roots of unity (or just by {1,¢e(1/6)}, where e(z2) := ¢*™*). The
Laplace eigenvalues on T are then given by 472|v|? for v € L. Letvy,...,vs € R? denote the six
elements in L with length one, and for z € R? define f(z) = 3.0, e(v; - x); f is then well defined
on T (as well as totally flat), and is a Laplace eigenfunction on 7', with eigenvalue 472,

Further, let wy, wy, w3 € R? denote elements corresponding to the three third roots of unity. Us-
ing that e(t) +e(—t) = 2 cos(t), and pairing off antipodal points (i.e. v; = —v;) define the completely
flat function

4.1) g(x) = Zcos(27rwi ~x) = f(x)/2.

Further, g,,(z) := g(mz) is a Laplace eigenfunction on 7" with eigenvalue 47*m? (also completely
flat if m is chosen to be a prime that is inert in Z[e>™/3]), and the following proposition asserts that
the total defect of g does not vanish.

Proposition 4.1. We have
(4.2) c:= /H(g(y)) dy < 0.

T
Further, for any x € T', and s > 0

1
ms2

[, Hontw)dy = % o1 /(ms)

A plot of H(g(z1,x2)) is shown in Figure|l] Since g is invariant under translation by L, unless
the integral over the fundamental domain of L is exactly zero, we will get growth, of order 12? in either
the positive or the negative direction, when integrating over squares, say centred at (R/2, R/2) and
with sides length 12 growing. The numerics in Table [I|indicates that there is negative growth. These
numerics can be made rigorous by bounding the gradient from above: this way we can ensure that
the function does not change sign in most small disks. The following lemma, whose proof is obvious,
introduces a stability notion, related to the one in section

Lemma 4.2. For the function g in (4.1) define
(4.3) M :=max |Vg(z)],

zeT
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FIGURE 1. White regions denotes g(x1,z3) > 0, and black denotes g(x1,z5) < 0.
Despite appearances, the white regions are not circles.

and let D, (r) denote a closed disk of radius r > 0 centred at x. Then M < 27 - 3, and

Jin |g(y)] 2 lg(@)| = - M.
Proof of Proposition[d.1] Recall that the lattice L is spanned by u; = (1,1/+/3) and uy = (0,2/+/3).
The rhombus spanned by w1, us is a fundamental domain of L, as well as a fundamental domain for 7'.
As it is more convenient to tile with rectangles rather than with rhombi we will prefer to evaluate the
signed area on a rectangular fundamental domain, and show that the defect integral over the rectangle
%, having corners at (0,0), (1,0), (0,2/4/3), (1,2/v/3), easily seen to be a fundamental domain of
T, is non-zero.

For some integer N > 0 we tile Z by N? rectangles (modulo %) centred at

L j k2
= (35 7)
for 0 < j,k < N, each such rectangle can be covered with a disk of radius » = /7/12/N. If the
inequality |g(h; k)| > 127r > r - M, with M as in (.3) is satisfied (using a factor of two safety
margin), the corresponding rectangle centred at h; , is said to be “stable”, whence ¢(-) has constant
sign on the whole rectangle by Lemma otherwise it is said to be “unstable”. Depending on the
sign of g(h; ), we call the corresponding stable rectangle “positively stable” or “negatively stable”.
For N = 80 one finds 2099 positively stable rectangles, 3299 negatively stable, and 1002 unstable
ones. As 3299 — 2099 = 1200 > 1002, we conclude that the defect is nonzero (and in fact
negative). Both assertions of Propositiond.1|now follow: the first assertion follows from the presented
numerical calculation, whereas the second one is an immediate consequence of the first assertion upon
tiling B, (s) with (ms)?/(2/v/3)+0O(ms) copies of fundamental domains associated with the lattice
< [ (note that the boundary of B, (s) can be covered with O(ms) tiles.) One can obtain more precise
estimates on ¢ in (4.2)), by increasing N, and thus decreasing the mesh size: for example, for N = 500,
the corresponding counts are respectively 96639, 147207, and 6154. U

4.2. Defect stability w.r.t. perturbations of g. For later use we show that a small perturbation of ¢
only changes the defect by a small amount. For convenience we work in the rescaled region where
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the eigenvalues are normalized to 472, hence we should consider the defect over balls of radius R (or
squares of sides R?) with R growing. We start by showing that simultaneous vanishing of both g and
its gradient Vg is impossible.

Lemma 4.3. Let 7, := {x € T : g(x) = 0} and let Zy := {x € T : Vg(z) = (0,0)}. Then
Zl N Zg - @

Proof. The linear map R® — R2, given by (a1, ag, as) — ;. a;w; with w; as in @), clearly has
full range, hence a one dimensional kernel, spanned by (1, 1, 1). In particular, if Z§:1 a;w; = 0, then
a; = as = az = C for some C. Therefore, Vg(x) = 0 implies that cos(2rw; - x) = cos(2mws - x) =
cos(2mws ) = C for some C. Further, g(x) = 0 implies that 0 = 3> cos(27mw;-z) = 3C, and thus
C' = 0 for any point where g and Vg both vanish. In particular, we find that 27w; - © = +7/2 + 27k;
for k; € Z. On the other hand, as Zf’zl w; = 0, we find, on multiplying by 2/ that

O0=x+1+=+1++1 mod4
which is impossible since the right hand side is odd no matter what signs are chosen. 0

In light of Lemma and the compactness of 7', it follows that the gradient of ¢ is uniformly
bounded below on the zero set of g(+):

Corollary 4.4. There exist C > 0 such that |Vg(x)| > C forall x € Z; = g~*(0).

It is now straightforward to prove stability of the defect of g w.r.t. perturbations. Given R > 1
and a continuous function f € C'(R?), define

Yf R\T / H dy,

Lemma 4.5. Let g be the function @), and R > 1. Then for all ¢ > 0 sufficiently small, if f € C(R?)
is such that |g(y) — f(y)| < € holds for all y € B,(R), one has

Yy r(r) = Yo,r(x) + O(e).
Proof. It is sufficient to show that the measure of the set

{reT:|g(z)| <€}

is O(¢), for all sufficiently small ¢, as we can then tile B,(R) with < R? copies of the fundamental
domain. Now, there exist some open neighborhood of Z; = ¢~!(0), outside of which |g(x)| is
uniformly bounded away from zero (say, using compactness of the closed complement). In other
words, if |g(z)| is small then we must have d(z, Z;) small, where d(z, Z;) denotes the distance
between x and the zero set Z;. Further, all x for which d(z, Z;) is sufficently small is contained
in some small tubular neighbourhood of Z;. The lower bound on the gradient of Corollary 4.4 implies
that |g(z)| > d(z, Z,) + O(d(z, Z1)?), and hence the measure of the set of = for which |g(z)| < € s
< €. U

4.3. Approximating g on the standard torus T?> = R?/Z*: proof of Theorem[1.2, We next show
that a perturbed variant of the hexagonal lattice construction can be translated to the square torus. We
begin by showing that the set of Gaussian integers, scaled to have norm one, can very well approxi-
mate third roots of unity.

Proposition 4.6. The Pell equation
(4.4) b’ —3a® =1
admits infinitely many solutions. Further, let

(4.5) S" = {n=a®+1)
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be the infinite sequence of integers of the form a® + b* with (a,b) as in @), and for n € S” we define
the Gaussian integers 2y = 2, 1,22 = 2n2, 23 = Zn,3 aS

(4.6) z1:=—a+bi, zo:=—a—b, z3:=2a+1.
Then, as n — oo along S”, we have
4.7) 2 /lz| =" +0 (n_1/2) 2|2 = e 73 4+ 0 (n_l/z) . z3/lzl =140 (n_l/z) :

Proof. Since the Pell equation b?> — 3a®> = 1 has the solution ¢ = 1,b = 2, it has infinitely many
integer solutions. Moreover, we find that |21 |? = |25]? = |23|> = 4a® + 1, and

(4.8) i__1+—i\/§+0(1)7 ﬁ__l_—i\/g+0(l)7 ﬁ:1+0(é)_

21| 2 a |za| 2 a | 23]

Thus, taking n = a® + b* = 4a® + 1 we have 1/a = O(n~"/?), and the proof of Proposition [4.6]is
concluded. U

Proof of Theorem[1.2] We claim that the statement of Theorem holds, with S” prescribed by
(4.3), satisfying, in particular, the statement of Proposition f.6] To construct eigenfunctions
on T = R?/Z? having large defect it is convenient to rescale T so that the eigenvalue equals 472, and
correspondingly the torus must be rescaled so that the fundamental domain is a square with sides '/
(where A = 472n denotes the unscaled eigenvalue.) Given n = a? +b*> € S” with b? — 3a® = 1 define
the unit vectors w; 1= 2 € R?, 7 = 1,2, 3, with 2; as in (4.6), and the Laplace eigenfunction G, on

|2

the re-scaled torus R?/(\/nZ?), by

G(z) = Z cos(2rw; - x)

A simple calculation shows that G is a Laplace eigenfunction, with eigenvalue 472, and that,
with w; as in (@.T)), the asymptotic approximation (4.8) reads

lw; — w;| = O(1/a) = O(1/n'/?).
Hence, for any = € R?, we have
l9(x) — G(x)| < |z|/n'?.

In particular, for |z| = o(n'/?), we have G(z) = g(z) + o(1), and thus, if R = o(n'/?) grows with n
we find, thanks to Lemma[4.5] that

Yar(r) =Yy r(x) +0(1) = C +o(1)

forC :=c-/3 /2 < 0. In the macroscopic regime, i.e. when R is of size nt/2, we similarly find that
for |z| < en'/?,

YG,R(JI) = }/97}3(13) + O(E) = C + O(E)

Thus, if for n € S” we construct GG as described above and define f,(x) := G(y/nx), we obtain
an eigenfunction on T2, with eigenvalue 47°n, and find that the defect integral over B, (s) (keeping
in mind that s = R/+/n when we undo the scaling) is bounded away from zero for |x| < ¢; hence the

variance is bounded from below, and the proof is concluded.
O
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5. THE DEFECT OF ARITHMETIC RANDOM WAVES: PROOF OF THEOREMS

5.1. Preliminary lemmas. Let f,(-) be the Arithmetic Random Wave corresponding to (I.1)), so that
fn(+) is a unit variance stationary Gaussian random field with covariance function (1.5). We first
establish the precise expression (2.8)) for the variance of the defect D,,;.

Lemma 5.1. We have

2
Var (D,,.s) = =y / arcsin (r,, (z — y)) dvdy.
B(s)x B(s)

Proof. By the vanishing of the defect expectation (I.11)), we have

1
60 Var(Du) =E[PR) = | [ (@) H () dody].
(752)" L/B@)xB(s)
Changing the order of expectation and integration in (5.1)) together with the identity (2.7) (following
along the same lines as the ones leading to (3.23))), gives the desired formula for the defect variance.
O

As we will see below, the defect variance Var (D,,s) is intimately related to the (restricted)
moments of the covariance function r,,(+). The following lemma gives a useful arithmetic formula for
these moments.

Lemma 5.2. Let [ > 1. We have
(5.2)

2
z 22 #Zn (D) | 5 T (2ms[|A 4 -+ V)
ro(z—vy) dedy = (78°) ——— + — )
/ (z —y) dody = (ms%) NI NI > AL+ -
B(s)xB(s) ()‘ ~~~~~ )¢=} ]
Moreover, if | = 2k + 1, then by 2.3) we have # 2,,(1) = 0, so that (5.2) reads (2.T1).
Proof. Expanding the covariance function (I.5]), and recalling the definition (2.2) of &7, (), we obtain

/ G )dl’dy— / d e o Nz —y)) dady

B(s)xB(s) X Bs) M€
— 2 #Zn (1) 1
BRI Tt DD

Formula (5.2)) now follows from the identity
Ji (2w
/ e((v,x))de = SANTE VL) 1 SHU”)

[o]]

2
/ e (N 4+ AL 2)) dal
B(s)

B(s)
0]

5.2. Upper bounds. We now turn to prove the upper bounds for Var (D,,.;). We begin with the proof
of Theorem [L.3

Proof of Theorem[I.3] By Lemmal5.1]and the elementary bound arcsin z = = + O(z?) we have

2
(5.3) Var (D,,.s) = =y / rn (x —y) dedy + O / o (z — 1) drdy
T
B(s)xB(s) B(s)xB(s)
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By Lemmal5.2]
52 Jy 27s |\
/ o (z —y) dedy = N Z s ] H)\H!_H)
B(s)x B(s) " aegn
which, using the bound,
(5.4) Ji () < min {x_l/g, x}
(see formulas (9.1.7) and (9.2.1) in [1]) is
2 4
< D <y

FnSH/\HS = (sn1/2)3 >~

for all s > n~/?*<. We find that the contribution from the first integral on the r.h.s. of (5.3) is < n =3¢
We next evaluate the second integral on the r.h.s. of (5.3). By Lemma we have

m2gt

2

S
(5.5) / o (2 — 1) dedy = AR
B(s)xB(s) AL£N2eE,

Z Ji (27s ||AL = A2
AL = 22|

9

where we used the fact that (A\!, \?) € &2, (2) if and only if \! = —)\?, and in particular

and the symmetry \ € &, <= —\ € &,,. Again using the bound (5.4) we have

Ji(2ms A = X))’ | { 1 }
< mmeE g —— .35 )
Z H/\1_/\2||2 Z 5_”)\1_)\2H3

A#£N2eg, AM#£N2eg,

and therefore, for any 0 < 1 < 1/2, we have

27s | AL — A2|)? 1
(5.6) Z Jl( TS || ||) << 82 Z 1 +S_1 Z

2 T 53"
MF#N2EEn 1A =2 AL AZeg, AL AZeg, IAT =A%
0<H)\1_>\2H<n1/2ﬂ, H>\1_>\2||2n1/27n

We estimate the sums on the r.h.s. of (5.6) separately. The second sum on the r.h.s. of (5.6) can
be bounded trivially:

1 -3
(5.7) 571 — < N2 (nt/Fm)
122: A — 22| ( )
AL Aeé,
o125 i
whereas the first sum on the r.h.s. of (3.7) is the number of “close-by pairs”, bounded in [12] (see
Theorem 1.8 there and the remark following it) by

(5.8) > 1< N2=™
AL aZeg,
0<[[AL=A2||<nt/2=n

for any 7 < 4 and n > 0 sufficiently small.
Substituting the bounds (5.7)) and (5.8)) into (5.6)), and then back into (3.5]), we obtain the bound

(5.9) / o (T — y)2 dredy < s*N 7 4sn ™32 L AN — GH(NTL4n3 [ (snt /234N,
B(s)xB(s)

Let 0 < § < 4e, and write § = 77 where 7 < 4 and n < €. Then (5.9)), together with (5.3)), the
bound (T.4), and the previous bound on the first integral on the r.h.s. of (5.3)), gives Var (D,,.;) < N, °
uniformly for all s > n~/2%¢ completing the proof of Theorem
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We now prove Theorem [2.6| which, as argued above, immediately implies Theorem

Proof of Theorem Recall that the Taylor series of arcsin () is given by (2.9) where

1 [2k 1
5.10 = — e T—
(5.10) i 22k(l<:)2k+1’

so that by Stirling’s approximation a; ~ ﬁ;k_?’/ 2, and the convergence is uniform on [—1,1]. In
particular for K > 0, the Taylor polynomial of arcsin (¢) is given by

K
(5.11) arcsin (t) = Z apt** ™ + 0 (\t!2K+3) :

k=0

Substituting (5.11) into (2.8) yields
(5.12)

K
2 2%+1 1 2K+3
Var (D,,.5) = =yl Z ag / o (. —y)"" " dady + O a / I (2 — y) 2T dady
k=0 B(s)xB(s) B(s)xB(s)
Let 0 < k < K. Recall the identity (2.11)), and that n € S”” where the sequence S”" C S satisfies

the axiom A (0) as in Definition 2.4 so that the condition (A, ..., A\**1) ¢ 2, (2k + 1) in @10)
implies that

(5.13) H)\l N )\2k+1H > nl/29,
Substituting the bound (5.13) together with the bound (5.4) into (2.11)), we get that
1 2k+1 L 1 —3,_—3/2436
R R BD DI T e T B
B(s)xB(s) (AL, AZEHL) ¢ 2 (2k+1)
(5.14) <p3(e9)

uniformly for s > n~1/2t¢. We can now use (5.14) to bound the summation in the variance formula
(5.12), which gives
1
(5.15) Var (D) <m0 4+ — / ry (z —y) |1 dady.
S
B(s)xB(s)

To control the (2K + 3)’th moment of the absolute value of 7,(-), we use the Cauchy—Schwarz
inequality to discard the absolute value:

1/2
(5.16) / ry (z — y) |1 dedy < 7s? (/ T (2 — )0 da:dy) :
B(s)x B(s) B(s)xB(s)

By Lemma[5.2] we have

: / ro (z —y) "0 dady _ o #Pn (4K 1 6)

5 NAK 6

B(s)xB(s)

1
(5.17) + T )3

(AL, AEH6) ¢ 2, (4K +6)

Ji (27TS H)\l 4+t )\4K+6H)2
H)\l—i—---+)\4K+6H2 :
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Since S" is correlation-tame (Definition , we have # 2, (4K + 6) < N2K+3. This, together
with (5.17) and the estimate (5.4), yields

(5.18)

1

1 1 !

4K+6

5t / T (T —y) drdy <x N2KT3 g3 NAK Z I A
B(s)xB(s) ' ’ AR

By the lower bound (5.13), we have

1 1
(5.19) I e—— <<K S 3/2+36 < —3(e=9)
LD DI ey v

uniformly for s > n~/2+¢, Substituting the bound (5.19) into (5.18)) and bearing in mind (T.4) gives

1
(5.20) = / o (z — )"0 dady < i

S
B(s)xB(s)

Finally, we substitute the bound (5.20) into (5.16)), and then into (5.15)). Using again (I.4), we
get that

2K+3°
Nn

Var (Dn;s) <LK W

This completes the proof of Theorem [2.6] since K can be taken arbitrarily large. U
5.3. Lower bound. In order to prove the lower bound for Var (D,,.;) stated in Theorem we will

require a result on Diophantine approximation by multiples of square roots of prime numbers. For
t € R, we denote (t) to be the distance of ¢ to the nearest integer number, and let

(5.21) Py :={pprime: p=1 (mod4), p < K}
denote the set of primes p < K congruent to 1 modulo 4.

Lemma 5.3. Let K > 1 be an integer, and let € > 0. For every integer ¢ > 1, we have

_2logK

(5.22) max (¢\/p) >keq K

pPEPK

The proof of Lemma will invoke two classical results from the theory of Diophantine ap-
proximation: Besicovitch’s theorem on the linear independence over (Q of the square roots of distinct
square-free positive integers, and Schmidt’s theorem on simultaneous Diophantine approximation,
that, for the reader’s convenience, we cite next, in the form used subsequently.

Theorem 5.4 (Besicovitch [3]). Let q1, ..., q., be distinct squarefree positive integers. The numbers
Va1, - - - s \/qm are linearly independent over Q.
Theorem 5.5 (Schmidt [32]). Let o, ..., o, be real algebraic numbers so that 1,aq, ..., a,, are

linearly independent over the rationals. Then for every e > 0 and for every integer q > 1, we have

max (qog) > ¢ /M

1<i<

where the implied constant depends on € and on oy, . . . | uy,.

Proof of Lemma[5.3} By Theorem | the elements of the set {1} U{/p : p € P} are linearly inde-
pendent over the rationals. Since #P; ~ 37> as K — oo, the bound (5.22) follows from Theorem
5.9 O

We are finally in a position to prove Theorem
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Proof of Theorem|[1.5] Recall that substituting the Taylor series of the arcsine function (2.9) in (2.8)
gives formula (2.10):

_ 2k+1
Var (D,,,s) = 7r384 Z / — dxdy,

where ay, are given by (5.10), and in particular a;, > 0, ap = 1, and ay ~ ﬁk*?’/ 2. Hence, Lemma

[5.2] yields
(5.23) Var (D = 7r352 Z 2k+1 Z

(AL AR ) ¢ 22, (2k41)

Ji (27T8 ||)\1 + .+ )\2’”1“)2
||)\1 _|_,,,_|_)\2k+1||2 ’

By the positivity of the coefficients a;, we may obtain a lower bound by discarding all terms in (5.23)

but one with £ = 0:
2 Jy (2nT)°
(524) Var (Dn;s> > ﬁT’
with T = s - y/n, as in Theorem
Recall that for large 2, we have [1, formula (9.2.1)]

(5.25) Ji(2) =4/ %COS (z — %7‘1’) +0 (#) ,

so that

(5.26) Jy (26T = 7T /2 cos ((QT _ Z) W) L0 (T,
We write

(5.27) QT_EZHP

4
where t =t (T') € Z and |p| < 1/2, so that

08 ((QT _ Z) w)‘ _ [sin (pm)| > o).

1
Jit = (t + Z) T+ O(1/t)
(see, e.g. [1, formula (9.5.12)]), so that
(5.29) 20T — il = 7lpl + O(1/T).

In particular, if 277" is bounded away from j, ;, then (5.29) yields p > 1, so that (5.26) and (5.28)
give J; (27T > T, which together with (5.24) yields

Var (D,.;) > T

(5.28)

The tth zero j; ; of J; satisfies

Given § > 0, we consider two cases, whether |p| > T7%2 or |p| < T%/2, aiming at proving
(T-13) with the same 8. If |p| > T~%/2, then by (5.26) and (5.28) it follows that .J; (27T)* > T—1-9
so that (5.24) gives
(5.30) Var (D) > T3,
stronger than (T.13) with A > 0 arbitrary. Assume otherwise that |p| < 7~%/2, and observe that all
odd numbers m € S are expressible as

(5.31) m=a?+ (2k+1—a)’
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for some k£ > 0 and 1 < a < 2k + 1. Consider all tuples of the form

a times 2k+1—atimes

—N—
(5.32) (AN = LA AN LA

The number of such tuples is precisely /V,,, and they satisfy
(5.33) AT+ X = V.
By the inequality o + 3% > % applied to (5.31)), we get that m > M > 2k? so that

(5.34) k< \/m/2.

By the positivity of all the terms in (5.23), we can bound Var (D,,.;) from below by restricting the
inner summation in (5.23)) to tuples of the form (5.32)). This together with (5.33) and (5.34) (note that
ay > m~3/*) gives the lower bound

1 1 J (2nTym)?
(535) Var (Dn;s) > ﬁ ZS N om m7/4 .
me n
m odd

Let K > 1 be a sufficiently large parameter to be chosen later, and restrict the summation in
(5.35) to primes p € Pk in (5.21)) (these are the primes p = 1 (mod 4) which are less or equal to K).
Then

1
(536) Var (Dn;s) >K W Z Ji <27TT\/Z_9)2 .
n pEPK
By (5.25)), we have
(5.37) J1 (2nT\/p) = 7T—1T—1/2p_1/4 cos ((ZT\/_ — 2) w) +0 (T—S/z) ‘
We write

1
where [ = [ (T, p) € Z and |n| < 1/2. Then by (5.27),

3 1 1 1
cos((?T\/_—Z> 71')‘ = |sin (nm)| > |n| = ‘QT\/ﬁ—Z—Z‘ = ’(t+1+p) \/ﬁ_l_é_l‘
(5.38) > (4t + 1) p — (4l + 1)| — 4 |p| /5.
By Lemma [5.3] there exists py € Pk such that
(5.39) (4 + 1) \/Po — (4l + 1)| > g t 218 K/E =,

Since |p| < T7%/2, by choosing K = K (§) sufficiently large so that 2log K/K < §/4 (keeping in
mind that ¢ = 27" + O(1)), we conclude upon substituting the bound (5.39) in (5.38) that

e ()

Ji (2T \/po)? > T2,

>5 7’!—5/47

which by (5.37) implies

This, together with (5.36) gives

(5.40) Var (Dy,.5) 5 Ji 27T \/po)” >

NYPKT? NY2ETS/2
To summarize, the bounds (5.30) and (5.40) imply that, in either case, (I1.13)) holds with A =v/2K,
U

which is the statement of Theorem
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