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ABSTRACT. We study the defect (or “signed area”) distribution of standard toral Laplace eigenfunctions
restricted to shrinking balls of radius above the Planck scale, either for deterministic eigenfunctions
averaged w.r.t. the spatial variable, or in a random Gaussian scenario (“Arithmetic Random Waves”).
In either case we exploit the associated symmetry of the eigenfunctions to show that the expectation
(spatial or Gaussian) vanishes.

In the deterministic setting, we prove that the variance of the defect of flat eigenfunctions, restricted to
balls shrinking above the Planck scale, vanishes for “most” energies. Hence the defect of eigenfunctions
restricted to most of the said balls is small. We also construct “esoteric” eigenfunctions with large defect
variance, by choosing our eigenfunctions so that to mimic the situation on the hexagonal torus, thus
breaking the symmetries associated to the standard torus. In the random Gaussian setting, we establish
various upper and lower bounds for the defect variance w.r.t. the Gaussian probability measure. A
crucial ingredient in the proof of the lower bound is the use of Schmidt’s subspace theorem.

1. INTRODUCTION

1.1. Toral Laplace eigenfunctions and Arithmetic Random Waves. Toral Laplace eigenfunctions
are an important model in Quantum Chaos since they capture many aspects of Laplace eigenfunction
behaviour on generic manifolds. Toral eigenfunctions enjoy two significant privileges over the general
case, making them attractive to address, in addition to their own sake, being Fourier sums with partic-
ular frequencies. First, its number theoretic ingredient makes them susceptible to methods borrowed
from Analytic Number Theory. Second, their (slowly in 2 dimensions) growing spectral degeneracies
allow for the study of the “typical” case, for example endowing the linear space of Laplace eigenfunc-
tions with the same eigenvalue with a Gaussian probability measure (thus giving rise to “Arithmetic
Random Waves”).

Let T2 = R2/Z2 be the standard 2-torus, let

S := {a2 + b2 : a, b ∈ Z}
be the set of all integers expressible as sum of two squares (“sequence of toral energies”), and for
n ∈ S let

Nn := r2(n) = #
{

(a, b) ∈ Z2 : n = a2 + b2
}

be the number of ways to express n as sum of two squares. Then every function of the form

(1.1) fn(x) =
1√
2Nn

∑
λ∈Z2: ‖λ‖2=n

aλ · e(〈x, λ〉)

with convenience only pre-factor 1√
2Nn

, λ = (λ1, λ2) ∈ Z2, x = (x1, x2) ∈ T2,

〈x, λ〉 = x1λ1 + x2λ2,

e(y) := e2πiy, and aλ ∈ C some complex coefficients subject to

(1.2) a−λ = aλ,
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2 TORAL DEFECT

is a real-valued Laplace eigenfunction with eigenvalue E = En = 4π2n, i.e. it satisfies the Helmholtz
equation

(1.3) ∆fn + Efn = 0.

Conversely, every real-valued function satisfying the equation (1.3) is necessarily of the form (1.1)
for some n ∈ S, and {aλ}‖λ‖2=n as above.

Given n ∈ S, the linear space of functions (1.1) subject to (1.2) is of real dimension Nn. The
sequence Nn is subject to large and erratic fluctuations. It is on average Nn ∼ 1

κRL
·
√

log n with
κRL > 0 the Ramanujan–Landau constant [18], but its normal order is Nn = log nlog 2/2+o(1), i.e. for
every ε > 0, for “most” numbers n ∈ S, the inequality log nlog 2/2−ε < Nn < log nlog 2/2+ε holds (cf.
[13, §22.11]). Moreover,

(1.4) Nn = O(nε),

by an elementary argument.
We denote by

En = {(λ1, λ2) ∈ Z2 : λ2
1 + λ2

2 = n}
the representations of n as sum of two squares, or, what is equivalent, En are all Z2-lattice points lying
on the radius-

√
n circle. One may endow this space with a probability measure by assuming that

the {aλ}λ∈En are standard (complex) Gaussian1 i.i.d. save to (1.2), turning {fn}n∈S into a Gaussian
ensemble of random fields [23, 26], all defined on T2, usually referred to as “Arithmetic Random
Waves” [16]. Alternatively, fn are unit variance stationary random fields on T2, uniquely defined via
their covariance function

(1.5) rn(x) = rn(y, x+ y) := E[fn(y) · fn(x+ y)] =
1

Nn

∑
λ∈En

cos(2π〈λ, x〉).

1.2. Defect. The (total) defect of a smooth, not identically vanishing, function g : T2 → R, (called
“signed area” in the physics literature) is

D(g) := Area(g−1(0,+∞))− Area(g−1(−∞, 0)) =

∫
T2

H(g(y))dy,

with H(·) denoting the sign function

(1.6) H(y) :=


1 y > 0,

0 y = 0,

−1 y < 0.

The defect of Laplace eigenfunctions was first addressed in the physics literature [4] for random
planar monochromatic waves. A precise asymptotic expression for the defect variance, and a Central
Limit Theorem was established, along with generic nonlinear functionals, for the ensemble {Tl}l≥1

of random Gaussian spherical harmonics [19, 20] with mathematical rigour. The Tl : S2 → R is the
important ensemble of spherical random fields defined by the covariance functions

E[Tl(x) · Tl(y)] = Pl(cos(d(x, y))),

where Pl(·) are the Legendre polynomials and d(·, ·) is the spherical distance; Tl(·) scales asymp-
totically like Berry’s Random Waves around every point of S2, the main findings of [19, 20] being
consistent with [4], up to the said scaling. The sign distribution of Laplace eigenfunctions on closed
surfaces in the high energy limit was further addressed in [22], where it was shown that if one re-
stricts an eigenfunction to any disc centred at the nodal line, then the defect can be at most inversely
logarithmically close to ±1.

1We work under the convention that aλ = bλ + icλ, where the bλ and cλ are standard real-valued Gaussians.
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We are interested in the defect of fn(·), with fn(·) defined as in (1.1). We claim that for every
such function fn, the corresponding defect

(1.7) D(fn) ≡ 0

vanishes, so the study of D(fn) trivialises, and, accordingly, below we will pass to subdomains of T2.
First, if n is odd, then for every λ = (λ1, λ2) ∈ En, precisely one of λ1 and λ2 is odd. Hence, fn
changes its sign under the involution τ : T2 → T2 mapping · 7→ ·+ (1/2, 1/2), i.e.

fn(τx) = −fn(x),

which readily implies D(fn) = 0. Otherwise, if n is even, we may assume w.l.o.g. that2 n ≡ 2(4),
whence for all λ ∈ En, both λ1, λ2 are odd, and then fn changes its sign under the involution ρ : T2 →
T2 mapping · 7→ ·+ (1/2, 0) (or · 7→ ·+ (0, 1/2)), also yielding D(fn) = 0.

It is therefore essential to pass to, possibly shrinking, subdomains of T2, most canonically, the
radius-s discs Bx(s) ⊆ T2 centred at x ∈ T2, 0 < s < 1/2, and B(s) := B0(s), with s = s(n)
allowed to depend on n, (possibly with s(n)→ 0). Since Quantum Chaos should exhibit itself above
the Planck scale s� 1√

n
[2], it makes sense to take, as an example, s = n−1/2+ε, or, perhaps, replace

the ε-power of n with a slower growing function of n (such as a power of log n). Our principal results
concern the defect distribution corresponding to both individual deterministic cases, w.r.t. space aver-
age in section 1.3 below, and the Arithmetic Random Waves (random Gaussian toral eigenfunctions)
in section 1.4 below.

1.3. Statement of principal results: spatial defect distribution. We work with a sequence of de-
terministic eigenfunctions fn of the form (1.1), and study the defect distribution of fn restricted to
Bx(s), where x is random uniform on T2, and s is above the Planck scale. That is, given a function
fn of the form (1.1), x ∈ T2 and s > 0, we consider

(1.8) Yfn,s(x) :=
1

πs2

∫
Bx(s)

H(fn(y))dy,

the defect of fn restricted to Bx(s), with the normalisation making Yfn,s(x) invariant w.r.t. homoth-
eties. Such an approach was recently taken by Sarnak [27] and Humphries [14] for modular forms,
and Granville–Wigman [12] and Wigman–Yesha [34] for toral Laplace eigenfunctions (1.1), in study-
ing the mass distribution of the respective models, showing, in particular, that if there exist discs
observing unproportionately large or small L2-mass of fn, then these are not “typical”.

Our principal interest here is the distribution of the values of Yfn,s(·) in (1.8) as x distributes
randomly uniformly on T2; we denote accordingly the “spatial defect expectation”

ET2 [Yfn,s] :=

∫
T2

Yfn,s(x)dx,

and the “spatial defect variance”

VarT2(Yfn,s) :=

∫
T2

(Yfn,s(x)− ET2 [Yfn,s])
2 dx.

The degeneracy argument identical to the argument we used to establish (1.7) that the total defect of
every function (1.1) vanishes, yields that, in general, the spatial defect expectation vanishes precisely,
i.e. that

(1.9) ET2 [Yfn,s] = 0.

2Otherwise both the entries λ1, λ2 are even, which yields that fn is invariant under the involutions · 7→ ·+(1/2, 0) and
· 7→ ·+ (0, 1/2), and we may pass from n to n/4.
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In what follows, we will restrict ourselves to Bourgain’s class [7] of eigenfunctions

Bn =

{
fn =

∑
λ∈En

aλ · e(〈x, λ〉) : ∀λ ∈ En, |aλ| = 1 and a−λ = aλ

}
.

Bourgain’s class eigenfunctions are the first deterministic “implementation” of Berry’s Random Wave
Model [7]. Our first principal result asserts that for generic n ∈ S, and fn ∈ Bn a Bourgain class
function, the spatial defect variance vanishes uniformly for s slightly above the Planck scale. Since
Yfn,s is bounded, this is equivalent to the statement that, in the said scenario, the proportion of positive
values of fn in “most” discs of radius above the Planck scale is asymptotic to 1/2 (see Lemma 3.8
below). It is likely that the proof of the principal result immediately below holds for a more general
family of flat eigenfunctions of the type considered in [34] (an event of almost full Gaussian proba-
bility); despite that we abandon the possible generality for the sake of the elegance of presentation.
That some flatness condition is essential for the defect variance vanishing is asserted in Theorem 1.2
to follow immediately after the announced principal result.

Theorem 1.1. There exists a sequence S ′ ⊆ S of relative density3 1, so that for all ε > 0 there exists
R = R(ε) > 0 and n0 = n0(ε) sufficiently large, so that for all n > n0 with n ∈ S ′,

VarT2(Yfn,s) < ε

holds uniformly for all fn ∈ Bn, s > R/
√
n. Equivalently,

lim
R→∞

n→∞, n∈S′
sup

s>R/
√
n

fn∈Bn

VarT2(Yfn,s) = 0.

The arithmetic conditions on the sequence S ′ as postulated in Theorem 1.1 will be explicated in
section 2.2 below, as part of Theorem 2.5. Finally, the result on the flatness being of essence for the
spatial defect variance vanishing announced above is stated, with radii vanishing arbitrarily slowly,
or even for fixed sufficiently small radii.

Theorem 1.2. There exists a (thin) sequence S ′′ ⊆ S, a deterministic sequence {fn}n∈S′′ of eigen-
functions (1.1), and numbers γ, ε0 > 0, so that the inequality

lim inf
n∈S′′

VarT2(Yfn,Ψ(n)) > ε0

holds for every function Ψ : Z>0 → (0,min(γ, 1/2)), subject to Ψ(n)n1/2 →∞.

1.4. Statement of principal results: defect variance for Arithmetic Random Waves. Rather than
averaging w.r.t. the spatial variable, we can take fn(·) to be the Arithmetic Random Waves (i.e. the
random Gaussian model associated to (1.1)), and denote

(1.10) Dn;s :=
1

πs2

∫
B(s)

H(fn(y))dy.

We observe that, by the stationarity of fn, the law of Dn;s is independent of the centre of the disc, so
that, in what follows, we will assume that the disc on the r.h.s. of (1.10) is centred. Since, for a given
y ∈ T2, the law of fn(y) is symmetric around the origin, and H(·) is odd, we have E[H(fn(y))] ≡ 0,
and, by inverting the integral on the r.h.s. of (1.10), it is evident that for every n ∈ S and s > 0,

(1.11) E[Dn;s] = 0.

3A subset S′ ⊆ S is of relative density κ in S, if

lim
X→∞

#S′(X)

#S(X)
= κ,

where for A ⊆ N we define A(X) := {n ≤ X : n ∈ A}.
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Our next principal result asserts that Var(Dn;s) → 0 as long as the ball radius is above the Planck
scale, i.e. s ·

√
n→∞.

Theorem 1.3. Fix ε > 0 sufficiently small. For every 0 < δ < 4ε one has

Var (Dn;s)�
1

N δ
n

uniformly for all s > n−1/2+ε. Equivalently,

sup
n∈S

sup
s>n−1/2+ε

Var (Dn;s) ·N δ
n < +∞.

If one is willing to excise a thin sequence of energies, that is, a subsequence S1 of S whose
relative asymptotic density in S is 0, so that whatever generic energy levels are remaining satisfy
certain arithmetic conditions explicated in Theorem 2.6 of section 2.4 below, then the asserted rate of
decay is significantly more rapid, namely, faster than polynomial in Nn.

Theorem 1.4. For every ε > 0 there exists a subsequence S ′′′ = S ′′′(ε) ⊆ S of energy levels of
relative density 1, so that, along n ∈ S ′′′, the inequality

(1.12) sup
s>n−1/2+ε

Var (Dn;s)�A
1

NA
n

,

holds for every A > 0.

To the other end, we claim the following lower bound for Var(Dn;s) above the Planck scale, valid
for all n ∈ S.

Theorem 1.5. Let s = s(n) be a sequence of radii so that T := s ·
√
n→∞.

a. For every δ > 0 there exists a sufficiently large number A = A(δ) so that

(1.13) Var (Dn;s)�δ
1

NA
n · T 3+δ

.

b. If, in addition, 2πT is uniformly bounded away from the zeros of the Bessel J1 function, then

(1.14) Var (Dn;s)�
1

T 3
.

For comparison of the generic upper bound (1.12) with the lower bounds (1.13) and (1.14) (re-
stricted to the regime s > n−1/2+ε all the said bounds hold) one should bear in mind (1.4), i.e. that
every arbitrarily small positive power of n dominates every power of Nn. It is well known that at
infinity, the zeros of the Bessel J1 function are asymptotic to the arithmetic sequence

(1.15)
{π

4
+ π ·m

}
m≥1

.

The a fortiori meaning of the condition postulated by Theorem 1.5b is that 2πT is bounded away by at
least ε0 > 0 from the said sequence (1.15), whence the conclusions apply (with constants depending
on ε0). In particular, given a scaling sequence s(n), after making a small perturbation (of order
O(n−1/2)), we can ensure that the lower bound in (1.14) holds.
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comments on an earlier version of this manuscript, in particular, pertaining to Lemma 5.3 on Diophan-
tine approximations. The research leading to these results has received funding from the European
Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013),
ERC grant agreement no 335141 (I.W. and N.Y.). P.K. was partially supported by the Swedish Re-
search Council (2016-03701).
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2. OUTLINE OF THE PAPER

2.1. Number theoretic preliminaries. Before we will be able to explain the essence of our argu-
ments we will be required to bring forward some arithmetic aspects of the lattice points En.

2.1.1. Angular equidistribution of lattice points. First, we are interested in the angular distribution
of En. To this end we define the sequence

νn :=
1

Nn

∑
λ∈En

δλ/√n

of probability measures on S1 ⊆ R2, indexed by n ∈ S. It is well-known [15, 10, 11] that generically
the angles of En are equidistributed, i.e. along a sequence {n} ⊆ S of relative density 1,

(2.1) νn ⇒
dθ

2π
,

where, as usual, “ ⇒′′ stands for weak-∗ convergence of probability measures, and dθ
2π

is the nor-
malised arc-length measure on the unit circle. However, even under the (generic) assumption Nn →
∞, there exist sequences {n} ⊆ S so that νn ⇒ τ with τ different than dθ

2π
; by definition, τ can be

any “attainable” probability measure on S1, e.g. the Cilleruelo measure [9]

τ =
1

4
(δ±1 + δ±i) ,

or “intermediate” measures (e.g. measures supported on Cantor set, cf. [16]); for a partial classification
see [17, 29].

Definition 2.1. For a sequence {n} ⊆ S we say that En are asymptotically equidistributed if (2.1)
holds.

2.1.2. Spectral correlations and quasi-correlations. One of the key ingredients in [16] was control-
ling the size of length-6 “spectral correlations set”. Given l ≥ 3, the length-l spectral correlation set
of the torus is the set

(2.2) Pn(l) :=

{
(λ1, . . . , λl) ∈ E ln :

l∑
j=1

λj = 0

}
of l-tuples of lattice points in En summing up to 0. If n is divisible by 4, then it forces all entries of
λ ∈ En to be even, and hence λ/2 ∈ En/4, and in this case one can keep replacing n by n/4 until n
is no longer divisible by 4. Assuming n is not divisible by 4 in the first place, λ ∈ En forces that the
number of odd entries among λ1, λ2 is either 1 or 2 for n odd or even respectively (independent of
λ ∈ En), and in either case, for l odd, the correlation sets

(2.3) Pn(l) = ∅

are all empty [8] by a congruence obstruction modulo 2, an argument similar to the one yielding (1.7).
Otherwise, for l even, the number of length-l correlations

1

N l
n

·#Pn(l) =

∫
T2

rn(x)ldx

is equal to the (normalized) moments of the covariance function (1.5) of the Arithmetic Random
Waves.

Since for l = 2k, all the “diagonal” tuples (λ1,−λ1, . . . , λk,−λk) and their permutations are in
Pn(l), it implies the inequality

#Pn(l)� Nk
n .
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Conversely, Bombieri–Bourgain [6] proved, among other things, that, given l = 2k even, the inequal-
ity

(2.4) #Pn(l)�l N
k
n

holds for a generic sequence {n} ⊆ S; by invoking the usual diagonal argument, (2.4) holds for all l
even, along a generic sequence {n} ⊆ S.

Definition 2.2 (Correlation-tame sequences of energies). We say sequence S ′ ⊆ S is correlation-
tame, if for every l = 2k ≥ 6 even, the inequality (2.4) holds true.

In fact, Bombieri–Bourgain [6] proved a stronger property satisfied by the correlations of En, with
n generic, i.e. that a generic sequence in S satisfies the following axiom F (γ) for some 0 < γ < 1/2.

Definition 2.3 (Axiom F (γ)). (1) For l ≥ 4, n ∈ S, we say that (λ1, . . . , λl) ∈ E ln is a minimal

correlation, if
l∑

j=1

λj = 0 and no proper subsum of
l∑

j=1

λj vanishes.

(2) For 0 < γ < 1/2 we say that a sequence {n} ⊆ S satisfies the axiom F (γ), if for every l ≥ 4,
the number of length-l minimal correlations of En is at most Nγ·l

n for n sufficiently big.

As we will deal with moments of rn(·) restricted to shrinking balls, we will find that, for our
purposes, the relevant notion is that of quasi-correlations [5] (see (2.11) below). Given n ∈ S, ε > 0
and l ≥ 2, the length-l quasi-correlation set is4

Cn(l, ε) :=

{
(λ1, . . . , λl) ∈ E ln : 0 <

∥∥∥∥∥
l∑

j=1

λj

∥∥∥∥∥ < n1/2−ε

}
;

note that, by the definition, Pn(l) and Cn(l, ε) are disjoint. It was shown [5, Theorem 1.4] that, given
l ≥ 2 and ε > 0, the length-l quasi-correlation set is empty Cn(l, ε) = ∅ along a generic sequence
{n} ⊆ S, and, as it is the case of the correlation set, by a diagonal argument, we may choose a
density-1 subsequence {n} ⊆ S, so that along that sequence, for every l ≥ 2,

Cn(l, ε) = ∅

holds true for n sufficiently big (depending on l).

Definition 2.4 (Axiom A(ε) on sequences of energies). Given ε > 0 we say that a sequence S ′ ⊆ S
satisfies the axiom5 A(ε), if for every l ≥ 2, the equality Cn(l, ε) = ∅ holds for n sufficiently big.

2.2. Outline of the proofs for spatial fluctuations (Theorem 1.1). By a simple manipulation with
the defect definition (1.8) and interchanging the order of integration it is straightforward to derive the
expression

(2.5) VarT2(Yfn,s) =
1

(πs2)2

∫
T2×T2

H(fn(y))H(fn(z)) · s2W (‖y − z‖/s)dydz

for the spatial defect variance, where W is a certain weight function (“circle-circle intersection func-
tion”) supported on [0, 2], and is C1 on (0, 2). It is conceivable that the asymptotic vanishing of
VarT2(Yfn,s) follows by a direct analysis of the r.h.s. of (2.5). However it seems very difficult, as
the appearance of H(·) on the r.h.s. of (2.5) does not allow us to capitalise on the special additive
structure (1.1) of fn, especially, in light of the discontinuity of H(·) at the origin (so, for example,
Taylor expanding H(·) around the origin is problematic).

4Mind the slight abuse of notation as compared to [5]
5Mind again an abuse of notation compared to [5]
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We abandon such a direct approach, and instead notice that, since the random variable Yfn,s is
bounded (by 1), the variance VarT2(Yfn,s) asymptotically vanishing is equivalent to Yfn,s asymptoti-
cally vanishing with high probability (i.e. for “most” of the ball centres on the torus), and recall that,
under certain flatness conditions on fn (certainly satisfied by all fn ∈ Bn) and arithmetic conditions
on n (in the spirit of the ones given in section 2.1.2 above), fn(·) exhibits [7, 8] Gaussian spatial value
distribution when averaged over the whole torus. Using these “de-randomisation” techniques we will
be able to prove the result to follow immediately; unlike the results of [7, 8] (and [30]), this is a
second-order result, i.e. concerning variance (as opposed to a first order one concerning expectation).
Moreover, since, unlike [7, 8], the Gaussian input for Theorem 2.5 is not inherently contained within
its statement, it seems that a more direct approach might be possible for proving Theorem 2.5. Recall
axiom F (γ) in Definition 2.3, and lattice points equidistribution in Definition 2.1.

Theorem 2.5 (A variant of Theorem 1.1 with control over S ′). Let S ′ ⊆ S be a sequence of energy
levels satisfying the axiom F (γ) for some γ ∈ (0, 1/2), and assume further that the corresponding
En are asymptotically equidistributed. Then the conclusions of Theorem 1.1 apply along S ′, i.e.

(2.6) lim
R→∞

n→∞, n∈S′
sup

s>R/
√
n

fn∈Bn

VarT2(Yfn,s) = 0.

Theorem 1.1 is a direct consequence of Theorem 2.5, because axiom F (γ) holds with some
γ ∈ (0, 1/2) for “generic” n ∈ S, and En is asymptotically distributed for “generic” n ∈ S in the
sense of Definition 2.3. The proof of Theorem 2.5 proceeds in three steps. First, we reduce proving
(2.6) uniformly for s > R/

√
n to proving for s = R/

√
n only, via an analogue of the Integral-

Geometric Sandwich, first introduced in [33, 21], adapted to our settings. Next, we exploit the said
spatial Gaussianity of fn(·) in order to reduce the variance vanishing to the analogous result for the
limit random field, which, by the equidistribution assumption for En of Theorem 2.5, is the Gaussian
random field of planar isotropic monochromatic waves (it is “Berry’s Random Wave Model”, uniquely
defined by its covariance function J0(‖x‖)).

It then remains to evaluate the variance of the defect for the limit Gaussian random field restricted
to a compact domain (e.g. the unit square), which, in spirit, is already contained in [19] (and predicted
by [4]), where a rapid decay rate is asserted. This result is the only use of the equidistribution as-
sumption, and it should be not too technically demanding to remove this assumption, as long as some
non-degeneracy for the limit Gaussian field is imposed (i.e. our techniques do not allow for including
the case where the distribution of angles approximates the most degenerate “Cilleruelo” case), though
it benefits us in no way if we are only interested in a density-1 sequences of energy levels. Our main
result (2.6) is ineffective in terms of rate of decay for VarT2(Yfn,s), as the convergence of the spatial
distribution of fn to the Gaussian is ineffective.

2.3. Outline of constructing functions with non-vanishing defect variance (Theorem 1.2). The
prevailing symmetry obstruction, dictating that for the standard torus, the total defect of any Laplace
eigenfunction vanishes precisely does not persist for the non-standard tori. We exploit the hexagonal
torus, so that to construct a single Laplace eigenfunction with total defect non-vanishing, and scale
it to obtain a sequence of eigenfunctions of arbitrarily high energy, with defect growing on large
fragments of the torus, above the Planck scale. We then mimic that situation on the standard torus,
by appealing to the Pell equation x2 − 3y2 = 1, yielding solutions approximating the hexagonal toral
eigenfunctions on the standard torus.

2.4. Outline of the proofs for Arithmetic Random Waves (theorems 1.3-1.5). Here we assume
that {fn}n∈S are the (Gaussian) Arithmetic Random Waves. Since it is possible to derive the identity

(2.7) E[H(fn(x)) ·H(fn(y))] =
2

π
arcsin(rn(x− y)),
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(cf. the proof of Lemma 3.5) a straightforward manipulation with the definition (1.10) of Dn;s and
inverting the order of integration, upon bearing in mind the stationarity of fn, yields the following
precise expression for the defect variance:

(2.8) Var(Dn;s) =
2

π3s4

∫
B(s)×B(s)

arcsin(rn(x− y))dxdy.

Now we Taylor expand the arcsine around the origin (note that the series converges absolutely at the
endpoints t = ±1)

(2.9) arcsin(t) =
∞∑
k=0

akt
2k+1,

where all the (explicit) ak > 0 are positive, and substitute into (2.8) to relate between the defect
variance and the moments of the covariance function restricted to B(s):

(2.10) Var(Dn;s) =
2

π3s4

∞∑
k=1

ak ·
∫

B(s)×B(s)

rn(x− y)2k+1dxdy.

We may in turn exploit the additive structure (1.5) to relate the said odd moments of rn(·) to the
spectral correlations (and, implicitly, the quasi-correlations) defined in section 2.1.2:

(2.11)
∫

B(s)×B(s)

rn(x− y)2k+1dxdy =
s2

N2k+1
n

∑
(λ1,...,λ2k+1)/∈Pn(2k+1)

J1(2πs · ‖λ1 + . . .+ λ2k+1‖)2

‖λ1 + . . .+ λ2k+1‖2
,

with J1(·) the Bessel J function of the first order, so that to relate the defect variance to the spectral
correlations and quasi-correlations (where, to obtain (2.11), we separate the diagonal and use the
observation (2.3)). One may then substitute (2.11) into (2.10) to obtain a more explicit expression
for Var(Dn;s), an absolutely convergent infinite series over all (2k + 1)-tuples of lattice points. If we
assume further, that s = n−1/2+ε (say), and a sequence {n} ⊆ S satisfies the A(δ) axiom with some
δ < ε, then all the summands on the r.h.s. of (2.11) are formally decaying like a (small) power of n,
faster than any power of Nn (see (1.4)).

There is a subtlety with this outlined approach though, as controlling the decay rate in this infinite
series uniformly seems difficult. Instead, we will only control finitely many summands and bound the
contribution of the higher moments. With this approach, we will encounter the odd moments of the
absolute value |rn(·)| of the covariance rather than the moments of the covariance, that we will reduce
to a moment of higher order via Cauchy–Schwarz. Theorem 1.3 is the result of such an application
when capping the series at the first degree Taylor approximation of the arcsine (2.9), whereas Theorem
1.4 caps it at an arbitrarily high degree Taylor approximation, depending on the required A > 0 in
(1.12), while also appealing to the correlation-tame property of a generic sequence of energies. We
will be able to prove the following result, which, since the claimed sequence S ′′′ is generic, thanks to
the results mentioned in section 2.1.2, clearly implies Theorem 1.4.

Theorem 2.6 (Theorem 1.4 with control over S ′′′(ε)). Let ε > 0 be given, and assume that S ′′′ ⊆ S is
a sequence of energy levels satisfying the axiomA(δ) with some δ < ε, and is correlation-tame. Then
the conclusions of Theorem 1.4 hold, i.e. along n ∈ S ′′′,

sup
s>n−1/2+ε

Var (Dn;s)�
1

NA
n

,

for every A > 0.

For the lower bounds in Theorem 1.5 one also starts from (2.10) and (2.11). Indeed, since the
Taylor coefficients ak in (2.10) are all positive, and, in hindsight, so are all the moments (2.11) of
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rn(·), it is sufficient to bound any of these from below. If T := s ·
√
n happens to be bounded away

from zeros of the Bessel J1 function, this readily yields the bound (1.14) of Theorem 1.5. Most of our
argument takes upon the opposite situation when T approaches one of the Bessel J1 zeros, whence
we need to rule out the, a priori unlikely, possibility of all the terms

2πs ·

∥∥∥∥∥
2k+1∑
j=1

λj

∥∥∥∥∥
conspiring around the Bessel zeros. To resolve this situation we exploit the higher order Taylor
approximates, whence appealing to the deep W. Schmidt’s simultaneous Diophantine approximation
theorem [32], for example, approximating

√
5 by rational numbers for k = 1 or

√
13 and

√
17 for

k = 2; to attain 1
T 3+δ as in (1.13), with δ > 0 arbitrarily small, we will need to focus on arbitrarily

high k; here Schmidt’s result is crucial.

2.5. Outline of the paper. In section 3 Bourgain’s de-randomization method will be invoked to prove
Theorem 1.1 dealing with the spatial defect variance vanishing for the flat functions. Then a sequence
of “esoteric” non-flat functions with spatial defect variance non-vanishing will be constructed in sec-
tion 4, by first constructing eigenfunctions with the analogous properties defined on the hexagonal
torus (as opposed to the standard torus). Finally, Section 5 is dedicated to giving the proofs for all the
results concerning the defect of the Arithmetic Random Waves (theorems 1.3-1.5), appealing among
the rest to Diophantine approximations.

3. SPATIAL DEFECT DISTRIBUTION: PROOF OF THEOREM 1.1

Recall that Theorem 1.1 follows at once from its more explicit variant, Theorem 2.5, whose proof
is the ultimate goal of this section.

3.1. Proof of Theorem 2.5. The following proposition is seemingly weaker, or less general, com-
pared to Theorem 2.5, as it only allows for radii s = R√

n
with R → ∞ growing slowly, instead

of a uniform statement for all s > R/
√
n as in (2.6). However, we will be able to infer the more

general result, using the elegant Integral-Geometric Sandwich in Proposition 3.2 below, inspired to
high extent by its counterpart introduced by Nazarov–Sodin [33, Lemma 1] for the sake of counting
the number of nodal components (see also [28, Lemma 3.7] and [21, Lemma 1]). It seems a priori
counter-intuitive that it is “easier” to first establish the spatial defect variance vanishing for smaller
radii than bigger ones. Our explanation of the said surprise is that the asymptotic Gaussianity w.r.t.
the spatial variable holds at the Planck scale only (or logarithmically above it [31]), rather than at all
scales above it.

Proposition 3.1 (Planck scale spatial defect distribution). Let S ′ ⊆ S be any sequence of energy
levels satisfying the assumptions of Theorem 2.5. Then for every ε > 0 there exists R0 = R0(ε) > 0
sufficiently large so that for all R > R0 there exists a number n0 = n0(R, ε) sufficiently large so that
for all n > n0, the inequality

VarT2(Yfn,R/
√
n) < ε

holds uniformly for fn ∈ Bn. Equivalently,

(3.1) lim
R→∞

lim sup
n→∞
n∈S′

sup
fn∈Bn

VarT2(Yfn,R/
√
n) = 0.

The following proposition asserts the aforementioned Integral-Geometric Sandwich; unlike the
original inequality, it contains an error term. Recall that the local (normalized) defect of a function an
eigenfunction fn as in (1.1) restricted to a radius-s ball around x ∈ T2 is given by (1.8).
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Proposition 3.2 (Integral-Geometric Sandwich). For every fn of the form (1.1), and 0 < r1 < r2, the
asymptotic estimate

(3.2) Yfn,r2(x) =
1

πr2
2

∫
Bx(r2)

Yfn,r1(y)dy +O

(
r1

r2

)
holds, with constant associated to the ‘O’-notation absolute.

Proof of Theorem 2.5 assuming propositions 3.1-3.2. Let ε > 0 be given. First, we apply Proposition
3.1 to obtain a number R0 = R0(ε) so that for all R > R0 there exists a number n0 = n0(R, ε) so that
for n > n0 with n ∈ S ′, one has

(3.3) VarT2

(
Yfn,R/

√
n

)
<
ε2

4
,

uniformly for all fn ∈ Bn. We define

(3.4) R = R(ε) := (R0 + 1)2,

and claim that with this choice of R, the conclusion of Theorem 2.5 holds, where the corresponding
n0 = n0(R0 + 1, ε), depending on ε only, is the one we received as the output from the application
above of Proposition 3.1. For this particular choice of the parameters, the inequality (3.3) reads

(3.5) VarT2

(
Yfn,(R0+1)/

√
n

)
<
ε2

4
,

valid for all n ∈ S ′, n > n0 and fn ∈ Bn. To validate our claim we are to prove that for all n > n0

with n ∈ S ′, the inequality

(3.6) VarT2 (Yfn,s) < ε

holds for all s > R√
n

.
Now, we invoke the Integral-Geometric Sandwich of Proposition 3.2, with r2 = s > R/

√
n and

(3.7) r1 =
R0 + 1√

n
<

r2

R0 + 1
,

by (3.4). Hence (3.2) reads

Yfn,s(x) = Yfn,r2(x) =
1

πs2

∫
Bx(s)

Yfn,(R0+1)/
√
n(y)dy +O

(r1

s

)

=
1

πs2

∫
Bx(s)

Yfn,(R0+1)/
√
n(y)dy +O

(
1

R0

)
,

(3.8)

thanks to (3.7). We assume that R0 is sufficiently large so that the error term on the r.h.s. of (3.8)
is O

(
1
R0

)
< ε

2
, take the absolute value of both sides of (3.8), and apply the triangle inequality to

conclude that

(3.9) |Yfn,s(x)| ≤ 1

πs2

∫
Bx(s)

∣∣Yfn,(R0+1)/
√
n(y)

∣∣ dy +
ε

2
.

We then integrate both sides of (3.9) w.r.t. x ∈ T2 to yield∫
T2

|Yfn,s(x)|dx ≤
∫
T2

∣∣Yfn,(R0+1)/
√
n(y)

∣∣ dy +
ε

2
,
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and invoke (3.5) together with Cauchy–Schwarz inequality, which gives (recalling that the spatial
expectation vanishes identically, see (1.9))

(3.10)
∫
T2

|Yfn,s(x)|dx ≤ ε

2
+
ε

2
= ε.

Finally, the inequality (3.10) certainly implies (3.6), since |Yfn,s(x)| ≤ 1 (again, upon recalling (1.9)),
which, as it was mentioned above, is sufficient to infer the statement of Theorem 2.5.

�

3.2. Integral-Geometric Sandwich: Proof of Proposition 3.2.

Proof. We start with the integral on the r.h.s. of (3.2), and use the definition (1.8) to write

(3.11)
1

πr2
2

∫
Bx(r2)

Yfn,r1(y)dy =
1

πr2
2

∫
Bx(r2)

1

πr2
1

∫
By(r1)

H(fn(z))dzdy,

and aim at reversing the order of the integrals on the r.h.s. of (3.11). We have

(3.12)
1

πr2
2

∫
Bx(r2)

Yfn,r1(y)dy =
1

πr2
2

∫
Bx(r2+r1)

H(fn(z)) · 1

πr2
1

Vol (Bz(r1) ∩Bx(r2)) dz.

Now, upon denoting

Vx,z(r2, r1) :=
1

πr2
1

· Vol (Bz(r1) ∩Bx(r2)) ,

the equality (3.12) reads

(3.13)
1

πr2
2

∫
Bx(r2)

Yfn,r1(y)dy =
1

πr2
2

∫
Bx(r2+r1)

H(fn(z)) · Vx,z(r2, r1)dz,

and we notice that

(3.14) 0 ≤ V·,z(·, r1) ≤ 1

πr2
1

Vol(Bz(r1)) = 1,

and, in addition, if z ∈ Bx(r2 − r1), then V (z) = 1. We then separate the range of integration in
(3.13) into Bx(r2 − r1) and its complement to write

1

πr2
2

∫
Bx(r2)

Yfn,r1(y)dy =
1

πr2
2

∫
Bx(r2−r1)

H(fn(z))dz +O

(
1

πr2
2

Vol(Bx(r2 + r1) \Bx(r2 − r1))

)

=
1

πr2
2

∫
Bx(r2)

H(fn(z))dz +O

(
1

πr2
2

Vol(Bx(r2 + r1) \Bx(r2 − r1))

)

= Yfn,r2(x) +O

(
1

πr2
2

Vol(Bx(r2 + r1) \Bx(r2 − r1))

)

(3.15)

thanks to (3.14), |H(·)| ≤ 1, and the definition (1.8) of Yfn,r2(x). Now the statement (3.2) of Propo-
sition 3.2 finally follows from substituting the estimate

1

πr2
2

Vol(Bx(r2 + r1) \Bx(r2 − r1)) = O

(
r2r1

r2
2

)
= O

(
r1

r2

)
into (3.15).

�
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3.3. Auxiliary results towards the proof of Proposition 3.1. We denote Berry’s random monochro-
matic isotropic waves g : R2 → R defined on a probability space (Ω,Σ,Pr), i.e. for ω ∈ Ω the cor-
responding sample function g(·) = gω(·) are distributed as a centred Gaussian random field uniquely
determined via Kolmogorov’s Theorem by its covariance function

(3.16) rg(|x− y|) := E[g(x) · g(y)] = J0(‖x− y‖),

where J0 is the Bessel J function of order 0. Proposition 3.3 immediately below asserts that locally,
the functions fn ∈ Bn, appropriately scaled, converge to g(·) around a random spatial variable on the
torus, understood as random fields. It is the heart of Bourgain’s de-randomization method, originally
in [7], and is a restatement of what turned out to be the key technical propositions in [8], in the precise
form used in that manuscript. To state this result, given a function fn ∈ Bn, we introduce the function
Fx;R(y) : [−1, 1]2 → R to be

(3.17) Fx;R(y) = fn

(
x+

R√
n
y

)
,

and think of Fx;R(·) as a random field, as x ∈ T2 varies randomly uniformly on the torus. In what
follows we will obtain a sequence of random fields gn : R2 → R, that will converge in suitable sense
to g, and we will denote their scaled version

gnω;R(·) := gnω(·R),

that will be compared to the scaled version of g

(3.18) gω;R(·) := gω(·R).

Proposition 3.3 ([8, Propositions 3.2-3.3]). Let S ′ ⊆ S be a sequence of energy levels satisfying
the assumptions of Theorem 2.5. Then there exists a sequence of Gaussian stationary random fields
{gn}n∈S′ , converging in law to g as n→∞, with the following property. For every R > 0, ε > 0 and
η > 0, there exists n0 = n0(R; η, ε) sufficiently large so that for all n ∈ S ′ with n > n0 and fn ∈ Bn,
there exists an event Ω′ = Ω′(n; fn, R; η, ε) ⊆ Ω of high probability Pr(Ω′) > 1 − ε and a measure
preserving map τ : Ω′ → T2 so that meas(τ(Ω′)) > 1− ε, and for all ω ∈ Ω′, one has

(3.19) ‖gnω;R − Fτ(ω);R‖C1([−1,1]2) < η.

Since, as mentioned above, Proposition 3.3 was proved in [8], there is no need to reprove it in
this manuscript. Once the reduction to the Gaussian random field was performed within Proposition
3.3, replacing gn(·) with Berry’s g(·) in (3.19) is completely standard. That is, it is possible to couple
gn(·) with g(·) so that ‖gnω;R − gω;R‖C1([−1,1]2) is arbitrarily small for n sufficiently large, see e.g. [33,
Lemma 4]. Together with (3.19) and the triangle inequality it yields the following corollary.

Corollary 3.4. Let S ′ ⊆ S be a sequence of energy levels satisfying the assumptions of Theorem 2.5.
Then for every R > 0, ε > 0 and η > 0, there exists n0 = n0(R; η, ε) sufficiently large so that for
all n ∈ S ′ with n > n0 and fn ∈ Bn, there exists an event Ω′ = Ω′(n; fn, R; η, ε) ⊆ Ω of high
probability Pr(Ω′) > 1− ε and a measure preserving map τ : Ω′ → T2 so that meas(τ(Ω′)) > 1− ε,
and for all ω ∈ Ω′, one has

(3.20) ‖gω;R − Fτ(ω);R‖C1([−1,1]2) < η.

Alternatively to working with g(·), one could, in principle, work directly with gn(·), by proving
an analogue of Lemma 3.5 below, applicable for gn(·) with n large, a direction we abandon. Corollary
3.4 naturally gives rise to the comparison to the defect variance of the random waves g(·). Note that,
for our purposes of comparing the defect of the toral eigenfunctions to that of the random gR, the
C1-estimate in (3.20) is too strong, and we could easily settle for an L∞-estimate. Recall that H(·) is
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the sign function (1.6), and let

(3.21) XR = Xω,R :=
1

πR2

∫
B(R)

H(g(x))dx

be the (random) defect of g(·) restricted to the ball B(R) ⊆ R2. It is obvious that the expectation
E[XR] = 0 vanishes, whereas the following easy, most likely sub-optimal, result asserts that so does
its variance, asymptotically as R→∞.

Lemma 3.5. As R→∞, the defect variance of g(·) restricted to B(R) is vanishing:

(3.22) Var(XR) = O

(
1

R1/2

)
.

Proof. It is a well-known fact (see, e.g. [24, 25]) that every bivariate centred Gaussian random vector

(X, Y ) with covariance matrix Σ =

(
1 r
r 1

)
with some |r| ≤ 1 satisfies

E [H(X) ·H(Y )] =
2

π
arcsin(r).

Hence, by setting X = g(x), Y = g(y) of covariance r = J0(‖x− y‖), it follows that

(3.23) E[H(g(x)) ·H(g(y))] =
2

π
arcsin(J0(‖x− y‖),

analogous to the identity (2.7). We now use the definition (3.21) of the defect, and invert the integra-
tion order to write

(3.24) Var(XR) =
2

π3R4

∫
B(R)×B(R)

arcsin(J0(‖x− y‖))dxdy,

with the use of (3.23). Now, for each x ∈ B(R) fixed we separate the range of integration in (3.24)
into ‖x− y‖ < 1 and ‖x− y‖ > 1 (say), so that

Var(XR) =
2

π3R4
·


∫

x,y∈B(R)
‖x−y‖<1

arcsin(J0(‖x− y‖))dxdy +

∫
x,y∈B(R)
‖x−y‖>1

arcsin(J0(‖x− y‖))dxdy


=:

2

π3R4
· (I1 + I2).

(3.25)

We bound the contribution of the former range trivially as

(3.26) |I1| =

∣∣∣∣∣∣∣∣∣
∫

x,y∈B(R)
‖x−y‖<1

arcsin(J0(‖x− y‖))dxdy

∣∣∣∣∣∣∣∣∣ = O(R2),

whereas we use the standard asymptotics [1, formula (9.2.1)] for the Bessel J0 function for ‖x−y‖ >
1:

| arcsin(J0(t))| � |J0(t)| � 1√
t
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to bound the contribution of the latter range as

I2 =

∫
x,y∈B(R)
‖x−y‖>1

arcsin(J0(‖x− y‖))dxdy �
∫

B(R)

dx

∫
y∈B(R): ‖x−y‖>1

dy

‖x− y‖1/2

≤ R2

R∫
1

tdt√
t
� R7/2.

(3.27)

The statement of Lemma 3.5 finally follows upon substituting (3.26) and (3.27) into (3.25).
�

We will require the following notion, inspired by [33, 21], that will allow us to control the defect
stability under small L∞-perturbations.

Definition 3.6 (Stable event). For R > 0, η > 0 and δ > 0 we let the “(R; η, δ)-unstable” event
Ω1(R; η, δ) ⊆ Ω be defined as

(3.28) Ω1(R; η, δ) :=

{
ω ∈ Ω :

1

πR2
·meas{x ∈ B(R) : |gω(x)| < η} > δ

}
the event that the proportion of x ∈ B(R) so that |g(x)| is small, is not negligible.

Lemma 3.7 (Stability estimate). For every δ, ε > 0, there exists an η > 0 sufficiently small, so that
for every R > 0,

Pr(Ω1(R; η, δ)) < ε.

Proof. Let AR;η ⊆ B(R) be the (random) measure

AR;η := meas{x ∈ B(R) : |g(x)| < η}
of the set g−1([−η, η]) ∩B(R) ⊆ R2. Clearly,

(3.29) AR;η =

∫
B(R)

χ[−η,η](g(x))dx,

where χ[−η,η] is the characteristic function of the interval [−η, η] ⊆ R. Since, for every x ∈ R2, g(x)
is a standard Gaussian random variable, taking the expectation of both sides of (3.29) easily yields

(3.30) E[AR;η] = O(ηR2),

with the constant involved in the ‘O’-notation absolute. Now, we have

Ω1(R; η, δ) =

{
ω ∈ Ω :

1

πR2
·AR;η > δ

}
,

and, in light of (3.30), the conclusion of Lemma 3.7 follows from Markov’s inequality.
�

After all the preparatory results of section 3.3, we are finally in a position to prove the principal
de-randomization result.

3.4. Spatial defect distribution: Proof of Proposition 3.1 via Bourgain’s de-randomization. We
start with the following elementary lemma in probability theory, which is a criterion for the variance
vanishing of bounded random variables, whose proof is thereupon conveniently omitted.

Lemma 3.8. Let {Xk}k≥1 be a sequence of random variables Xk : Ω → R on a probability space
(Ω,Σ,Pr) satisfying |X| ≤ 1 a.s. and E[Xk] = 0 for every k ≥ 1. Then we have Var(Xk) → 0 as
k →∞, if and only if for every δ > 0, the probability Pr(|Xk| > δ)→ 0 vanishes as k →∞.
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Proof of Proposition 3.1. We are going to use Lemma 3.8 as a criterion for the variance vanishing,
upon both exploiting the defect variance for Berry’s random waves (Lemma 3.5), and also when
proving the same for the toral eigenfunctions; note that the prescribed rate (3.22) is “lost” during this
process for the latter. Let ε, δ > 0 be given. First, we invoke Lemma 3.7 with δ/4 in place of δ, and
ε/2 in place of ε, to obtain a number η = η(ε/2, δ/4) sufficiently small so that for all R > 0,

(3.31) Pr(Ω1(R, η, δ/4)) < ε/2.

Next, we apply on Lemma 3.5 (along with the “only if” statement of Lemma 3.8), to obtain a
number R0 = R0(δ/2, ε/4) sufficiently large, so that for all R > R0, we have

Pr
{
|XR| >

δ

2

}
<
ε

4
.

Let Ω2 ⊆ Ω be the corresponding event, i.e.

(3.32) Ω2 = Ω2(R; δ/2) :=

{
|XR| >

δ

2

}
,

of probability

(3.33) Pr(Ω2) <
ε

4
.

Finally, we apply Corollary 3.4 to obtain a number n0 = n0(R; η, ε/4), so that for all n > n0 and
fn ∈ Bn there exists an event Ω′ = Ω′(n; fn, R; η, ε/4) of probability

(3.34) Pr(Ω′) > 1− ε/4,
and a measure preserving map τ : Ω′ → T2 so that

(3.35) ‖gω;R − Fτ(ω);R‖C1([−1,1]2) < η,

where gω;R are the (scaled) Berry’s random waves (3.18), and Fτ(ω);R is the scaled version of the given
fn ∈ Bn, defined in (3.17).

Recall that Xω;R is the defect (3.21) of Berry’s random waves restricted to B(R). In light of
(3.35), for y ∈ [−1, 1]2 we have

H(gω;R(y)) = H(Fτ(ω);R(y)),

unless |gω;R(y)| < η. Hence, by the definition (3.28) of the unstable event Ω1, it is clear (the magni-
tude of change in the sign function is at most 2, and the measure of the set of x for which |gω(x)| < η
is at most δ/4) that for all ω ∈ Ω′ \ Ω1, one has

(3.36) |Xω,R − Yfn,R/√n(τ(ω))| < 2 · δ
4

=
δ

2
.

Now, by the definition of Ω2, for every ω /∈ Ω2 one has

(3.37) |Xω;R| <
δ

2
.

Hence (3.37) together with (3.32) imply that for all ω ∈ Ω′′ := (Ω′ \ Ω1) \ Ω2, one has

|Yfn,R/√n(τ(ω))| ≤ |Xω,R|+
δ

2
< δ.

Equivalently,

(3.38) |Yfn,R/√n(x)| < δ

for all x ∈ τ(Ω′′) of measure

(3.39) meas(τ(Ω′′)) ≥ Pr(Ω′)− Pr(Ω1)− Pr(Ω2) > (1− ε

4
)− ε

2
− ε

4
= 1− ε,
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R
∫
S(R)

H(g(x)) dx (1/R2) ·
∫
S(R)

H(g(x)) dx

5 -5.10561833230128 -0.204224733292051
15 -43.5759827038652 -0.193671034239401
25 -116.854534058787 -0.186967254494059
35 -247.264843494327 -0.201848851832104

TABLE 1. Integral values. Here S(R) ⊂ R2 is the square [0, R]× [0, R].

thanks to (3.31), (3.33) and (3.34), and the measure preserving property of τ . Finally, (3.38), (3.39),
and the “if” direction of Lemma 3.8 allow us to deduce the conclusion of Proposition 3.1.

�

4. EIGENFUNCTIONS WITH NON-VANISHING DEFECT VARIANCE: PROOF OF THEOREM 1.2

4.1. Large negative defect on hexagonal lattices. We begin by constructing a completely flat Laplace
eigenfunction g on a certain hexagonal torus T , such that the total defect of g is non-vanishing. In
what follows it will be convenient to identify R2 with C.

Define L := Z[1 + i/
√

3, 2i/
√

3], and let T := C/L. Further, let L̂ ⊂ C ' R2 denote the dual
lattice to L, generated by the sixth roots of unity (or just by {1, e(1/6)}, where e(z) := e2πiz). The
Laplace eigenvalues on T are then given by 4π2|v|2 for v ∈ L̂. Let v1, . . . , v6 ∈ R2 denote the six
elements in L̂ with length one, and for x ∈ R2 define f(x) =

∑6
i=1 e(vi · x); f is then well defined

on T (as well as totally flat), and is a Laplace eigenfunction on T , with eigenvalue 4π2.
Further, let w1, w2, w3 ∈ R2 denote elements corresponding to the three third roots of unity. Us-

ing that e(t)+e(−t) = 2 cos(t), and pairing off antipodal points (i.e. vi = −vj) define the completely
flat function

(4.1) g(x) :=
3∑
i=1

cos(2πwi · x) = f(x)/2.

Further, gm(x) := g(mx) is a Laplace eigenfunction on T with eigenvalue 4π2m2 (also completely
flat if m is chosen to be a prime that is inert in Z[e2πi/3]), and the following proposition asserts that
the total defect of g does not vanish.

Proposition 4.1. We have

(4.2) c :=

∫
T

H(g(y)) dy < 0.

Further, for any x ∈ T , and s > 0

1

πs2

∫
Bx(s)

H(gm(y)) dy = c ·
√

3

2
+O(1/(ms))

A plot of H(g(x1, x2)) is shown in Figure 1. Since g is invariant under translation by L, unless
the integral over the fundamental domain of L is exactly zero, we will get growth, of orderR2 in either
the positive or the negative direction, when integrating over squares, say centred at (R/2, R/2) and
with sides length R growing. The numerics in Table 1 indicates that there is negative growth. These
numerics can be made rigorous by bounding the gradient from above: this way we can ensure that
the function does not change sign in most small disks. The following lemma, whose proof is obvious,
introduces a stability notion, related to the one in section 3.3.

Lemma 4.2. For the function g in (4.1) define

(4.3) M := max
x∈T
|∇g(x)|,
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FIGURE 1. White regions denotes g(x1, x2) > 0, and black denotes g(x1, x2) < 0.
Despite appearances, the white regions are not circles.

and let Dx(r) denote a closed disk of radius r > 0 centred at x. Then M ≤ 2π · 3, and

min
y∈Dx(r)

|g(y)| ≥ |g(x)| − r ·M.

Proof of Proposition 4.1. Recall that the lattice L is spanned by u1 = (1, 1/
√

3) and u2 = (0, 2/
√

3).
The rhombus spanned by u1, u2 is a fundamental domain of L, as well as a fundamental domain for T .
As it is more convenient to tile with rectangles rather than with rhombi we will prefer to evaluate the
signed area on a rectangular fundamental domain, and show that the defect integral over the rectangle
R, having corners at (0, 0), (1, 0), (0, 2/

√
3), (1, 2/

√
3), easily seen to be a fundamental domain of

T , is non-zero.

For some integer N > 0 we tile R by N2 rectangles (modulo R) centred at

hj,k =

(
j

N
,
k

N
· 2√

3

)
for 0 ≤ j, k < N ; each such rectangle can be covered with a disk of radius r =

√
7/12/N . If the

inequality |g(hj,k)| > 12πr > r · M , with M as in (4.3) is satisfied (using a factor of two safety
margin), the corresponding rectangle centred at hj,k is said to be “stable”, whence g(·) has constant
sign on the whole rectangle by Lemma 4.2; otherwise it is said to be “unstable”. Depending on the
sign of g(hj,k), we call the corresponding stable rectangle “positively stable” or “negatively stable”.

ForN = 80 one finds 2099 positively stable rectangles, 3299 negatively stable, and 1002 unstable
ones. As 3299 − 2099 = 1200 > 1002, we conclude that the defect (4.2) is nonzero (and in fact
negative). Both assertions of Proposition 4.1 now follow: the first assertion follows from the presented
numerical calculation, whereas the second one is an immediate consequence of the first assertion upon
tilingBx(s) with π(ms)2/(2/

√
3)+O(ms) copies of fundamental domains associated with the lattice

1
m
L (note that the boundary of Bx(s) can be covered with O(ms) tiles.) One can obtain more precise

estimates on c in (4.2), by increasingN , and thus decreasing the mesh size: for example, forN = 500,
the corresponding counts are respectively 96639, 147207, and 6154. �

4.2. Defect stability w.r.t. perturbations of g. For later use we show that a small perturbation of g
only changes the defect by a small amount. For convenience we work in the rescaled region where
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the eigenvalues are normalized to 4π2, hence we should consider the defect over balls of radius R (or
squares of sides R) with R growing. We start by showing that simultaneous vanishing of both g and
its gradient∇g is impossible.

Lemma 4.3. Let Z1 := {x ∈ T : g(x) = 0} and let Z2 := {x ∈ T : ∇g(x) = (0, 0)}. Then
Z1 ∩ Z2 = ∅.

Proof. The linear map R3 → R2, given by (a1, a2, a3) →
∑3

i=1 aiwi with wi as in (4.1), clearly has
full range, hence a one dimensional kernel, spanned by (1, 1, 1). In particular, if

∑3
i=1 aiwi = 0, then

a1 = a2 = a3 = C for some C. Therefore, ∇g(x) = 0 implies that cos(2πw1 · x) = cos(2πw2 · x) =
cos(2πw3 ·x) = C for some C. Further, g(x) = 0 implies that 0 =

∑3
i=1 cos(2πwi ·x) = 3C, and thus

C = 0 for any point where g and∇g both vanish. In particular, we find that 2πwi · x = ±π/2 + 2πki
for ki ∈ Z. On the other hand, as

∑3
i=1wi = 0, we find, on multiplying by 2/π that

0 ≡ ±1 +±1 +±1 mod 4

which is impossible since the right hand side is odd no matter what signs are chosen. �

In light of Lemma 4.3 and the compactness of T , it follows that the gradient of g is uniformly
bounded below on the zero set of g(·):

Corollary 4.4. There exist C > 0 such that |∇g(x)| ≥ C for all x ∈ Z1 = g−1(0).

It is now straightforward to prove stability of the defect of g w.r.t. perturbations. Given R ≥ 1
and a continuous function f ∈ C(R2), define

Yf,R(x) :=
1

πR2

∫
Bx(R)

H(f(y)) dy,

Lemma 4.5. Let g be the function (4.1), andR ≥ 1. Then for all ε > 0 sufficiently small, if f ∈ C(R2)
is such that |g(y)− f(y)| < ε holds for all y ∈ Bx(R), one has

Yf,R(x) = Yg,R(x) +O(ε).

Proof. It is sufficient to show that the measure of the set

{x ∈ T : |g(x)| ≤ ε}
is O(ε), for all sufficiently small ε, as we can then tile Bx(R) with � R2 copies of the fundamental
domain. Now, there exist some open neighborhood of Z1 = g−1(0), outside of which |g(x)| is
uniformly bounded away from zero (say, using compactness of the closed complement). In other
words, if |g(x)| is small then we must have d(x, Z1) small, where d(x, Z1) denotes the distance
between x and the zero set Z1. Further, all x for which d(x, Z1) is sufficently small is contained
in some small tubular neighbourhood of Z1. The lower bound on the gradient of Corollary 4.4 implies
that |g(x)| � d(x, Z1) + O(d(x, Z1)2), and hence the measure of the set of x for which |g(x)| < ε is
� ε. �

4.3. Approximating g on the standard torus T2 = R2/Z2: proof of Theorem 1.2. We next show
that a perturbed variant of the hexagonal lattice construction can be translated to the square torus. We
begin by showing that the set of Gaussian integers, scaled to have norm one, can very well approxi-
mate third roots of unity.

Proposition 4.6. The Pell equation

(4.4) b2 − 3a2 = 1

admits infinitely many solutions. Further, let

(4.5) S ′′ = {n = a2 + b2}
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be the infinite sequence of integers of the form a2 + b2 with (a, b) as in (4.4), and for n ∈ S ′′ we define
the Gaussian integers z1 = zn,1, z2 = zn,2, z3 = zn,3 as

(4.6) z1 := −a+ bi, z2 := −a− bi, z3 := 2a+ i.

Then, as n→∞ along S ′′, we have

(4.7) z1/|z1| = e2πi/3 +O
(
n−1/2

)
z2/|z2| = e−2πi/3 +O

(
n−1/2

)
, z3/|z3| = 1 +O

(
n−1/2

)
.

Proof. Since the Pell equation b2 − 3a2 = 1 has the solution a = 1, b = 2, it has infinitely many
integer solutions. Moreover, we find that |z1|2 = |z2|2 = |z3|2 = 4a2 + 1, and

(4.8)
z1

|z1|
=
−1 + i

√
3

2
+O(

1

a
),

z2

|z2|
=
−1− i

√
3

2
+O(

1

a
),

z3

|z3|
= 1 +O(

1

a
).

Thus, taking n = a2 + b2 = 4a2 + 1 we have 1/a = O(n−1/2), and the proof of Proposition 4.6 is
concluded. �

Proof of Theorem 1.2. We claim that the statement of Theorem 1.2 holds, with S ′′ prescribed by
(4.5), satisfying, in particular, the statement (4.7) of Proposition 4.6. To construct eigenfunctions
on T = R2/Z2 having large defect it is convenient to rescale T so that the eigenvalue equals 4π2, and
correspondingly the torus must be rescaled so that the fundamental domain is a square with sides n1/2

(where λ = 4π2n denotes the unscaled eigenvalue.) Given n = a2 + b2 ∈ S ′′ with b2−3a2 = 1 define
the unit vectors w̃i := zi

|zi| ∈ R2, i = 1, 2, 3, with zi as in (4.6), and the Laplace eigenfunction G, on
the re-scaled torus R2/(

√
nZ2), by

G(x) :=
3∑
i=1

cos(2πw̃i · x)

A simple calculation shows that G is a Laplace eigenfunction, with eigenvalue 4π2, and that,
with wi as in (4.1), the asymptotic approximation (4.8) reads

|wi − w̃i| = O(1/a) = O(1/n1/2).

Hence, for any x ∈ R2, we have

|g(x)−G(x)| � |x|/n1/2.

In particular, for |x| = o(n1/2), we have G(x) = g(x) + o(1), and thus, if R = o(n1/2) grows with n
we find, thanks to Lemma 4.5, that

YG,R(x) = Yg,R(x) + o(1) = C + o(1)

for C := c ·
√

3/2 < 0. In the macroscopic regime, i.e. when R is of size n1/2, we similarly find that
for |x| � εn1/2,

YG,R(x) = Yg,R(x) +O(ε) = C +O(ε).

Thus, if for n ∈ S ′′ we construct G as described above and define fn(x) := G(
√
nx), we obtain

an eigenfunction on T2, with eigenvalue 4π2n, and find that the defect integral over Bx(s) (keeping
in mind that s = R/

√
n when we undo the scaling) is bounded away from zero for |x| < ε; hence the

variance is bounded from below, and the proof is concluded.
�
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5. THE DEFECT OF ARITHMETIC RANDOM WAVES: PROOF OF THEOREMS 1.3-1.5

5.1. Preliminary lemmas. Let fn(·) be the Arithmetic Random Wave corresponding to (1.1), so that
fn(·) is a unit variance stationary Gaussian random field with covariance function (1.5). We first
establish the precise expression (2.8) for the variance of the defect Dn;s.

Lemma 5.1. We have

Var (Dn;s) =
2

π3s4

∫
B(s)×B(s)

arcsin (rn (x− y)) dxdy.

Proof. By the vanishing of the defect expectation (1.11), we have

(5.1) Var (Dn;s) = E
[
D2
n;s

]
=

1

(πs2)2E
[∫

B(s)×B(s)

H (fn (x)) ·H (fn (y)) dxdy

]
.

Changing the order of expectation and integration in (5.1) together with the identity (2.7) (following
along the same lines as the ones leading to (3.23)), gives the desired formula for the defect variance.

�

As we will see below, the defect variance Var (Dn;s) is intimately related to the (restricted)
moments of the covariance function rn(·). The following lemma gives a useful arithmetic formula for
these moments.

Lemma 5.2. Let l ≥ 1. We have
(5.2) ∫

B(s)×B(s)

rn (x− y)l dxdy =
(
πs2
)2 #Pn (l)

N l
n

+
s2

N l
n

∑
(λ1,...,λl)/∈Pn(l)

J1

(
2πs

∥∥λ1 + · · ·+ λl
∥∥)2

‖λ1 + · · ·+ λl‖2 .

Moreover, if l = 2k + 1, then by (2.3) we have #Pn(l) = 0, so that (5.2) reads (2.11).

Proof. Expanding the covariance function (1.5), and recalling the definition (2.2) of Pn (l), we obtain∫
B(s)×B(s)

rn (x− y)l dxdy =
1

N l
n

∫
B(s)×B(s)

∑
λ1,...,λl∈En

e
(〈
λ1 + · · ·+ λl, x− y

〉)
dxdy

=
(
πs2
)2 #Pn (l)

N l
n

+
1

N l
n

∑
(λ1,...,λl)/∈Pn(l)

∣∣∣∣∫
B(s)

e
(〈
λ1 + · · ·+ λl, x

〉)
dx

∣∣∣∣2 .
Formula (5.2) now follows from the identity∫

B(s)

e (〈v, x〉) dx =
sJ1 (2πs ‖v‖)

‖v‖
.

�

5.2. Upper bounds. We now turn to prove the upper bounds for Var (Dn;s). We begin with the proof
of Theorem 1.3.

Proof of Theorem 1.3. By Lemma 5.1 and the elementary bound arcsinx = x+O(x2) we have

(5.3) Var (Dn;s) =
2

π3s4

 ∫
B(s)×B(s)

rn (x− y) dxdy +O

 ∫
B(s)×B(s)

rn (x− y)2 dxdy



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By Lemma 5.2, ∫
B(s)×B(s)

rn (x− y) dxdy =
s2

Nn

∑
λ∈En

J1 (2πs ‖λ‖)2

‖λ‖2

which, using the bound,

(5.4) J1 (x)� min
{
x−1/2, x

}
(see formulas (9.1.7) and (9.2.1) in [1]) is

� s2

Nn

Nn

s ‖λ‖3 =
s4

(sn1/2)3
≤ s4n−3ε

for all s > n−1/2+ε. We find that the contribution from the first integral on the r.h.s. of (5.3) is� n−3ε.
We next evaluate the second integral on the r.h.s. of (5.3). By Lemma 5.2, we have∫

B(s)×B(s)

rn (x− y)2 dxdy =
π2s4

Nn

+
s2

N2
n

∑
λ1 6=λ2∈En

J1 (2πs ‖λ1 − λ2‖)2

‖λ1 − λ2‖2 ,(5.5)

where we used the fact that (λ1, λ2) ∈Pn (2) if and only if λ1 = −λ2, and in particular

#Pn (2) = Nn,

and the symmetry λ ∈ En ⇐⇒ −λ ∈ En. Again using the bound (5.4) we have∑
λ1 6=λ2∈En

J1 (2πs ‖λ1 − λ2‖)2

‖λ1 − λ2‖2 �
∑

λ1 6=λ2∈En

min

{
1

s · ‖λ1 − λ2‖3 , s
2

}
,

and therefore, for any 0 < η < 1/2, we have

(5.6)
∑

λ1 6=λ2∈En

J1 (2πs ‖λ1 − λ2‖)2

‖λ1 − λ2‖2 � s2
∑

λ1,λ2∈En
0<‖λ1−λ2‖<n1/2−η

1 + s−1
∑

λ1,λ2∈En
‖λ1−λ2‖≥n1/2−η

1

‖λ1 − λ2‖3 .

We estimate the sums on the r.h.s. of (5.6) separately. The second sum on the r.h.s. of (5.6) can
be bounded trivially:

(5.7) s−1
∑

λ1,λ2∈En
‖λ1−λ2‖≥n1/2−η

1

‖λ1 − λ2‖3 ≤ N2
ns
−1
(
n1/2−η)−3

,

whereas the first sum on the r.h.s. of (5.7) is the number of “close-by pairs”, bounded in [12] (see
Theorem 1.8 there and the remark following it) by

(5.8)
∑

λ1,λ2∈En
0<‖λ1−λ2‖<n1/2−η

1� N2−τη
n

for any τ < 4 and η > 0 sufficiently small.
Substituting the bounds (5.7) and (5.8) into (5.6), and then back into (5.5), we obtain the bound

(5.9)
∫

B(s)×B(s)

rn (x− y)2 dxdy � s4N−1
n +sn−3/2+3η+s4N−τηn = s4(N−1

n +n3η/(sn1/2)3+N−τηn ).

Let 0 < δ < 4ε, and write δ = τη where τ < 4 and η < ε. Then (5.9), together with (5.3), the
bound (1.4), and the previous bound on the first integral on the r.h.s. of (5.3), gives Var (Dn;s)� N−δn
uniformly for all s > n−1/2+ε, completing the proof of Theorem 1.3.
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�

We now prove Theorem 2.6 which, as argued above, immediately implies Theorem 1.4.

Proof of Theorem 2.6. Recall that the Taylor series of arcsin (t) is given by (2.9) where

(5.10) ak =
1

22k

(
2k

k

)
1

2k + 1
,

so that by Stirling’s approximation ak ∼ 1
2
√
π
k−3/2, and the convergence is uniform on [−1, 1] . In

particular for K ≥ 0, the Taylor polynomial of arcsin (t) is given by

(5.11) arcsin (t) =
K∑
k=0

akt
2k+1 +O

(
|t|2K+3

)
.

Substituting (5.11) into (2.8) yields
(5.12)

Var (Dn;s) =
2

π3s4

K∑
k=0

ak

∫
B(s)×B(s)

rn (x− y)2k+1 dxdy +O

 1

s4

∫
B(s)×B(s)

|rn (x− y)|2K+3 dxdy

 .

Let 0 ≤ k ≤ K. Recall the identity (2.11), and that n ∈ S ′′′ where the sequence S ′′′ ⊆ S satisfies
the axiom A (δ) as in Definition 2.4, so that the condition

(
λ1, . . . , λ2k+1

)
/∈ Pn (2k + 1) in (2.11)

implies that

(5.13)
∥∥λ1 + · · ·+ λ2k+1

∥∥�K n1/2−δ.

Substituting the bound (5.13) together with the bound (5.4) into (2.11), we get that

1

s4

∫
B(s)×B(s)

rn (x− y)2k+1 � 1

s3N2k+1
n

∑
(λ1,...,λ2k+1)/∈Pn(2k+1)

1

‖λ1 + · · ·+ λ2k+1‖3 �K s−3n−3/2+3δ

≤n−3(ε−δ)(5.14)

uniformly for s > n−1/2+ε. We can now use (5.14) to bound the summation in the variance formula
(5.12), which gives

(5.15) Var (Dn;s)�K n−3(ε−δ) +
1

s4

∫
B(s)×B(s)

|rn (x− y)|2K+3 dxdy.

To control the (2K + 3)’th moment of the absolute value of rn(·), we use the Cauchy–Schwarz
inequality to discard the absolute value:

(5.16)
∫

B(s)×B(s)

|rn (x− y)|2K+3 dxdy ≤ πs2

(∫
B(s)×B(s)

rn (x− y)4K+6 dxdy

)1/2

.

By Lemma 5.2, we have

1

s4

∫
B(s)×B(s)

rn (x− y)4K+6 dxdy =π2 #Pn (4K + 6)

N4K+6
n

+
1

s2N4K+6
n

∑
(λ1,...,λ4K+6)/∈Pn(4K+6)

J1

(
2πs

∥∥λ1 + · · ·+ λ4K+6
∥∥)2

‖λ1 + · · ·+ λ4K+6‖2 .(5.17)
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Since S ′′′ is correlation-tame (Definition 2.2), we have #Pn (4K + 6) �K N2K+3
n . This, together

with (5.17) and the estimate (5.4), yields
(5.18)
1

s4

∫
B(s)×B(s)

rn (x− y)4K+6 dxdy �K
1

N2K+3
n

+
1

s3N4K+6
n

∑
(λ1,...,λ4K+6)/∈Pn(4K+6)

1

‖λ1 + · · ·+ λ4K+6‖3 .

By the lower bound (5.13), we have

(5.19)
1

s3N4K+6
n

∑
(λ1,...,λ4K+6)/∈Pn(4K+6)

1

‖λ1 + · · ·+ λ4K+6‖3 �K s−3n−3/2+3δ ≤ n−3(ε−δ)

uniformly for s > n−1/2+ε. Substituting the bound (5.19) into (5.18) and bearing in mind (1.4) gives

(5.20)
1

s4

∫
B(s)×B(s)

rn (x− y)4K+6 dxdy �K
1

N2K+3
n

.

Finally, we substitute the bound (5.20) into (5.16), and then into (5.15). Using again (1.4), we
get that

Var (Dn;s)�K
1

N
K+3/2
n

.

This completes the proof of Theorem 2.6, since K can be taken arbitrarily large. �

5.3. Lower bound. In order to prove the lower bound for Var (Dn;s) stated in Theorem 1.5, we will
require a result on Diophantine approximation by multiples of square roots of prime numbers. For
t ∈ R, we denote 〈t〉 to be the distance of t to the nearest integer number, and let

(5.21) PK := {p prime : p ≡ 1 (mod 4) , p ≤ K}

denote the set of primes p ≤ K congruent to 1 modulo 4.

Lemma 5.3. Let K > 1 be an integer, and let ε > 0. For every integer q ≥ 1, we have

(5.22) max
p∈PK

〈q√p〉 �K,ε q
− 2 logK

K
−ε.

The proof of Lemma 5.3 will invoke two classical results from the theory of Diophantine ap-
proximation: Besicovitch’s theorem on the linear independence over Q of the square roots of distinct
square-free positive integers, and Schmidt’s theorem on simultaneous Diophantine approximation,
that, for the reader’s convenience, we cite next, in the form used subsequently.

Theorem 5.4 (Besicovitch [3]). Let q1, . . . , qm be distinct squarefree positive integers. The numbers√
q1, . . . ,

√
qm are linearly independent over Q.

Theorem 5.5 (Schmidt [32]). Let α1, . . . , αm be real algebraic numbers so that 1, α1, . . . , αm are
linearly independent over the rationals. Then for every ε > 0 and for every integer q ≥ 1, we have

max
1≤i≤m

〈qαi〉 � q−1/m−ε

where the implied constant depends on ε and on α1, . . . , αm.

Proof of Lemma 5.3. By Theorem 5.4, the elements of the set {1}∪
{√

p : p ∈ PK
}

are linearly inde-
pendent over the rationals. Since #Pk ∼ K

2 logK
as K →∞, the bound (5.22) follows from Theorem

5.5. �

We are finally in a position to prove Theorem 1.5.
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Proof of Theorem 1.5. Recall that substituting the Taylor series of the arcsine function (2.9) in (2.8)
gives formula (2.10):

Var (Dn;s) =
2

π3s4

∞∑
k=0

ak

∫
B(s)×B(s)

rn (x− y)2k+1 dxdy,

where ak are given by (5.10), and in particular ak > 0, a0 = 1, and ak ∼ 1
2
√
π
k−3/2. Hence, Lemma

5.2 yields

(5.23) Var (Dn;s) =
2

π3s2

∞∑
k=0

ak
N2k+1
n

∑
(λ1,...,λ2k+1)/∈Pn(2k+1)

J1

(
2πs

∥∥λ1 + · · ·+ λ2k+1
∥∥)2

‖λ1 + · · ·+ λ2k+1‖2 .

By the positivity of the coefficients ak, we may obtain a lower bound by discarding all terms in (5.23)
but one with k = 0:

(5.24) Var (Dn;s) ≥
2

π3

J1 (2πT )2

T 2
,

with T = s ·
√
n, as in Theorem 1.5.

Recall that for large z, we have [1, formula (9.2.1)]

(5.25) J1 (z) =

√
2

πz
cos

(
z − 3

4
π

)
+O

(
1

z3/2

)
,

so that

(5.26) J1 (2πT ) = π−1T−1/2 cos

((
2T − 3

4

)
π

)
+O

(
T−3/2

)
.

We write

(5.27) 2T − 1

4
= t+ ρ

where t = t (T ) ∈ Z and |ρ| ≤ 1/2, so that

(5.28)
∣∣∣∣cos

((
2T − 3

4

)
π

)∣∣∣∣ = |sin (ρπ)| � |ρ| .

The tth zero j1,t of J1 satisfies

j1,t =

(
t+

1

4

)
π +O(1/t)

(see, e.g. [1, formula (9.5.12)]), so that

(5.29) |2πT − j1,t| = π|ρ|+O(1/T ).

In particular, if 2πT is bounded away from j1,t, then (5.29) yields ρ � 1, so that (5.26) and (5.28)
give J1 (2πT )2 � T−1, which together with (5.24) yields

Var (Dn;s)� T−3.

Given δ > 0, we consider two cases, whether |ρ| ≥ T−δ/2 or |ρ| < T−δ/2, aiming at proving
(1.13) with the same δ. If |ρ| ≥ T−δ/2, then by (5.26) and (5.28) it follows that J1 (2πT )2 � T−1−δ

so that (5.24) gives

(5.30) Var (Dn;s)� T−3−δ,

stronger than (1.13) with A > 0 arbitrary. Assume otherwise that |ρ| < T−δ/2, and observe that all
odd numbers m ∈ S are expressible as

(5.31) m = a2 + (2k + 1− a)2
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for some k ≥ 0 and 1 ≤ a ≤ 2k + 1. Consider all tuples of the form

(5.32)
(
λ1, . . . , λ2k+1

)
=

 a times︷ ︸︸ ︷
λ, . . . , λ,

2k+1−a times︷ ︸︸ ︷
iλ, . . . , iλ

 .

The number of such tuples is precisely Nn, and they satisfy

(5.33)
∥∥λ1 + · · ·+ λ2k+1

∥∥ =
√
nm.

By the inequality α2 + β2 ≥ (α+β)2

2
applied to (5.31), we get that m ≥ (2k+1)2

2
≥ 2k2 so that

(5.34) k ≤
√
m/2.

By the positivity of all the terms in (5.23), we can bound Var (Dn;s) from below by restricting the
inner summation in (5.23) to tuples of the form (5.32). This together with (5.33) and (5.34) (note that
ak � m−3/4) gives the lower bound

(5.35) Var (Dn;s)�
1

T 2

∑
m∈S
m odd

1

N
√

2m
n

J1 (2πT
√
m)

2

m7/4
.

Let K > 1 be a sufficiently large parameter to be chosen later, and restrict the summation in
(5.35) to primes p ∈ PK in (5.21) (these are the primes p ≡ 1 (mod 4) which are less or equal to K).
Then

Var (Dn;s)�K
1

N
√

2K
n T 2

∑
p∈PK

J1 (2πT
√
p)2 .(5.36)

By (5.25), we have

J1 (2πT
√
p) = π−1T−1/2p−1/4 cos

((
2T
√
p− 3

4

)
π

)
+O

(
T−3/2

)
.(5.37)

We write
2T
√
p− 1

4
= l + η

where l = l (T, p) ∈ Z and |η| ≤ 1/2. Then by (5.27),∣∣∣∣cos

((
2T
√
p− 3

4

)
π

)∣∣∣∣ = |sin (ηπ)| � |η| =
∣∣∣∣2T√p− l − 1

4

∣∣∣∣ =

∣∣∣∣(t+
1

4
+ ρ

)
√
p− l − 1

4

∣∣∣∣
� |(4t+ 1)

√
p− (4l + 1)| − 4 |ρ|√p.(5.38)

By Lemma 5.3, there exists p0 ∈ PK such that

(5.39) |(4t+ 1)
√
p0 − (4l + 1)| �K,ε t

−2 logK/K−ε.

Since |ρ| < T−δ/2, by choosing K = K (δ) sufficiently large so that 2 logK/K < δ/4 (keeping in
mind that t = 2T +O(1)), we conclude upon substituting the bound (5.39) in (5.38) that∣∣∣∣cos

((
2T
√
p0 −

3

4

)
π

)∣∣∣∣�δ T
−δ/4,

which by (5.37) implies
J1 (2πT

√
p0)2 �δ T

−1−δ/2.

This, together with (5.36) gives

(5.40) Var (Dn;s)�δ
1

N
√

2K
n T 2

J1 (2πT
√
p0)2 �δ

1

N
√

2K
n T 3+δ/2

.

To summarize, the bounds (5.30) and (5.40) imply that, in either case, (1.13) holds with A =
√

2K,
which is the statement of Theorem 1.5. �
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