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Abstract
We consider the Laplacian with a delta potential (also known as a “point scat-

terer”, or “Fermi pseudopotential”) on an irrational torus, where the square of the
side ratio is diophantine. The eigenfunctions fall into two classes — “old” eigen-
functions (75%) of the Laplacian which vanish at the support of the delta potential,
and therefore are not affected, and “new” eigenfunctions (25%) which are affected,
and as a result feature a logarithmic singularity at the location of the delta potential.

Within a full density subsequence of the new eigenfunctions we determine all
semiclassical measures in the weak coupling regime and show that they are localized
along 4 wave vectors in momentum space — we therefore prove the existence of
so-called “superscars” as predicted by Bogomolny and Schmit [6].

This result contrasts the phase space equidistribution which is observed for a
full density subset of the new eigenfunctions of a point scatterer on a rational torus
[16]. Further, in the strong coupling limit we show that a weaker form of localization
holds for an essentially full density subsequence of the new eigenvalues; in particular
quantum ergodicity does not hold.

We also explain how our results can be modified for rectangles with Dirichlet
boundary conditions with a point scatterer in the interior. In this case our results
extend previous work of Keating, Marklof and Winn who proved the existence of
localized semiclassical measures under a clustering condition on the spectrum of the
Laplacian.
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1 Introduction

In the Quantum Chaos literature the Šeba billiard [19], a delta potential placed inside an
irrational rectangular billiard, has attracted considerable attention [21, 22, 23, 24, 20, 25,
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5]. Šeba introduced the model to investigate the transition between integrability and chaos
in quantum systems and numerical experiments revealed features characteristic of chaotic
systems: level repulsion and a Gaussian value distribution of the wave functions — in
agreement with Berry’s random wave conjecture [1].

The present paper deals with irrational tori having diophantine3 aspect ratio; for con-
venience the main focus is on periodic rather than Dirichlet boundary conditions, but the
methods also apply in the latter case (cf. Appendix A.)

The eigenfunctions of this system fall into two classes — old and new eigenfunctions.
The old eigenfunctions are simply eigenfunctions of the Laplacian which vanish at the
position of the scatterer x0 and therefore do not feel its presence. In the case of an irra-
tional torus they make up 75% of the spectrum. In this paper we will only be interested in
the new eigenfunctions, which do feel the effect of the scatterer and feature a logarithmic
singularity at x0. They make up the remaining 25% of the spectrum.

1.1 Statement of the main result

We prove that a full density subsequence of the new eigenfunctions of the point scat-
terer fail to equidistribute in phase space in the weak coupling limit. Specifically, these
eigenfunctions become localized (“scarred”, or even “superscarred”) in 4 wave vectors in
momentum space and we are able to classify all possible semiclassical measures which
may arise along this sequence in the weak coupling regime (i.e., fixed self-adjoint exten-
sions). Moreover, in the strong coupling regime (where the self-adjoint extension param-
eter varies with the eigenvalue) we are able to show a somewhat weaker result, namely
that a subsequence of almost full density fails to equidistribute in phase space.

To describe this more precisely, we first introduce semiclassical measures arising from
eigenfunctions.

Definition 1.1. Let λ be a new eigenvalue of the scatterer and denote by gλ the corre-
sponding L2-normalised eigenfunction. Let a ∈ C∞(S∗T2) be a classical observable and
let Op(a) be a zeroth order pseudo-differential operator4 associated with a. We define the
distribution dµλ by the identity

〈Op(a)gλ, gλ〉 =

∫
S∗T2

a dµλ. (1.1)

By the semiclassical measures for a certain sequence {λn} we mean the limit points of
{dµλn} in the weak-* topology.

By a subsequence of full density we mean the following.
3An irrational γ is diophantine if there exist constants C > 0, k ≥ 2 such that |γ − p/q| > Cq−k for

any rational p/q.
4We will give a precise definition of our choice of quantization in section 2.2
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Definition 1.2. Let S ⊂ R be a countably infinite sequence of increasing numbers which
accumulate at infinity. We say that S ′ ⊂ S is a subsequence of full density if

lim
X→∞

#{x ∈ S ′ | x ≤ X}
#{x ∈ S | x ≤ X}

= 1. (1.2)

The following definitions will be used throughout the paper.

Definition 1.3. For a > 0 a fixed real number, define a lattice

L0 := Z(a, 0)⊕ Z(0, 1/a) ⊂ R2,

let L denote the dual lattice of L0, and let N denote the set of distinct Laplacian eigen-
values (i.e., squares of norms of the lattice vectors in L.) Further, given m ∈ N , denote
by λm < m the new eigenvalue of the scatterer associated with m.

We remark that {λm : m ∈ N} is the full set of new eigenvalues; this is due to a
certain interlacing property, see Section 2.1 for more details. With notations as above, the
main result of this paper is the following result, valid for the weak coupling limit.

Theorem 1.4. Assume that a4 /∈ Q is diophantine, and consider the point scatterer per-
turbation of the Laplacian on the flat torus T2 = R2/2πL0. There exists a subsequence
N ′ ⊂ N of full density such that the set of semiclassical measures of the sequence dµλm ,
m ∈ N ′, is given by the following subset of the set of probability measures on the unit
cotangent bundle S∗T2:

Q =

{
dx

vol(T2)
× 1

4
(δθ + δ−θ + δπ−θ + δπ+θ)(φ)

dφ

2π

∣∣∣ θ ∈ [0, π/2]

}
. (1.3)

Remark 1. As already mentioned, the result can be extended to irrational (diophantine)
rectangles with Dirichlet boundary conditions and a delta potential in the interior — the
original setting of Šeba’s paper. In the appendix to this paper we illustrate how our proof
can be modified. For a generic position of the scatterer we prove scarring for a proportion
1 − ε of all eigenfunctions, for any ε > 0. In the non-generic case of positions with
rational coordinates, a positive proportion of the eigenfunctions do not feel the effect of
the scatterer, hence are old Laplacian eigenfunctions. However, our theorem still applies
to the new eigenfunctions associated with the remaining part of the spectrum.

In the strong coupling limit, which is studied in the physics literature, and in which
features such as level repulsion between the new eigenvalues are observed, we are able to
prove the following somewhat weaker result (see Section 4 for its proof.)

Theorem 1.5. Given δ > 0 there exists a subsequence of the new spectrum, of density
at least 1 − δ, on which the momentum representation of the new eigenfunctions carries
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positive mass on a finite number of points5. For δ fixed, the mass is uniformly bounded
from below, and the number of points is uniformly bounded from above.

These results may also be easily modified for rectangular domains with Dirichlet or
Neumann boundary conditions (cf. Remark 3 in the appendix.)

1.2 Discussion

The scarring phenomenon described above contrasts the equidistribution of a full density
subset of new eigenfunctions for a point scatterer on a square torus, both in the weak
as well as strong coupling limits (cf. [16]; also note that “superscars” can occur along
zero density subsequences in this model [15].) Interestingly, a key feature for obtaining
equidistribution for the square torus is that the unperturbed spectrum has unbounded mul-
tiplicities (along a generic sequence), whereas in the diophantine aspect ratio case, where
the unperturbed spectrum has bounded multiplicities, most eigenfunctions scar strongly.

Moreover, the type of scarring proven here seems quite different from the sequence
of scars established by Hassell [11] for the stadium billiard (his construction is based on
quasimodes corresponding to a certain sparse sequence of “bouncing ball modes”), or
the construction of scars for cat maps with small quantum periods by de Bièvre, Faure
and Nonnenmacher [4] (they construct sparse sequences at most half of whose mass is
scarred, and a crucial feature in the construction is having essentially maximal spectral
multiplicities; note that Bourgain has shown [7] that scarring does not occur for cat maps
if multiplicities are just slightly smaller than maximal.) We also mention Kelmer’s con-
struction [13] of scars for certain higher dimensional analogues of cat maps; here the
existence of invariant rational isotropic subspaces plays a key role.

In the original setting of the Šeba billiard, i.e., for irrational rectangles with Dirich-
let boundary conditions and a delta potential in the interior (and in the weak coupling
limit), Keating, Marklof and Winn showed [12] that eigenfunctions can scar in momen-
tum space, provided that the unperturbed eigenfunctions are bounded from below at the
location of the scatterer, together with a certain clustering assumption on the spectrum
of the Laplacian. (The clustering assumption is implied by the Berry-Tabor conjecture,
which suggests that the eigenvalues of a generic integrable system behave like points
from a Poisson process.) Our proof can easily be modified for this setting.

Our results also show that contrary to the title of Šeba’s original paper [19] there is no
“wave chaos” with respect to the wave functions of diophantine rectangular quantum bil-
liards (even though chaotic effects, such as level repulsion, appear in the strong coupling
regime [5]) — quantum ergodicity fails, both in the weak and strong coupling regimes.
Moreover, in the specific setting of Šeba’s original paper (weak coupling and Dirichlet

5We allow these points to depend on the eigenvalue.
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boundary conditions), we show that for any ε > 0 a proportion 1− ε of the eigenfunctions
are scarred in momentum space and we determine all possible scarred measures explicitly.

Acknowledgements
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helpful discussions about this work. We would also like to thank the anonymous referee
for his careful reading of the paper and many suggestions which led to the improvement
of this paper.

2 Background

This section has the purpose of providing the reader with a brief summary of various
results which will be used in the paper.

2.1 The spectrum of a point scatterer on an irrational torus

In order to realize the formal operator

−∆ + αδx0 , (α, x0) ∈ R× T2

we use self-adjoint extension theory. We simply state the most important facts in this
section to make the paper as self-contained as possible. For a more detailed discussion of
the theory we refer the reader to the introduction and appendix of the paper [17].

Recall that T2 = R2/2πL0. We restrict the positive Laplacian −∆ to the domain

D0 = C∞c (T2 \ {x0})

of functions which vanish near the position of the scatterer:

H0 = −∆|D0

The operator H0 is symmetric, but it fails to be essentially self-adjoint, in fact H0 has
deficiency indices (1, 1). Therefore there exists a one-parameter family of self-adjoint
extensions Hϕ, ϕ ∈ (−π, π], which are restrictions of the adjoint H∗0 of the restricted op-
erator to the domain of functions f ∈ Dom(H∗0 ) which satisfy the logarithmic boundary
condition

f(x) = C(cos(ϕ/2)
log |x− x0|

2π
+ sin(ϕ/2)) + o(1)

as x → x0 for some constant C ∈ C. The case ϕ = π corresponds to α = 0, i. e.
we simply obtain the unrestricted Laplacian in this case. In this paper we will study the
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operators Hϕ, ϕ ∈ (−π, π). In the physics literature [21] the operator Hϕ for fixed ϕ is
known as the “weak coupling” quantization of the scatterer.

Let us now focus on the special case of an irrational torus T2. This means we take a
lattice L0 such that a4 /∈ Q. The spectrum of the operator Hϕ consists of two parts:

(A) Eigenfunctions which vanish at x0 and therefore do not “feel” the scatterer. These
are simply eigenfunctions of the Laplacian, and occur with multiplicitym−1 where
m is the multiplicity of the corresponding eigenspace of the Laplacian. The multi-
plicity of the positive old eigenvalues is 3, unless the corresponding lattice vector
lies on one of the axes, in which case it is 1.

(B) Eigenfunctions which feature a logarithmic singularity at x0. These “feel” the ef-
fect of the scatterer, and turn out to be given by the Green’s functions Gλ =

(∆ + λ)−1δx0 . The new eigenvalues λ occur with multiplicity 1 and interlace with
the “old” Laplace eigenvalues (counted without multiplicity.)

We will be interested in the eigenfunctions of type (B), and in particular we will study
how these eigenfunctions are distributed in phase space as the eigenvalue tends to infinity.
Recall thatN denotes the set of distinct eigenvalues of the Laplacian on T2 (these are just
norms squared of the lattice vectors in L). For given n ∈ N denote its multiplicity by
r(n).

The eigenvalues of type (B) are solutions to the equation∑
n∈N

r(n)

(
1

n− λ
− n

n2 + 1

)
= tan(ϕ/2)

∑
n∈N

r(n)

n2 + 1
(2.1)

and they interlace with the distinct Laplacian eigenvalues

N = {0 = n0 < n1 < n2 < · · · }

as follows
λn0 < 0 = n0 < λn1 < n1 < λn2 < n2 < · · · (2.2)

where the new eigenvalue associated with n ∈ N is denoted by λn.

2.2 Quantization of phase space observables

Recall that T2 = R2/2πL0 where L0 = Z(a, 0) ⊕ Z(0, 1/a), a > 0, and L denotes its
dual lattice. Consider a classical symbol a ∈ C∞(S∗T2), where S∗T2 ' T2× S1 denotes
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the unit cotangent bundle of T2. We may expand a in the Fourier series

a(x, φ) =
∑

ζ∈L,k∈Z

â(ζ, k)ei〈ζ,x〉+ikφ. (2.3)

We choose the following quantization of the symbol a. Let f ∈ L2(T2) with Fourier
expansion

f(x) =
∑
ξ∈L

f̂(ξ)ei〈ξ,x〉. (2.4)

On the Fourier side the action of the 0-th order pseudodifferential operator Op(a) is de-
fined by (we have chosen a “right” quantization, which means we first apply momentum
then position operators (cf. section 2.1, in [16]))

̂(Op(a)f)(ξ) =
∑

ζ 6=ξ∈L,k∈Z

â(ζ, k)

(
ξ̃ − ζ̃
|ξ − ζ|

)k

f̂(ξ − ζ) +
∑
k∈Z

â(ξ, k)f̂(0), (2.5)

where for a given ξ = (ξ1, ξ2) ∈ L we define ξ̃ := ξ1 + iξ2.
In terms of the Fourier coefficients the matrix elements of Op(a) can be written as

〈Op(a)f, f〉 =
∑
ξ∈L

̂(Op(a)f)(ξ)f̂(ξ). (2.6)

With eζ,k(x, φ) := ei〈ζ,x〉+ikφ, we then have

〈Op(eζ,k)f, f〉 =
∑

ξ∈L\{ζ}

(
ξ̃ − ζ̃
|ξ − ζ|

)k

f̂(ξ)f̂(ξ − ζ) + f̂(ζ)f̂(0). (2.7)

2.2.1 Mixed modes

If ζ 6= 0 we have the bound

| 〈Op(eζ,k)f, f〉 | ≤
∑
ξ∈L

|f̂(ξ)||f̂(ξ − ζ)|. (2.8)

In the case f = gλ = Gλ/‖Gλ‖2 we have the L2-expansion

Gλ(x, x0) = − 1

4π2

∑
ξ∈L

c(ξ)ei〈x−x0,ξ〉

where c(ξ) = 1
|ξ|2−λ . We obtain

| 〈Op(eζ,k)gλ, gλ〉 | ≤
∑

ξ∈L |c(ξ)||c(ξ − ζ)|∑
ξ∈L |c(ξ)|2

. (2.9)

In [17] it was proved that one can construct a full density subsequenceN ′ ⊂ N such that
for any nonzero lattice vector ζ ∈ L the matrix elements of Op(eζ,k) vanish as n → ∞
along N ′. The following result was obtained.
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Theorem 2.1. (Rudnick-U., 2012) Let L be a unimodular lattice as above. There exists
a subsequence N ′ ⊂ N of full density such that for any ζ ∈ L, ζ 6= 0, k ∈ Z

lim
n→∞
n∈N ′
〈Op(eζ,k)gλn , gλn〉 = 0. (2.10)

Remark 2. Although the paper [17] is solely concerned with the weak coupling regime,
i.e. fixed self-adjoint extensions, the theorem holds generally for Green’s functions Gλn

and any sequence of real numbers {λn} which interlaces with the Laplacian eigenvalues
on T2. A detailed explanation is given in [16], p. 7, Remark 3.

2.2.2 Pure momentum modes

Let us consider the case ζ = 0. We rewrite the matrix elements as

〈Op(e0,k)gλ, gλ〉 =

∑
ξ∈L\{0}(ξ̃/|ξ|)k|c(ξ)|2 + |c(0)|2∑

ξ∈L |c(ξ)|2

=

∑
n∈N

wk(n)
(n−λ)2∑

n∈N
r(n)

(n−λ)2

(2.11)

where for 0 6= n ∈ N we define the exponential sum

wk(n) :=
∑
|ξ|2=n
ξ∈L\{0}

(
ξ̃

|ξ|

)k

, (2.12)

and for notational convenience we set wk(0) := 1.

2.3 Pair correlations for values of quadratic forms

In this section we will briefly review a result of Eskin, Margulis and Mozes [9] on the pair
correlations of the values of the quadratic form Q(k, l) = a−2k2 + a2l2, k, l ∈ Z, where
γ = a4 is diophantine. We have the following theorem (cf. Thm. 1.7 in [9]), which we
only state in the special case relevant to the present paper. Note that area(T2)/4π = π.

Theorem 2.2. (Eskin-Margulis-Mozes, 2005) Let γ = a4 be diophantine and 0 /∈ (b, c).
Denote the Laplacian eigenvalues on T2 = R2/2πL0 by {λj(T2)}. Then

lim
X→∞

#{λj(T2), λk(T2) ≤ X | λj(T2)− λk(T2) ∈ (b, c)}
X

= π2(c− b). (2.13)

The theorem above proves the Berry-Tabor conjecture [2] for the pair correlations of
the Laplacian eigenvalues on the torus T2, where γ = a4 is diophantine. Recall that the
Laplacian eigenvalues are given by the squared norms (k2 + a4l2)/a2 and the ordered set
of such distinct squared norms is denoted by N .
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As in the irrational case the multiplicities of the Laplacian eigenvalues on the torus are
generically 4, we have for the pair correlation of the distinct Laplacian eigenvalues, i.e.
the set of norms N ,

lim
X→∞

{m,n ∈ N | m,n ≤ X, m− n ∈ (b, c)}
X

=
π2

16
(c− b). (2.14)

Letting
N (X) := {n ∈ N | n ≤ X}

denote the intersection of N and the interval [0, X], we have the counting asymptotic
(“Weyl’s law”)

|N (X)| ∼ π

4
X (2.15)

as X →∞. Consequently, we obtain

lim
X→∞

1

|N (X)|
#{m,n ∈ N (X) | m− n ∈ (b, c)} =

π

4
(c− b).

We note that the mean spacing is 4/π (cf. eq. (2.15)).

3 The weak coupling limit — proof of Theorem 1.4

We begin by proving the following proposition.

Proposition 3.1. Let L be a diophantine rectangular unimodular lattice as above6. There
exists a subsequence N ′ ⊂ N of full density such that for m ∈ N ′ and any integer k,

〈Op(e0,k)gλm , gλm〉 =
wk(m)

r(m)
+ o(1) (3.1)

as m→∞ along N ′.

Before giving the proof of Proposition 3.1 we recall the following bound from [18];
it shows that, in the weak coupling regime, the new eigenvalues of the scatterer and the
eigenvalues of the Laplacian generically “clump” together.

Theorem 3.2. Let L be an irrational lattice as above. Given any increasing function
f such that f(m) → ∞ as m → ∞ along N there exists a density one subsequence
N ′′ ⊂ N such that for all m ∈ N ′′,

0 < m− λm �
f(m)

logm
(3.2)

The following key Lemma will allow us to “circumvent” the lack of uniformity in the
size of the interval (b, c) in Theorem 2.2.

6In particular, a4 6∈ Q is diophantine; cf. Definition 1.3.
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Lemma 3.3. For A ≥ 3 we have ∑
m,n∈N (x)
|m−n|>A

1

|m− n|2
� x

A

Proof. Given an integer k ≥ 0, define

M(k) := |{n ∈ N : n ∈ [k, k + 1]}|

We begin by deducing an L2 bound on M(k) using Theorem 2.2:∑
k≤T

M(k)2 =
∑
k≤T

|{m,n ∈ N : m,n ∈ [k, k + 1]}|

≤ |{m,n ∈ N : m,n ≤ T + 1,m− n ∈ [−1, 1]}|

which, by Theorem 2.2, is

� 2(T + 1) + (T + 1)� T

(note that we include pairsm,n ≤ T+1 for whichm = n; this gives rise to the additional
T + 1 term.)

Using Cauchy-Schwarz, we now find that for l� T , we have

∑
k≤T

M(k)M(k + l) ≤

(∑
k≤T

M(k)2

)1/2

·

( ∑
k≤T+l

M(k)2

)1/2

� T 1/2 · T 1/2 = T (3.3)

We may now conclude the proof:∑
m,n∈N (x)
|m−n|>A

1

|m− n|2
�

x∑
k=A

|{m,n ∈ N (x) : m < n, n−m ∈ [k, k + 1]}
k2

≤
x∑

k=A

1

k2

∑
l≤x

M(l) · (M(l + k) +M(l + k + 1))

which, by using (3.3), is

�
x∑

k=A

x

k2
� x

A

We can now prove the following key estimate.

Proposition 3.4. There exists a subsequenceN1 ⊂ N of full density such that form ∈ N1∑
n∈N , n 6=m

1

(n−m)2
= O((logm)2−ε). (3.4)
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Proof. Let G(m) = (logm)−1+ε for a small fixed ε ∈ (0, 1), and denote by m−, m+ the
nearest neighbours to the left and right of m ∈ N . We claim that the subsequence

N0 = {m ∈ N | |m−m−|, |m−m+| ≥ G(m)}

is of full density in N . Let us assume for a contradiction that the sequence

N ′0 = {m ∈ N | |m−m−| or |m−m+| < G(m)}

is of non-zero density, i.e., that for some η > 0,

|N ′0(x)| ≥ η|N (x)| (3.5)

holds for a sequence of values of x tending to infinity. Recall thatN(x) ∼ π
4
x, as x→∞,

since area(T2) = 4π2 and the multiplicity is generically 4. Using Theorem 2.2, we thus
find that as x→∞,

1

|N (x)|
#{m ∈ N ′0 | m ≤ x}

≤ 1

|N (x)|
#{m,n ∈ N | |m− n| < G(m), m 6= n, m, n ≤ x}

≤ 1

|N (x)|
#{m,n ∈ N | |m− n| ≤ η

π
, m 6= n, x1/4 ≤ m,n ≤ x}

+O(x−1/2)

→ η

2

(3.6)

which leads to a contradiction to eq. (3.5).
Next we estimate the sum on the LHS of (3.4). We first note that for m ∈ N (x) and x

large we have∑
n∈N ,n6=m

1

(m− n)2
=

∑
n∈N (2x),n 6=m

1

(m− n)2
+

∑
n∈N ,n>2x,n6=m

1

(m− n)2

=
∑

n∈N (2x),n 6=m

1

(m− n)2
+O

(
1

x

) (3.7)

where we used in the last line that m ≤ x and n > 2x, hence n−m > n/2 and the bound
on the second sum follows from Weyl’s law (see (2.15)) and partial summation.

Next we show that there exists a density one subsequence N1 ⊂ N0 such that for all
m ∈ N1(x), ∑

n∈N (2x),n 6=m

1

(m− n)2
� (logm)2−ε.
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We have∑
m∈N0(x)

∑
n∈N (2x)

1

(m− n)2
≤

∑
m∈N (x)

∑
n∈N (2x)
|n−m|≥G(m)

1

(m− n)2

=
∑

m∈N (x)

∑
n∈N (2x)

|n−m|∈[G(m),1]

1

(m− n)2
+

∑
m∈N (x)

∑
n∈N (2x)
|n−m|>1

1

(m− n)2
(3.8)

We estimate the second sum by∑
m∈N (x)

∑
n∈N (2x)
|n−m|>1

1

(m− n)2

≤
∑
k≤2x

1

k2
#{m ∈ N (x), n ∈ N (2x) | |m− n| ∈ [k, k + 1)}

=:
∑
k≤2x

c(k)

k2
� log x

(3.9)

where the logarithmic bound follows from∑
k≤2x

c(k) ≤ |{m,n ∈ N (2x) : |m− n| ≤ 2x+ 2}| ≤ |N (2x)|2 � x2

together with summation by parts.
For the first sum we have, by Theorem 2.2,∑

m∈N (x)

∑
n∈N (2x)

|n−m|∈[G(m),1]

1

(m− n)2

� 1

G(x)2
#{m ∈ N (x), n ∈ N (2x) | |m− n| ∈ (0, 1]}

� x

G(x)2
� x(log x)2−2ε.

(3.10)

Now, let

F (m) =
∑

n∈N (2x)
|n−m|≥G(m)

1

(m− n)2
.

From the estimates above we have, for fixed δ ∈ (0, 1),∑
m∈N0(x),m≥xδ

F (m)� x(log x)2−2ε (3.11)

Letting T (m) = (logm)2−ε and using Chebyshev’s inequality we find that

#{m ∈ N0(x) | F (m) ≥ T (m),m ≥ xδ}
� T (x)−1

∑
m∈N0(x),m≥xδ

F (m)� x(log x)2−2ε/T (x) = x/(log x)ε (3.12)
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where we have used that T (m) � T (x) for m ∈ [xδ, x]. It follows that F (m) < T (m) is
a density one condition inside N0(x) thereby concluding the proof.

3.1 Proof of Proposition 3.1

Proof. Fix some integer k 6= 0. In order to construct the full density subsequence we
will use the result about “clumping” of the spectrum as stated in Theorem 3.2. In what
follows assume that f is as in Theorem 3.2. By Theorem 3.2, we have for m ∈ N ′′ that
|m− λm|2 = O(f(m)2/ log2m), and hence

〈Op(e0,k)gλ, gλ〉 =
wk(m) +O((logm)−2f(m)2)

∑
n 6=m
n∈N

wk(n)(n− λm)−2

r(m) +O((logm)−2f(m)2)
∑

n 6=m
n∈N

r(n)(n− λm)−2
(3.13)

Let N ′ = N1 ∩ N ′′, with N1 as in Proposition 3.4. For m ∈ N ′, by the proof of Propo-
sition 3.4 (in particular note that |m−m−|, |m−m+| ≥ G(m) = (logm)−1+ε holds for
m ∈ N1 ⊂ N0), if we take f(m) = log logm, then

∑
n6=m
n∈N

|wk(n)|
(n− λm)2

�
∑

n6=m, n∈N
|n−m|≥G(m)

1

(n−m)2
= O((logm)2−ε) (3.14)

and it follows that

〈Op(e0,k)gλ, gλ〉 =
wk(m) +O((logm)−ε) · f(m)2

r(m) +O((logm)−ε) · f(m)2
=
wk(m) + o(1)

r(m) + o(1)

=
wk(m)

r(m)
+ o(1)

as m→∞ (note that |wk(m)| ≤ r(m) ≤ 4.) So the identity (3.1) follows.

Proposition 3.1 easily gives a classification of the quantum limits which may arise
within the sequence N ′. We are interested in the sequence dµλm , m ∈ Ñ , where Ñ
denotes the intersection of the subsequences in Theorems 2.1 and 3.2, so Ñ is of full
density. We would like to determine the quantum limits of this sequence, i.e. the limit
points in the weak-* topology.

From Theorem 2.1 we know that along Ñ the limit measures must be flat, or equidis-
tributed, in position. Moreover, from Proposition 3.1 we also know that the matrix ele-
ments of pure momentum observables for the eigenfunction gλm , m ∈ Ñ , tend to stay
away from zero, because for an irrational lattice L the multiplicity r(n) is bounded. The
intuition is that the sequence dµλm , m ∈ Ñ , becomes localized in momentum in the
semiclassical limit. Theorem 1.4 determines the set of such localized quantum limits.
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3.2 Proof of Theorem 1.4

Consider the classical observable

a =
∑

ζ∈L,k∈Z

â(ζ, k)eζ,k.

Let m ∈ Ñ . By a standard diagonalization argument (see section 4 in [16]) it suffices to
prove the result for the trigonometric polynomials

PJ =
∑

ζ∈L,k∈Z
|ζ|,|k|≤J

â(ζ, k)eζ,k.

It follows from (3.1) and Theorem 2.1 that

〈Op(PJ)gλm , gλm〉 =
1

r(m)

∑
2|k

â(0, k)wk(m) + o(1) (3.15)

as m→∞. For given m ∈ N let θm ∈ [0, π/2] be the phase angle of the lattice point on
the upper right arc of the circle |ξ|2 = m, i.e. ξ̂ = m1/2eiθm for some ξ ∈ L. Since L is
irrational we have

wk(m)

r(m)
=


cos(kθm), 2|k,

0, otherwise.

We have the following Lemma.

Lemma 3.5. The sequence of angles {θm}m∈Ñ is dense in [0, π/2].

Proof. Let I ⊂ [0, π/2] be a nonempty open interval. As

|{m ∈ N (x) | θm ∈ I}| = |{ξ ∈ L : |ξ|2 ≤ x, ξ1, ξ2 ≥ 0, and arctan(ξ2/ξ1) ∈ I}|,

and the latter can be interpreted as the number of Z2-lattice points inside the intersection
of an ellipse with a circular sector, dilated by

√
x, we find that |{m ∈ N (x) | θm ∈ I}| ∼

cI · x as x → ∞, for some cI > 0. Since the interval I can be freely chosen, the result
follows.

The set of limit points of the sequence (〈Op(PJ)gλm , gλm〉)m∈Ñ is thus given by∑
2|k

cos(kθ)â(0, k)
∣∣∣θ ∈ [0, π/2]

 .

Now, since for k even,

cos(kθ) =
1

4
(eikθ + e−ikθ + eik(π+θ) + eik(π−θ)),
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we find that all such limit set elements can be rewritten as∑
2|k

cos(kθ)â(0, k) =

∫
S∗T2

a(x, φ)
∑
2|k

cos(kθ)e−ikφ dx dφ

vol(S∗T2)

=

∫
S∗T2

a(x, φ)
dx

vol(T2)
× 1

4
(δθ + δ−θ + δπ+θ + δπ−θ)(φ)

dφ

2π
, (3.16)

and the proof is concluded.

4 The strong coupling limit

Let λm be any interlacing sequence. Then there exists a positive density subsequence
N ′ ⊂ N such that {Gλm}m∈N ′ does not equidistribute.

As before, for notational convenience we defineN (T ) := {n ∈ N : n ≤ T}. Further,
let n1, . . . , nk, . . . be ordered representatives of the elements in the set N (i.e., so that
n1 < n2 < . . .), and let si := ni+1 − ni denote the consecutive spacings.

Lemma 4.1. The number of i ≤ T such that si > G > 0 is ≤ T/G · (4/π + o(1)).

Proof. Recalling that N (T ) ∼ T · π/4, we find that
∑

i≤T si = (1 + o(1)) · 4T/π. Since
si ≥ 0 for all i, the statement is an immediate consequence of Chebychev’s inequality.

Lemma 4.2. Given D > 0, E ≥ 1,

|{n ∈ N (T ) : |N (T ) ∩ [n−D,n+D]| > E + 1}| � DT

E
.

Proof. By Theorem 2.2 (see (2.14)),∑
n∈N (T )

(|N (T ) ∩ [n−D,n+D]| − 1)

= |{n,m ∈ N (T ) : m 6= n, |m− n| ≤ D}| ∼ π2/16 · 2D · T (4.1)

and hence, by Chebychev,

|{n ∈ N (T ) : |N (T ) ∩ [n−D,n+D]| > E + 1}| � DT

E

We can now finish the proof. Define N ′ as follows: for G large take n ∈ N such that
the gap to the nearest left neighbour is at mostG; by Lemma 4.1 this sequence has density
at least 1− 2/G.
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By Chebychev’s inequality and Lemma 3.3 (note that the Lemma is valid also in the
stroung coupling limit) we may chose F sufficiently large so that

|{m ∈ N (T ) :
∑

n∈N (T ):|m−n|>3

1

|m− n|2
> F}| ≤ T/G;

remove all such m and we are left with a sequence of density at least 1− 3/G.
Next take D = 3 in Lemma 4.2, and choose E sufficiently large so that

|{n ∈ N (T ) : |N (T ) ∩ [n−D,n+D]| > E + 1}| ≤ T/G;

removing also these elements we are left with a set of density at least 1− 4/G.
Now, for m ∈ N ′ we have the following:

1. |λm −m| ≤ G,

2. |{n ∈ N : 0 < |m− n| ≤ 3}| ≤ E

3.
∑

n∈N :|m−n|>3
1

(m−n)2
≤ F

Thus, if we consider pure momentum observables, and given n ∈ N we let µn denote
the measure on the unit circle consisting of four delta measures (corresponding to lattice
points lying on a circle of radius

√
n), we find that the measure — not necessarily a

probability measure since we have not yet normalized — associated with Gλm is given by∑
n∈N

µn
(n− λm)2

=
µm

(m− λm)2
+

∑
n∈N :0<|n−m|≤3

µn
(n− λm)2

+
∑

n∈N :|n−m|>3

µn
(n− λm)2

where the first term is� 1/G2, the second sum has at most E terms, and the last sum is
� F . In particular, for G fixed the mass contribution from the first two terms

µm
(m− λm)2

+
∑

n∈N :0<|n−m|≤3

µn
(n− λm)2

is uniformly bounded from below, and the number of terms in the sum is uniformly
bounded from above. Hence the finite sum∑

n∈N :|n−m|≤3

µn
(n− λm)2

carries mass uniformly bounded from below; after normalizing so that we obtain a proba-
bility measure, we find that the normalized measure will have a positive proportion of its
mass on a finite number of points.
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A Dirichlet boundary conditions

In Šeba’s original paper [19] the author considers an irrational rectangle D with a delta
potential placed in the interior of D and Dirichlet boundary conditions. The setting of
the torus has the advantage that calculations are much simplified because of translation
invariance, i. e. the position of the potential is not important. The subject of this appendix
is to illustrate how our proof can easily be modified for this setting. A modification would
work in the analogous and correspond to a different character in the Fourier representation
of the eigenfunctions.

A.1 The spectrum and eigenfunctions

LetD = [0, 2πa]×[0, 2π/a], a4 /∈ Q diophantine. Let z ∈ intD. We study the self-adjoint
extensions of the restricted Dirichlet Laplacian−∆|D0 , where D0 = {f ∈ C∞c (D \{z}) |
f |∂D = 0}. This operator has deficiency indices (1, 1) and we denote the one parameter
family of self-adjoint extensions by {−∆D

ϕ }ϕ∈(−π,π].
The eigenfunctions of −∆D

ϕ are given by the Green’s functions

GD
λ (x) =

∑
ξ∈L

ξ1,ξ2>0

ψξ(x)ψξ(z)

|ξ|2 − λ
, ψξ(x) =

1

π2
sin(ξ1x1) sin(ξ2x2)

where L = Z(1/a, 0)⊕ Z(0, a). The eigenvalues are solutions of the equation

∑
ξ∈L

ξ1,ξ2>0

|ψξ(z)|2
{

1

|ξ|2 − λ
− 1

|ξ|2 + 1

}
= CL tan

(ϕ
2

)
(A.1)

where CL =
∑

ξ∈L
1

|ξ|4+1
.

A.2 Modification of the proof of Theorem 1.4

We can rewrite the function GD
λ as

∑
ξ∈L

χ(ξ)ψξ(z)ei〈x,ξ〉

|ξ|2 − λ
, where χ(ξ) = sgn(ξ1) sgn(ξ2) (A.2)

and

sgn(x) =


1, if x > 0

0, if x = 0

−1, if x < 0.
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Proof. To see this, first of all define, given ξ = (ξ1, ξ2), ξ1, ξ2 > 0, define ξ̄ = (ξ1,−ξ2).
We may expand the Laplacian eigenfunctions into complex exponentials

ψξ(x) =
1

π2
sin(ξ1x1) sin(ξ2x2)

=− 1

4π2
(eiξ1x1 − e−iξ1x1)(eiξ2x2 − e−iξ2x2)

=− 1

4π2

∑
η=ξ,−ξ,ξ̄,−ξ̄

χ(η)ei〈η,x〉.

(A.3)

Hence, we obtain (noting ψξ = 0 if ξ1ξ2 = 0)

GD
λ (x) =

∑
ξ∈L

ξ1,ξ2>0

ψξ(x)ψξ(z)

|ξ|2 − λ

=− 1

4π2

∑
ξ∈L

χ(ξ)ψξ(z)ei〈ξ,x〉

|ξ|2 − λ
.

(A.4)

Let gDλ = GD
λ /‖GD

λ ‖2 and define

d(ξ) :=
χ(ξ)ψξ(z)

|ξ|2 − λ
.

We then obtain for the matrix element of a pure momentum monomial e0,k that

〈
Op(e0,k)g

D
λ , g

D
λ

〉
=

∑
ξ∈L\{0}(ξ̃/|ξ|)k|d(ξ)|2 + |d(0)|2∑

ξ∈L0 |d(ξ)|2

=

∑
n∈N

δnwk(n)
(n−λ)2∑

n∈N
δn·r(n)
(n−λ)2

(A.5)

where δn = |ψξ(n)(z)|2 and ξ(n) ∈ L is the lattice vector which solves the equation
|ξ|2 = n, ξ1, ξ2 ≥ 0, and

wk(n) =
∑
ξ∈L
|ξ|2=n

(
ξ̃

|ξ|

)k

.

Assumption: Suppose that the position z ∈ intD is “generic”7 in the sense that
z1a, z2/a /∈ Q. This ensures that δn > 0 for all n ∈ N .

Clumping: The proof of [18] can easily be modified for rectangles with Dirichlet
boundary conditions. Thus we obtain the analogue of Theorem 3.2 for the operator−∆D

ϕ .

7In the case of rational coordinates there will be a positive proportion of eigenvalues whose eigenfunc-
tions vanish at the position of the scatterer and therefore do not feel its effect. In the generic case of irrational
coordinates all eigenfunctions feel the effect of the scatterer, therefore there are only “new” eigenfunctions.
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In order to construct localized semiclassical measures we pick a subsequence n ∈
N ′ ⊂ N , of density 1 − ε for any ε > 0, such that lim infn δn = δ > 0 8. For mixed
monomials eζ,k we may now apply exactly the same argument as in the proof of Theo-
rem 2.1, to see that limn∈N ′

〈
Op(eζ,k)g

D
λn
, gDλn

〉
= 0. The analogue of Proposition 3.1 is

again proved in exactly the same way as above. Hence the analogue of Theorem 1.4 for
diophantine rectangles with Dirichlet boundary conditions follows.

Remark 3. In a similar fashion we can prove the result also for the strong coupling limit
(see section 4), where within a subsequence of positive density the eigenfunctions have
positive mass on a finite number of Dirac masses in momentum space.
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