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Abstract

We consider the Laplacian with a delta potential (also known as a “point scat-
terer”, or “Fermi pseudopotential”) on an irrational torus, where the square of the
side ratio is diophantine. The eigenfunctions fall into two classes — “old” eigen-
functions (75%) of the Laplacian which vanish at the support of the delta potential,
and therefore are not affected, and “new” eigenfunctions (25%) which are affected,
and as a result feature a logarithmic singularity at the location of the delta potential.

Within a full density subsequence of the new eigenfunctions we determine all
semiclassical measures in the weak coupling regime and show that they are localized
along 4 wave vectors in momentum space — we therefore prove the existence of
so-called “superscars” as predicted by Bogomolny and Schmit [6].

This result contrasts the phase space equidistribution which is observed for a
full density subset of the new eigenfunctions of a point scatterer on a rational torus
[16]. Further, in the strong coupling limit we show that a weaker form of localization
holds for an essentially full density subsequence of the new eigenvalues; in particular
quantum ergodicity does not hold.

We also explain how our results can be modified for rectangles with Dirichlet
boundary conditions with a point scatterer in the interior. In this case our results
extend previous work of Keating, Marklof and Winn who proved the existence of
localized semiclassical measures under a clustering condition on the spectrum of the
Laplacian.
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1 Introduction

In the Quantum Chaos literature the Seba billiard [19], a delta potential placed inside an
irrational rectangular billiard, has attracted considerable attention [21, 22, 23, 24, 20, 25,
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5]. Seba introduced the model to investigate the transition between integrability and chaos
in quantum systems and numerical experiments revealed features characteristic of chaotic
systems: level repulsion and a Gaussian value distribution of the wave functions — in
agreement with Berry’s random wave conjecture [1].

The present paper deals with irrational tori having diophantine® aspect ratio; for con-
venience the main focus is on periodic rather than Dirichlet boundary conditions, but the
methods also apply in the latter case (cf. Appendix A.)

The eigenfunctions of this system fall into two classes — old and new eigenfunctions.
The old eigenfunctions are simply eigenfunctions of the Laplacian which vanish at the
position of the scatterer xy and therefore do not feel its presence. In the case of an irra-
tional torus they make up 75% of the spectrum. In this paper we will only be interested in
the new eigenfunctions, which do feel the effect of the scatterer and feature a logarithmic
singularity at xy. They make up the remaining 25% of the spectrum.

1.1 Statement of the main result

We prove that a full density subsequence of the new eigenfunctions of the point scat-
terer fail to equidistribute in phase space in the weak coupling limit. Specifically, these
eigenfunctions become localized (‘“scarred”, or even “superscarred”) in 4 wave vectors in
momentum space and we are able to classify all possible semiclassical measures which
may arise along this sequence in the weak coupling regime (i.e., fixed self-adjoint exten-
sions). Moreover, in the strong coupling regime (where the self-adjoint extension param-
eter varies with the eigenvalue) we are able to show a somewhat weaker result, namely
that a subsequence of almost full density fails to equidistribute in phase space.

To describe this more precisely, we first introduce semiclassical measures arising from
eigenfunctions.

Definition 1.1. Let A\ be a new eigenvalue of the scatterer and denote by g the corre-
sponding L?-normalised eigenfunction. Let a € C*°(S*T?) be a classical observable and
let Op(a) be a zeroth order pseudo-differential operator* associated with a. We define the
distribution dyy, by the identity

(Op(a)gr, gr) = / a dpy. (1.1)
5+T2
By the semiclassical measures for a certain sequence {\,} we mean the limit points of

{dpy, } in the weak-* topology.

By a subsequence of full density we mean the following.

3An irrational v is diophantine if there exist constants C' > 0, k > 2 such that |y — p/q| > Cq~* for
any rational p/q.
4We will give a precise definition of our choice of quantization in section 2.2
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Definition 1.2. Let S C R be a countably infinite sequence of increasing numbers which
accumulate at infinity. We say that 8" C S is a subsequence of full density if

! <
lim #{x eS8 |m_X}7

Xooo #{r €S|z < X} 12)

The following definitions will be used throughout the paper.

Definition 1.3. For a > 0 a fixed real number, define a lattice
Lo :=Z(a,0) ® Z(0,1/a) C R?

let L denote the dual lattice of Lo, and let N denote the set of distinct Laplacian eigen-
values (i.e., squares of norms of the lattice vectors in L.) Further, given m € N, denote

by A\, < m the new eigenvalue of the scatterer associated with m.

We remark that {)\,, : m € N} is the full set of new eigenvalues; this is due to a
certain interlacing property, see Section 2.1 for more details. With notations as above, the
main result of this paper is the following result, valid for the weak coupling limit.

Theorem 1.4. Assume that a* ¢ Q is diophantine, and consider the point scatterer per-
turbation of the Laplacian on the flat torus T? = R?/2r L. There exists a subsequence
N C N of full density such that the set of semiclassical measures of the sequence dyy,,,
m € N, is given by the following subset of the set of probability measures on the unit
cotangent bundle S*T?:

Q= {% X 3(59 +0_g+ 0rp+ 5W+9)(¢)£ ’ 0 e [O,W/Q]} . (1.3)
Remark 1. As already mentioned, the result can be extended to irrational (diophantine)
rectangles with Dirichlet boundary conditions and a delta potential in the interior — the
original setting of Seba’s paper. In the appendix to this paper we illustrate how our proof
can be modified. For a generic position of the scatterer we prove scarring for a proportion
1 — € of all eigenfunctions, for any ¢ > 0. In the non-generic case of positions with
rational coordinates, a positive proportion of the eigenfunctions do not feel the effect of
the scatterer, hence are old Laplacian eigenfunctions. However, our theorem still applies

to the new eigenfunctions associated with the remaining part of the spectrum.

In the strong coupling limit, which is studied in the physics literature, and in which
features such as level repulsion between the new eigenvalues are observed, we are able to
prove the following somewhat weaker result (see Section 4 for its proof.)

Theorem 1.5. Given § > 0 there exists a subsequence of the new spectrum, of density
at least 1 — O, on which the momentum representation of the new eigenfunctions carries
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positive mass on a finite number of points®. For ¢ fixed, the mass is uniformly bounded

from below, and the number of points is uniformly bounded from above.

These results may also be easily modified for rectangular domains with Dirichlet or
Neumann boundary conditions (cf. Remark 3 in the appendix.)

1.2 Discussion

The scarring phenomenon described above contrasts the equidistribution of a full density
subset of new eigenfunctions for a point scatterer on a square torus, both in the weak
as well as strong coupling limits (cf. [16]; also note that “superscars” can occur along
zero density subsequences in this model [15].) Interestingly, a key feature for obtaining
equidistribution for the square torus is that the unperturbed spectrum has unbounded mul-
tiplicities (along a generic sequence), whereas in the diophantine aspect ratio case, where
the unperturbed spectrum has bounded multiplicities, most eigenfunctions scar strongly.

Moreover, the type of scarring proven here seems quite different from the sequence
of scars established by Hassell [11] for the stadium billiard (his construction is based on
quasimodes corresponding to a certain sparse sequence of “bouncing ball modes™), or
the construction of scars for cat maps with small quantum periods by de Bi¢vre, Faure
and Nonnenmacher [4] (they construct sparse sequences at most half of whose mass is
scarred, and a crucial feature in the construction is having essentially maximal spectral
multiplicities; note that Bourgain has shown [7] that scarring does not occur for cat maps
if multiplicities are just slightly smaller than maximal.) We also mention Kelmer’s con-
struction [13] of scars for certain higher dimensional analogues of cat maps; here the
existence of invariant rational isotropic subspaces plays a key role.

In the original setting of the Seba billiard, i.e., for irrational rectangles with Dirich-
let boundary conditions and a delta potential in the interior (and in the weak coupling
limit), Keating, Marklof and Winn showed [12] that eigenfunctions can scar in momen-
tum space, provided that the unperturbed eigenfunctions are bounded from below at the
location of the scatterer, together with a certain clustering assumption on the spectrum
of the Laplacian. (The clustering assumption is implied by the Berry-Tabor conjecture,
which suggests that the eigenvalues of a generic integrable system behave like points
from a Poisson process.) Our proof can easily be modified for this setting.

Our results also show that contrary to the title of Seba’s original paper [19] there is no
“wave chaos” with respect to the wave functions of diophantine rectangular quantum bil-
liards (even though chaotic effects, such as level repulsion, appear in the strong coupling
regime [5]) — quantum ergodicity fails, both in the weak and strong coupling regimes.
Moreover, in the specific setting of Seba’s original paper (weak coupling and Dirichlet

SWe allow these points to depend on the eigenvalue.
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boundary conditions), we show that for any € > 0 a proportion 1 — € of the eigenfunctions
are scarred in momentum space and we determine all possible scarred measures explicitly.
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2 Background

This section has the purpose of providing the reader with a brief summary of various
results which will be used in the paper.

2.1 The spectrum of a point scatterer on an irrational torus

In order to realize the formal operator
~ A+ aby,, (a,10) € R x T?

we use self-adjoint extension theory. We simply state the most important facts in this
section to make the paper as self-contained as possible. For a more detailed discussion of
the theory we refer the reader to the introduction and appendix of the paper [17].

Recall that T? = R? /27 L. We restrict the positive Laplacian —A to the domain

Do = CZ®(T*\ {0})
of functions which vanish near the position of the scatterer:
Hy = —A|p,

The operator H, is symmetric, but it fails to be essentially self-adjoint, in fact H, has
deficiency indices (1, 1). Therefore there exists a one-parameter family of self-adjoint
extensions H,,, ¢ € (—m, ], which are restrictions of the adjoint H{ of the restricted op-
erator to the domain of functions f € Dom/(H(}) which satisfy the logarithmic boundary

condition
log |z — o

(@) = Cleosio/2) 21

as x — x for some constant C' € C. The case ¢ = 7 corresponds to a = 0, i. e.

+ sin(p/2)) + o(1)

we simply obtain the unrestricted Laplacian in this case. In this paper we will study the
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operators H,, ¢ € (—m, 7). In the physics literature [21] the operator H,, for fixed ¢ is

known as the “weak coupling” quantization of the scatterer.

Let us now focus on the special case of an irrational torus T?. This means we take a

lattice £ such that a* ¢ Q. The spectrum of the operator H,, consists of two parts:

(A) Eigenfunctions which vanish at xy and therefore do not “feel” the scatterer. These

are simply eigenfunctions of the Laplacian, and occur with multiplicity m —1 where

m is the multiplicity of the corresponding eigenspace of the Laplacian. The multi-

plicity of the positive old eigenvalues is 3, unless the corresponding lattice vector

lies on one of the axes, in which case it is 1.

(B) Eigenfunctions which feature a logarithmic singularity at x,. These “feel” the ef-

fect of the scatterer, and turn out to be given by the Green’s functions G =

(A + X\)714,,. The new eigenvalues A occur with multiplicity 1 and interlace with

the “old” Laplace eigenvalues (counted without multiplicity.)

We will be interested in the eigenfunctions of type (B), and in particular we will study

how these eigenfunctions are distributed in phase space as the eigenvalue tends to infinity.

Recall that N denotes the set of distinct eigenvalues of the Laplacian on T? (these are just

norms squared of the lattice vectors in £). For given n € N denote its multiplicity by

r(n).

The eigenvalues of type (B) are solutions to the equation

1 n r(n
Z r(n) (n — A n2+ 1) = tan(p/2) Z n2(—|—>1

neN neN

and they interlace with the distinct Laplacian eigenvalues
N:{0:n0<n1<n2<~~}

as follows
/\n0<0:n0<>\n1<n1<)\n2<n2<---

where the new eigenvalue associated with n € A is denoted by \,,.

2.2 Quantization of phase space observables

2.1)

(2.2)

Recall that T? = R?/27Ly where Ly = Z(a,0) & Z(0,1/a), a > 0, and L denotes its
dual lattice. Consider a classical symbol a € C*°(S*T?), where S*T? ~ T? x S! denotes
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the unit cotangent bundle of T?. We may expand « in the Fourier series

a(r,¢) = Y a(C ke, 2.3)

(eL,keZ

We choose the following quantization of the symbol a. Let f € L?(T?) with Fourier

v) =Y f(&en. (2.4)

el

expansion

On the Fourier side the action of the 0-th order pseudodifferential operator Op(a) is de-
fined by (we have chosen a “right” quantization, which means we first apply momentum
then position operators (cf. section 2.1, in [16]))

—

OraneE =Y al /~c><5 <> -0+ ae hf 2.5)

(HEEL kL |£ q kez
where for a given £ = (&;,&,) € L we define £:=¢& +i.

In terms of the Fourier coefficients the matrix elements of Op(a) can be written as

©Op(a)f. 1) = (Op(a) ))(E) (). 2.6)

£el

With e (7, ¢) := e'©®1k¢ e then have

Opleci)ffy= 3 (é é) FOfE— QO+ FQOf0. @D
geL\{¢}

2.2.1 Mixed modes

If ¢ # 0 we have the bound

| (Op(eci)f f)] Z OIF €=l (2.8)

eL

In the case f = g\ = G»/||G||2 we have the L?-expansion
1

Gz, o) = 1 c(€)elTTod)
¢eL
where ¢(§) = |£|2 . We obtain
> eec 1c(E)]e(€ = Q)]
O : . 2.9
| Onecelonan)| £ =g 29

In [17] it was proved that one can construct a full density subsequence N/ C N such that
for any nonzero lattice vector ¢ € L the matrix elements of Op(ec ;) vanish as n — oo
along \. The following result was obtained.



8 Pir Kurlberg, Henrik Ueberschir

Theorem 2.1. (Rudnick-U., 2012) Let L be a unimodular lattice as above. There exists
a subsequence N' C N of full density such that forany ( € L, ( # 0, k € Z

Lim (Op(eck)9r.: 9r.) = 0. (2.10)
neN’

Remark 2. Although the paper [17] is solely concerned with the weak coupling regime,
i.e. fixed self-adjoint extensions, the theorem holds generally for Green’s functions G,
and any sequence of real numbers {\, } which interlaces with the Laplacian eigenvalues
on T?. A detailed explanation is given in [16], p. 7, Remark 3.

2.2.2 Pure momentum modes

Let us consider the case ( = 0. We rewrite the matrix elements as

e :Zfeﬁ\{O}(é/|§|)k|C(§)|2 + |c(0)[2
(Op(eor)gn: gr) SRR

r(n)
Zne/\/ (n—X\)2

where for 0 # n € N we define the exponential sum

~ k
wi(n) == Y <é—|> , (2.12)

|€]>=n

ceL\{0}

2.11)

and for notational convenience we set wy(0) := 1.

2.3 Pair correlations for values of quadratic forms

In this section we will briefly review a result of Eskin, Margulis and Mozes [9] on the pair
correlations of the values of the quadratic form Q(k,1) = a 2k* + a1, k,| € 7Z, where
v = a* is diophantine. We have the following theorem (cf. Thm. 1.7 in [9]), which we
only state in the special case relevant to the present paper. Note that area(T?) /41 = 7.

Theorem 2.2. (Eskin-Margulis-Mozes, 2005) Let v = a* be diophantine and 0 ¢ (b, c).
Denote the Laplacian eigenvalues on T* = R? /21 Lo by {\;(T?)}. Then

AT (T < X A(T?) = () € (b))
X—o00 X

= 1%(c —b). (2.13)

The theorem above proves the Berry-Tabor conjecture [2] for the pair correlations of
the Laplacian eigenvalues on the torus T?, where v = a? is diophantine. Recall that the
Laplacian eigenvalues are given by the squared norms (k% + a*l?) /a® and the ordered set
of such distinct squared norms is denoted by .



Superscars in the Seba billiard 9

As in the irrational case the multiplicities of the Laplacian eigenvalues on the torus are
generically 4, we have for the pair correlation of the distinct Laplacian eigenvalues, i.e.
the set of norms A/,

< _ 2
lim {mneN|mn<X, m—nebc)} :7;—6(0—19). 2.14)

X—o00 X

Letting
N(X)={neN|n<X}

denote the intersection of A and the interval [0, X], we have the counting asymptotic
(“Weyl’s law™)

IN(X)] ~ %X (2.15)
as X — oo. Consequently, we obtain
) 1 T
)}gl})om#{m,n eNX)|m—-ne(be)}= Z(C_ b).

We note that the mean spacing is 4/ (cf. eq. (2.15)).

3 The weak coupling limit — proof of Theorem 1.4

We begin by proving the following proposition.

Proposition 3.1. Let L be a diophantine rectangular unimodular lattice as above®. There
exists a subsequence N’ C N of full density such that for m € N' and any integer k,

(Op(eok)nm> Gom) = t?%) +o(1) (3.1)

as m — oo along N.

Before giving the proof of Proposition 3.1 we recall the following bound from [18];
it shows that, in the weak coupling regime, the new eigenvalues of the scatterer and the
eigenvalues of the Laplacian generically “clump” together.

Theorem 3.2. Let L be an irrational lattice as above. Given any increasing function

f such that f(m) — oo as m — oo along N there exists a density one subsequence

N" C N such that for all m € N,

O<m—)\m<<M (3.2)
logm

The following key Lemma will allow us to “circumvent” the lack of uniformity in the
size of the interval (b, ¢) in Theorem 2.2.

®In particular, a* ¢ Q is diophantine; cf. Definition 1.3.
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Lemma 3.3. For A > 3 we have

Y <
_ 2
m,neN(z) ‘m n’ A

|m—n|>A

Proof. Given an integer k£ > 0, define
M(k):={neN :ne€ [k k+ 1]}

We begin by deducing an L? bound on M (k) using Theorem 2.2:

ZM(k)2:Z\{m,nEN:m,nE [k, k+ 1]}

k<T K<T
<H{mneN: mn<T+1m-—ne[-11]}

which, by Theorem 2.2, is
L2T+1)+(T+1)<T

(note that we include pairs m,n < T'+1 for which m = n; this gives rise to the additional
T+ 1 term.)
Using Cauchy-Schwarz, we now find that for [ < T', we have

1/2 1/2
> M(k)M(k+1) < (Z M(k)2> : ( > M(k:)2> < TY?.TY? =T (3.3)

k<T k<T k<T+l1

We may now conclude the proof:

1 H{m,neN(z):m<n,n—m¢€ [k k+1]}
> ey g
m,neN(z) k=A
|m—n|>A

< é%ZM(l)-(M(l+k:)+M(l+k+1))

which, by using (3.3), is

We can now prove the following key estimate.

Proposition 3.4. There exists a subsequence N1 C N of full density such that for m € N

> ﬁ = O((logm)>™). (3.4)
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Proof. Let G(m) = (logm)~'* for a small fixed € € (0, 1), and denote by m_, m the
nearest neighbours to the left and right of m € A. We claim that the subsequence

No={m e N [|m—m_|,|m—my| = G(m)}
is of full density in V. Let us assume for a contradiction that the sequence
={meN||m—m_|orlm—m,| <G(m)}
is of non-zero density, i.e., that for some 1 > 0,
INs(@)] = |V (2)| (3.5)

holds for a sequence of values of = tending to infinity. Recall that N (z) ~ Tz, as z — oo,

since area(T?) = 47? and the multiplicity is generically 4. Using Theorem 2.2, we thus
find that as z — oo,

|N1$)|#{me/\/’|m<x}

|./\/%:E)|#{ma”€./\/'||m—n|<G(m)r m#n, mn<az}

Wtﬂﬁ)l#{mneN'|m_n|< . om#n, Y/ <m,n <z} (3.6)
+O0(z717?)

which leads to a contradiction to eq. (3.5).
Next we estimate the sum on the LHS of (3.4). We first note that for m € N (z) and z
large we have

1 1 1
2 T 2 mapt 2 Gaap

neN (2z),n#m neN,n>2z,n#m

“ o2 o)

neN (2z),n#m

(3.7)

where we used in the last line that m < z and n > 2z, hence n —m > n/2 and the bound
on the second sum follows from Weyl’s law (see (2.15)) and partial summation.

Next we show that there exists a density one subsequence N7 C Nj such that for all

m € Ni(z),
1 2—e¢

neN (2z),n#m
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We have
> Y immt Y Y o
meNy(z) nGN(Qz) me./\/( ) neN(2z)
[n— m|>G( )
S DINED UL S SR Eangcr
meN(z)  neN(2z) meN (x) neN (2z)
In— mIE[G( ):1] In— m|>1
We estimate the second sum by
meN (z) nEN(Zm)
\n m|>1
Z #{me./\f( ),neNQx) | |m—n|elkk+1)} (3.9)
k<21
c(k
=: Z % <L logx
k<2z
where the logarithmic bound follows from
D e(k) < [{m,n € N(2x) : [m —n| < 2z + 2} < |N(22)]” < 2
k<2z
together with summation by parts.
For the first sum we have, by Theorem 2.2,
O S e
meN (z) neN (2z)
In—m|€[G(m),1]
1 3.10
< Gy (@).m € N(22) | Im — n| € (0.1]} G40
x 2-2¢
< W < x(log $) .
Now, let .
Fm)= Y, 5
neN (2z) (m - n)
[n—m|>G(m)
From the estimates above we have, for fixed § € (0, 1),
Z F(m) < z(logz)*™* (3.11)
meNy(z),m>x?
Letting T'(m) = (log'm)?~¢ and using Chebyshev’s inequality we find that
#{m € Ny(z) | F(m) > T(m),m > 2°}
< T(x)™! F(m) < z(logx)* /T (x) = 2/(logz)¢ (3.12)

meNy (z),m>xd
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where we have used that T'(m) < T'(z) for m € [2%, z]. It follows that F'(m) < T'(m) is
a density one condition inside Ny(z) thereby concluding the proof. O]

3.1 Proof of Proposition 3.1

Proof. Fix some integer k£ # 0. In order to construct the full density subsequence we
will use the result about “clumping” of the spectrum as stated in Theorem 3.2. In what
follows assume that f is as in Theorem 3.2. By Theorem 3.2, we have for m € N that
Im — Apn|? = O(f(m)?/log? m), and hence

wi(m) + O((log m) () Sy wi(m)(n = )
r(m) + O(log m) 2 f(m)?) oz (m)n = 1)

(Op(eor)gr, gr) = (3.13)

Let N7 = Ny NN, with V] as in Proposition 3.4. For m € N’, by the proof of Propo-
sition 3.4 (in particular note that |[m — m_|, |m — m,| > G(m) = (log m)~'*¢ holds for
m € N1 C Np), if we take f(m) = loglogm, then

1
Z % < Z ———— = O((logm)*™) (3.14)
Zé./r\n/’ |[n—m|>G(m)

and it follows that

<Op(€0,k;)gm gr) =

r(m) + o(1)
wg(m)
= 1
r(m) +oll)
as m — oo (note that |wy(m)| < r(m) < 4.) So the identity (3.1) follows. O

Proposition 3.1 easily gives a classification of the quantum limits which may arise
within the sequence N’. We are interested in the sequence duy, , m € N, where N
denotes the intersection of the subsequences in Theorems 2.1 and 3.2, so N s of full
density. We would like to determine the quantum limits of this sequence, i.e. the limit
points in the weak-* topology.

From Theorem 2.1 we know that along A the limit measures must be flat, or equidis-
tributed, in position. Moreover, from Proposition 3.1 we also know that the matrix ele-
ments of pure momentum observables for the eigenfunction g, , m € N, tend to stay
away from zero, because for an irrational lattice £ the multiplicity r(n) is bounded. The
intuition is that the sequence du,,, m € N , becomes localized in momentum in the
semiclassical limit. Theorem 1.4 determines the set of such localized quantum limits.
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3.2 Proof of Theorem 1.4

Consider the classical observable

a = Z CAZ(C,]{?)GQk.

CeLkeZ

Letm € N. By a standard diagonalization argument (see section 4 in [16]) it suffices to

prove the result for the trigonometric polynomials

Pr= Y ¢ kecn
CELKEZ
L, kI<J

It follows from (3.1) and Theorem 2.1 that

(Op(Pr)gam> Grm) = ) 4 o(1) (3.15)

2|k

as m — oo. For given m € N let 0,, € [0, 7/2] be the phase angle of the lattice point on

the upper right arc of the circle |¢|2 = m, i.e. € = m!/2ei® for some £ € L. Since L is

irrational we have
cos(kb,), 2|k,

0, otherwise.

We have the following Lemma.
Lemma 3.5. The sequence of angles {0,,},, 5 is dense in [0, 7/2].

Proof. Let I C [0,7/2] be a nonempty open interval. As

Hm e N (@) |0, €I} = {6 € L:|€]* <, &,& >0, andarctan(&,/&,) € T},

and the latter can be interpreted as the number of Z>-lattice points inside the intersection
of an ellipse with a circular sector, dilated by \/z, we find that [{m € N (x) | 6,, € I}| ~
cr - x as x — oo, for some c¢; > 0. Since the interval [ can be freely chosen, the result
follows. L

The set of limit points of the sequence ((Op(P1)gx,.: Grn))me,r 18 thus given by

ZCOS (k0)a(0,k)|0 € [0,7/2]

20k

Now, since for k even,

cos(k@) = i(eikg 4+ e ik0 4 Lik(r+0) eik(ﬂ_g))’
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we find that all such limit set elements can be rewritten as

3 dx do
) - ikp " VY
Zcos(k@)a((], k) = /s*qr? Zcos (k0)e vol(S*T2)

2lk 2lk

1 d
:/s*w a(z, ¢)V01(T) x1(59+5_9+5w+9+5ﬂ_9)(¢)£, (3.16)

and the proof is concluded.

4 The strong coupling limit

Let \,, be any interlacing sequence. Then there exists a positive density subsequence
N’ C N such that {G,,, }menr does not equidistribute.

As before, for notational convenience we define N (T') := {n € N : n < T'}. Further,
let ny,...,ny, ... be ordered representatives of the elements in the set N (i.e., so that
ny < ng < ...),and let s; := n;;; — n,; denote the consecutive spacings.

Lemma 4.1. The number of i < T such that s; > G > 0is <T/G - (4/m + o(1)).

Proof. Recalling that N'(T') ~ T - 7/4, we find that ), . s; = (1 +o(1)) - 4T/ 7. Since
s; > 0 for all 7, the statement is an immediate consequence of Chebychev’s inequality. [

Lemma 4.2. Given D > 0, E > 1,

[fn € N(T): W) N In—Dn+ D] > B+ 1}| < o

Proof. By Theorem 2.2 (see (2.14)),

> (IMT)N[n—D,n+ D] -1)
neN(T)
=H{n,meN(T) :m#n,|m—n| <D} ~7?/16-2D-T (4.1)
and hence, by Chebychev,
DT
[{n e N(T): IN(T) N~ Don+ D)| > B+ 1}] < —

]

We can now finish the proof. Define A/’ as follows: for G large take n € N such that

the gap to the nearest left neighbour is at most G; by Lemma 4.1 this sequence has density
atleast 1 — 2/G.
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By Chebychev’s inequality and Lemma 3.3 (note that the Lemma is valid also in the
stroung coupling limit) we may chose F’ sufficiently large so that

fmeNT): Y >R <TG

neN(T):lm—n|>3 |m N 7’L|

remove all such m and we are left with a sequence of density at least 1 — 3/G.
Next take D = 3 in Lemma 4.2, and choose F sufficiently large so that

{n e N(T): IN(T) N [n— D,n+ D] > E+1}| < T/G;

removing also these elements we are left with a set of density at least 1 — 4/G.
Now, for m € N’ we have the following:

L. |\ —m| <G,
2.{neN:0<|m—n|<3}<E

1
3. Zne./\f:|m—n|>3 (m—n)? <K

Thus, if we consider pure momentum observables, and given n € N we let p, denote
the measure on the unit circle consisting of four delta measures (corresponding to lattice
points lying on a circle of radius y/n), we find that the measure — not necessarily a
probability measure since we have not yet normalized — associated with GG, is given by

Hn _ Hm Hn Hn
DDy il cris wER D DI o D DI e we

neN neN:0<|n—m|<3 neN:n—m|>3

where the first term is > 1/ G2, the second sum has at most F terms, and the last sum is
< F'. In particular, for G fixed the mass contribution from the first two terms

o Hn
GRS WERID DI e w :

neN:0<|n—m|<3

is uniformly bounded from below, and the number of terms in the sum is uniformly
bounded from above. Hence the finite sum

P W
_ 2
neN:n—m|<3 (n )\m)

carries mass uniformly bounded from below; after normalizing so that we obtain a proba-
bility measure, we find that the normalized measure will have a positive proportion of its

mass on a finite number of points.
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A Dirichlet boundary conditions

In Seba’s original paper [19] the author considers an irrational rectangle D with a delta
potential placed in the interior of D and Dirichlet boundary conditions. The setting of
the torus has the advantage that calculations are much simplified because of translation
invariance, i. e. the position of the potential is not important. The subject of this appendix
is to illustrate how our proof can easily be modified for this setting. A modification would
work in the analogous and correspond to a different character in the Fourier representation
of the eigenfunctions.

A.1 The spectrum and eigenfunctions

Let D = [0,27a] x[0,27/al, a* ¢ Q diophantine. Let 2 € int D. We study the self-adjoint
extensions of the restricted Dirichlet Laplacian —A|p,, where Dy = {f € C°(D\{z}) |
flop = 0}. This operator has deficiency indices (1, 1) and we denote the one parameter
family of self-adjoint extensions by {—AD} e _r .

The eigenfunctions of —Ag are given by the Green’s functions

Z w|§‘2 o Ye(x) = ism(fﬂl)sm(fﬂz)

Eel
£1,62>0

where £ = Z(1/a,0) @ Z(0, a). The eigenvalues are solutions of the equation

1 ¥
2, ) {|5|2 A |5|2+1}:C“a“ (5) “-D

Eel
£1,£2>0

1
where O = 3., g

A.2 Modification of the proof of Theorem 1.4

We can rewrite the function G as

z,8)
Z e ‘512 ,  where x(&§) = sgn(&;) sgn(&2) (A.2)

el

and
1, ifz>0
sgn(z) =<0, ifz=0
1, ifz <0
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Proof. To see this, first of all define, given & = (&1, &), €1, & > 0, define € = (&, —&).
We may expand the Laplacian eigenfunctions into complex exponentials

1 . .
¢£($) :ﬁ sin(§121) sin(§222)
%(ei&m _ e—iflxl)(eiézﬂvz _ €—i§2$2)
s
1 .
=== > X

472 .
77251_5157_5

(A.3)

Hence, we obtain (noting ¢ = 0 if §;&, = 0)

|y i)
2 \512
£1,62>0 (A4)

£)
x(€
- 5 Z |5|2

Let g¥ = GP/||G?||» and define

X(E)e(2)
€2 =\

We then obtain for the matrix element of a pure momentum monomial e j, that

. _Egec\m}(f/\f!)’“|d(€)!2 +|d(0)]?
<Op( 0,k g)\ » I\ > deﬁo |d(§)|2

Snwi (n)
_ZnEN (n—k)\)2
- On-r(n)

ZnE/\f (n—X)2

where 0, = [t¢m)(2)]? and &(n) € L is the lattice vector which solves the equation

]2 =n, &,& >0, and )
=2 (\3)

Eel
l€]2=n

d(§) =

(AS)

Assumption: Suppose that the position z € int D is “generic”’ in the sense that
z1a, z3/a ¢ Q. This ensures that 6, > 0 for all n € N.

Clumping: The proof of [18] can easily be modified for rectangles with Dirichlet
boundary conditions. Thus we obtain the analogue of Theorem 3.2 for the operator —Ag .

"In the case of rational coordinates there will be a positive proportion of eigenvalues whose eigenfunc-
tions vanish at the position of the scatterer and therefore do not feel its effect. In the generic case of irrational
coordinates all eigenfunctions feel the effect of the scatterer, therefore there are only “new” eigenfunctions.
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In order to construct localized semiclassical measures we pick a subsequence n €
N’ C N, of density 1 — € for any € > 0, such that liminf, J, = § > 0 8. For mixed
monomials e;, we may now apply exactly the same argument as in the proof of Theo-
rem 2.1, to see that lim,epr (Op(ec )9y . g5, ) = 0. The analogue of Proposition 3.1 is
again proved in exactly the same way as above. Hence the analogue of Theorem 1.4 for
diophantine rectangles with Dirichlet boundary conditions follows.

Remark 3. In a similar fashion we can prove the result also for the strong coupling limit
(see section 4), where within a subsequence of positive density the eigenfunctions have

positive mass on a finite number of Dirac masses in momentum space.
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