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Abstract
We consider sets of positive integers containing no sum of two elements in the set
and also no product of two elements. We show that the upper density of such a
set is strictly smaller than % and that this is best possible. Further, we also find
the maximal order for the density of such sets that are also periodic modulo some

positive integer.

1. Introduction

If A, B are sets of integers, we let A+B denote the set of sums a+b witha € A,b € B,
and we let A - B denote the set of products ab with a € A,b € B. The sum-product
problem in combinatorial number theory is to show that if A is a finite set of positive
integers, then either A+ A or A- A is a much larger set than A. Specifically, Erdés
and Szemerédi [2] conjecture that if € > 0 is arbitrary and A is a set of N positive
integers, then for N sufficiently large depending on the choice of €, we have

A+ Al +|A- Al > N?°€.
This conjecture is motivated by the cases when either | A+ A| or |A- A| is unusually
small. For example, if A = {1,2,..., N}, then A+ A4 is small, namely, |A+.A| < 2N.
However, A - A is large since there is some ¢ > 0 such that |A- A| > N?/(log N)°.
And if A= {1,2,4,...,2V71} then |A- A| < 2N, but |A+ A| > N?/2. The best
that we currently know towards this conjecture is that it holds with exponent 4/3



in the place of 2, a result of Solymosi [8]. (In fact, Solymosi proves this when A is
a set of positive real numbers.)

In this paper we consider a somewhat different question: how dense can A be if
both A+ A and A - A have no elements in common with A? If AN(A+ .A) =0
we say that A is sum-free and if AN (A-.A) = () we say A is product-free. Before
stating the main results, we give some background on sets that are either sum-free
or product-free.

If a € A and A is sum-free, then {a}+.A4 is disjoint from A, and so we immediately
have that the upper asymptotic density

d(A) = limsup l\A N [1,n]|
n—oo N

is at most % Density % can be achieved by taking A4 as the set of odd natural
numbers. Similarly, if A is a set of residues modulo n and is sum-free, then D(A) :=
|A|/n is at most %, and this can be achieved when n is even and A consists of the
odd residues. The maximal density for D(A) for A a sum-free set in Z/nZ was
considered in [1]. In particular, the maximum for D(A) is § — 5= if n is divisible
solely by primes that are 1 modulo 3, it is % + % if n is divisible by some prime
that is 2 modulo 3 and p is the least such, and it is % otherwise. Consequently, we
have D(A) < 2 if A is a sum-free set in Z/nZ and n is odd. It is worth noting
that maximal densities of subsets of arbitrary finite abelian groups are determined
in [3]. For generalizations to subsets of finite non-abelian groups, see [4].

The problem of the maximum density of product-free sets of positive integers,
or of subsets of Z/nZ, only recently received attention. For subsets of the positive
integers, it was shown in [5] that the upper density of a product-free set must be
strictly less than 1, in fact, it cannot exceed 1 — ﬁ, where ag is the least member of
the set. Let D(n) denote the maximum value of D(A) as A runs over product-free
sets in Z/nZ. In [7] it was shown that D(n) < 3 for the vast majority of integers,
namely for every integer not divisible by the square of a product of 6 distinct primes.
Moreover, the density of integers which are divisible by the square of a product of
6 distinct primes was shown to be smaller than 1.56 x 108,

Somewhat surprisingly, D(n) can in fact be arbitrarily close to 1 (see [5]), and
thus there are integers n and sets of residues modulo n consisting of 99% of all
residues, with the set of pairwise products lying in the remaining 1% of the residues.
However, it is not easy to find a numerical example that beats 50%. In [5], an
example of a number n with about 1.61 x 108 decimal digits was given with D(n) >
%; it is not known if there are any substantially smaller examples, say with fewer
than 10% decimal digits.

In [6] the maximal order of D(n) was essentially found: There are positive con-
stants ¢, C' such that for all sufficiently large n, we have

C

D(n) S 1 - 1—%log2(

(loglog n) log log logn)/2
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and there are infinitely many n with

C
(loglogn)'=2182(logloglogn)1/2’

D(n)>1-—

In this paper we consider two related questions. First, if A is a set of inte-
gers which is both sum-free and product-free, how large may the upper asymptotic
density d(A) be? Here a sum-free and product-free set with natural density % is
achievable by taking

A={n:n=2,3 (mod 5)}.

Our first result shows that for a set A to achieve upper asymptotic density close to
% it must omit all small integers.

Theorem 1.1. Let A be a set of positive integers that is both product-free and
sum-free, and let ag be the smallest element of A. If d(A) > %, then necessarily

d(A)§;<1—2iO).

Second, set
D*(n) := max{D(A) : A is a sum-free, product-free subset of Z/nZ}.

What is the maximal order of D*(n)? We prove the following complementary
results, showing density % can be approached, and quantifying the rate of approach.

Theorem 1.2. There is a positive constant k such that for all sufficiently large
numbers n,

K

D)< Lo
— 2  (loglogn)'~2'°82(logloglogn)/2

Theorem 1.3. There is a positive constant k* and infinitely many integers n with

1 K*

D > - — - .
(n) 2 2 (loglogn)'=2182(loglog logn)!/2

Note that D*(5) = 2 and if 5|n, then D*(n) > 2. A possibly interesting com-
putational problem is to numerically exhibit some n with D*(n) > % Theorem 1.3
assures us that such numbers exist, but the least example might be very large.

One might also ask for the densest possible set A for which A, A+ A, and A-.A
are pairwise disjoint. However, Proposition 3.1 below implies immediately that any
sum-free, product-free set A C Z/nZ with D(A) > £ also has A+ A and A - A
disjoint. Thus, from Theorem 1.3, we may have these three sets pairwise disjoint
with D(A) arbitrarily close to 3.



2. The upper density

Here we prove Theorem 1.1. We begin with some notation that we use in this
section. For a set A of positive integers and a positive real number z, we write
A(z) for AN[1,z]. Set

1 _ o A®) _1
0y :=1-2 o so that |A(:v)|f2

Note that &, > 0 for [A(z)| < 1z. If a is an integer, we write a + A for {a} + 4 and
we write aA for {a} - A.

(1—10z)x.

Lemma 2.1. Suppose that A is a sum-free set of positive integers and that a1, as €
A. Then for all z > 0,

[(a1 + A(z — a1)) N (az + Az — a2))] = =(1 — 36,) — (a1 + az).

N |

Proof. We have the sets A(x), a1 + A(z — a1), a2 + A(z — az) all lying in [1, 2] and
the latter two sets are disjoint from the first set (since A is sum-free). Thus,

[(a1 + Az —a1)) N (az + Az — a2))|
= a1 + A(z — a1)| + |az + A(z — a2)| — [(a1 + Az — a1)) U (a2 + A(z — a2))|
2 |a1 + A(x — a1)| + |az + A(z — a2)| = (z — |A(z)])
2 (JA(@)| = a1) + (JA(z)| — a2) + (|A(z)| — ) = 3[A(z)] — = — (a1 + az).

But 3|A(z)| — z = 2(1 — 30,)z, so this completes the proof. O

For a set A of positive integers, define the difference set

AA:={a; —as : a1,a2 € A}.

Further, for an integer g, let
Ay =AN(—g+A)={a€eA:a+ge A}

Corollary 2.2. If A is a sum-free set of positive integers and g € AA then, for
any x > 0,

A(a)| 2 51— 36.) 2 +O(1),
in which the implied constant depends on both g and A.

Proof. Suppose that g € AA, so that there exist ay,as € A such that a; —as = g.
Ifae A(x —ay) and a+ay € as + A(x — az), then a+ g =a+a; —as € A, so that
a € Ay. That is, Ay(z — a1) contains —a; + (a1 + A(z — a1)) N (a2 + A(z — a2)).
Thus, by Lemma 2.1,

(1 -3d;) — (a1 + a2),

[N

[Ag(z = ar)] = [(a1 + Az = a1)) N (a2 + Az — a2))[ >

from which the corollary follows. (|
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Proposition 2.3. If A is a sum-free set of positive integers with upper density
greater than %, then AA is the set of all even integers and A consists solely of odd
numbers.

Proof. We first show that AA is a subgroup of Z. Since AA is closed under mul-
tiplication by —1, it suffices to show that if g1,g2 € AA, then g1 + g2 € AA. If
g1 + Ay, contains a member a of A,,, then a — g1 € A and a + g2 € A, so that
g1 + g2 € AA. Note that g + A, and Ay, are both subsets of A. Now by Corol-
lary 2.2, if g1 + A, and Ay, were disjoint, we would have for each positive real
number z,

(1= 38.)2 + 0(1) < |A@@)] = 3(1 - &)z,

so that ¢, > % + O(%) Hence lim inf §,, > %, contradicting the assumption that A
has upper density greater than % Thus, g1 + Ay, and Ay, are not disjoint, which
as we have seen, implies that g1 + g2 € AA. Thus, AA is a subgroup of Z, say
AA = gZ for some positive integer g.

Since each a3 — as = 0 (mod g) for all aj,as € A, all members of A are in
one residue class modulo g. Since A has upper density greater than %7 it follows
that ¢ = 1 or 2. But AA must be disjoint from A. Indeed, if a; — as = a3z with
ai,as,a3 € A, then a; = as + ag, violating the condition that A is sum-free. Thus,
ifg=1, A=0, and if g = 2, A consists solely of odd numbers. The first case
violates our hypothesis, so our proof is complete. (I

Remark 2.4. Proposition 2.3 is best possible, as can be seen by taking A as the
set of positive integers that are either 2 or 3 modulo 5.

We now prove the following result which immediately implies Theorem 1.1.

Proposition 2.5. Suppose that A is a sum-free set of positive integers with least
member ag. Suppose in addition that agA is disjoint from A. Then the upper

density of A is at most max{2, (1 — ﬁ)}

Proof. If the upper density of A is at most %, the result holds trivially, so we may
assume the upper density exceeds % It follows from Proposition 2.3 that A consists
solely of odd numbers. Thus, for any real number x > ag, both agA(x/ag) and
A(x) consist solely of odd numbers, they are disjoint, and they lie in [1,z]. Thus,

T T 1
il Z )<z i
|A(x)+‘A(aO> apA <a0> < 2x+0(1)
Further A(x) \ A(z/ap) is contained within the odd numbers in (x/ag, z], so that
x 1 T

Adding these two inequalities and dividing by 2 gives that |A(z)| < (5 — ﬁ)x +
O(1), so that A has upper density at most % — ﬁ, giving the result. O

= JA@) +

|A(2)| =




3. An upper bound for the density in Z/nZ

In this section we prove Theorem 1.2. We begin by noting the following simple
consequence of Proposition 2.3.

Proposition 3.1. Suppose that n is a positive integer and A C Z/nZ is sum-free.
If D(A) > %, then n is even and A is a subset of the odd residues classes in Z/nZ.

Proof. Replace A with A, the set of positive numbers in the residue classes in A.
Then A has density D(A) and is sum-free. It follows from Proposition 2.3 that all
members of A are odd. If n were odd, then A would contain both odd and even
members, so we must have n even and A a subset of the odd residue classes in
Z/nZ. This completes the proof. |

We are now ready to prove Theorem 1.2. For those n with D*(n) < %, the result
holds for any number x, so assume that D*(n) > 2. Let A C Z/nZ be a product-
free, sum-free set with D(A) = D*(n). By Proposition 3.1, we have that n is even
and that A is a subset of the odd residues modulo n. Suppose that k is an integer
with n < 2% < 2n. Let N = 2%n and let B be the set of positive integers of the
form 27b where j < k and b < N/27 = 22k=in_ such there is some a € A with b = a
(mod n). Then the members of B are in [1, N] and

k
) 1
_ 2k—j _ ok (ok+1 _ 1) 52641
(3.1) 1B| = Zz A = 2% (2 1) Al > (1 n) 22h+L| 4].
7=0
‘We note that B is product-free as a set of residues modulo N. Indeed, suppose
2Jib; € B, for i = 1,2,3 and

2911 292by = 293h3  (mod N).

Let a; € A be such that b; = a; (mod n) for i = 1,2,3. We have that aq,as, az are
odd, and since n is even, this implies that by, ba, bs are odd. Using ji1+7j2 < 2k, j3 < k
and 2%*|N, we have j; + j» = js. Hence ajaz = a3 (mod n), a violation of the
assumption that A is product-free modulo n. We conclude that B is product-free
modulo N.

It now follows from Theorem 1.1 in [6] that for n sufficiently large,

c
BI<N([1- s .
1Bl < ( (loglogN)l_z10%2(10g10g10gN)1/2)

Further, since N is of order of magnitude n3, we have that loglog N = loglogn +
O(1), and so for any fixed choice of ¢y < ¢ we have for n sufficiently large that

co
(loglogn)'=21°82(loglog log n)1/2 ) '

|B|§N(1—
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Thus, from our lower bound for |B] in (3.1) we have

A|< N . 1 -1 ) Co
A< g (1, ~ (loglogn)'~ 5152 (loglog log n)1/2 )~

Since N/22k+1 = n/2, it follows that for any fixed ¢; < ¢y and n sufficiently large,
we have

n C1
A<= (1- = .
A 2 ( (loglogn)1_2logz(logloglogn)1/2>
We thus may choose k as any number smaller than ¢/2. This concludes the proof
of Theorem 1.2.

4. Examples with large density

In this section we prove Theorem 1.3. We follow the argument in [5] with a sup-
plementary estimate from [6]. Let = be a large number, let £, be the least common
multiple of the integers in [1, ] and let n, = 2. Then n, = ¢?+°()? a5 2 — 00 s0
that loglogn, = logz+O(1). For a positive integer m, let 2(m) denote the number

e

of prime factors of m counted with multiplicity. Let k = k(z) = [ loglogn.], let
D, ={d|l, : d odd, k < Q(d) < 2k},

and let A be the set of residues a modulo n, with ged(a,n,) € D.. Then A is
product-free (cf. Lemma 2.3 in [5]), and since n, is even and every residue in A is
odd, we have that A is sum-free as well. We shall now establish a sufficiently large
lower bound on D(A) to show that D*(n,) satisfies the inequality in the theorem
with n = n,.

For d € D.,, the number of a (mod n,) with ged(a,ny) = d is p(ny)/d, so that

(4.1) D) = A) 5o L el ( IEEDY 2)
T T dje

deD!, dle,
d odd d odd
dQD;
We have
1 » 1 D 1\"@
> ;= I ;=11 (1—pa+1) =l pl'(l—z)
d|l, 2<p<lz 2<p<lz 2<p<lz
d odd ||y

and, since ¢(n,)/n, =271- [, p>2(1 = 1/p), we find that

w(x)
o(ng) 1.1 1
(4.2) D Dl >
T dlt,
d odd

7(x)

- .

DN =



We now use (6.2) in [6] which is the assertion that

1 log x)% o8 2
Z < ((logglo)gm)l/Q'
P(d)<z
Q(d)g(k,2k)
Here, P(d) denotes the largest prime factor of d. Since this sum includes every odd

integer d|¢, with d ¢ D/, we have

¢(nz) Z 1 p(ng) (loga)slos? < 1

T ny  (loglogx)/2 = (logx)'~3'°82(loglog x)1/2’
d odd
gD,

where we use Mertens’ theorem in the form ¢(n;)/n, = [],<,(1 —1/p) < 1/logx
for the last step. Putting this estimate and (4.2) into (4.1), we get

1 7(x) d

D(A) > - — <
(A) = 2 x (log z)'~31°82(1og log z:)1/2

for some positive constant ¢’. Using 7(z)/x < 1/logz and logz = loglogn,+0O(1),

we have
K:*

1
D(A) > - — s
(A) = 2 (loglogn,)'~2182(logloglogn,)!/2

for any fixed constant xk* > ¢’ and x sufficiently large. Thus, D*(n,) satisfies the
condition of Theorem 1.3 for x sufficiently large, completing the proof.
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