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Abstract. We investigate the level spacing distribution for the quantum spec-
trum of the square billiard. Extending work of Connors–Keating, and Smilan-
sky, we formulate an analog of the Hardy–Littlewood prime k-tuple conjecture
for sums of two squares, and show that it implies that the spectral gaps, after
removing degeneracies and rescaling, are Poisson distributed. Consequently,
by work of Rudnick and Ueberschär, the level spacings of arithmetic toral point
scatterers, in the weak coupling limit, are also Poisson distributed. We also
give numerical evidence for the conjecture and its implications.

1. Introduction

According to the Berry–Tabor conjecture [2], the energy levels for generic
integrable systems should be Poisson distributed in the semiclassical limit. As
noted by Connors and Keating [5], the square billiard, though integrable, is not
generic: due to spectral degeneracies, the level spacing distribution tends to a
δ-function at zero. However, if we remove the degeneracies and rescale so that
the mean spacing is unity, numerics indicate Poisson spacings.
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Figure 1. Rescaled gaps between consecutive energy levels in
r1099, 1099 ` 110000s, after removing degeneracies. The rescaled
gaps have mean one; without rescaling the mean gap is 19.42 ¨ ¨ ¨ .
Number of gaps: 5663. We also plot the density function (red in
color printout) P pxq “ e´x, consistent with Poisson spacings.

The energy levels of the square billiard, say with side length 2π, are num-
ber theoretical in nature, and given by a2 ` b2 for a, b P Z. After removing

Date: April 3, 2017.
1



2 T. FREIBERG, P. KURLBERG, AND L. ROSENZWEIG

degeneracies and rescaling, we are led to study the nearest neighbor spacing
distribution

1

Npxq
#

"

En ď x :
En`1 ´ En
x{Npxq

ă λ

*

(1.1)

(as xÑ 8), where En denotes the nth smallest element of the set
E ..“ ta2

` b2 : a, b P Zu, and Npxq ..“ #tEn ď x : En P Eu. (1.2)
(In our setting, the leading order of the density of states is asymptotically equal
to C{

?
log x as x Ñ 8 [see (1.5)], and hence the spacing distribution of the

unfolded levels
`

CEn{
?

logEn
˘

ně1
is asymptotically the same as that of the

gaps in (1.1).)
Rather than studying the spacing distribution directly, we shall proceed

by investigating unordered k-tuples of elements in E. Thus, given k ě 1 and
h “ th1, . . . , hku Ď Z with #h “ k, consider the correlation function

Rkph;xq ..“
1

x

ÿ

nďx

1Epn` h1q ¨ ¨ ¨1Epn` hkq, (1.3)

where 1E denotes the indicator function of E. If h “ t0u, this is the level density

R1pxq ..“
Npxq

x
. (1.4)

By a classical result of Landau [23],

R1pxq „
C

?
log x

pxÑ 8q, (1.5)

where C ą 0 is an explicitly given constant (see (2.1)). To formulate an analog
of (1.5) for k ą 1 we need some further notation. Given a prime p ı 1 mod 4,
define

δhppq ..“ lim
αÑ8

#t0 ď a ă pα : @h P h, a` h ” �`� mod pαu

pα
. (1.6)

(That this limit exists is shown in Section 5, see Propositions 5.3 and 5.2.) Further,
for k ě 1 and a set h “ th1, . . . , hku Ď Z with #h “ k, we define the singular
series for h by

Sh
..“

ź

pı1 mod 4

δhppq
`

δt0uppq
˘k
, (1.7)

with δt0uppq and δhppq as in (1.6). We note that δt0uppq ą 0 for all p ı 1 mod 4,
and that the product converges to a nonzero limit if δhppq ą 0 for all p ı 1 mod 4
(see Proposition 5.4). If δhppq “ 0 for some p ı 1 mod 4, we define Sh to be
zero; it is easy to see that Rkph;xq “ 0 for all x if Sh “ 0.

We can now formulate an analog of the Hardy–Littlewood prime k-tuple
conjecture.

Conjecture 1.1. Fix k ě 1, and a set h “ th1, . . . , hku Ď Z with #h “ k. If Sh ą 0,
then

Rkph;xq „ Sh

`

R1pxq
˘k

pxÑ 8q. (1.8)
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Our main result, Theorem 1.2 below, is conditional on the hypothesis that (1.8)
holds on average. To be precise, let Ehpxq be defined by the relation

Rkph;xq “..
`

Sh ` Ehpxq
˘`

R1pxq
˘k
. (1.9)

Further, let ∆k be the region in Rk defined by
∆k ..“ tpx1, . . . , xkq P Rk : 0 ă x1 ă ¨ ¨ ¨ ă xku, (1.10)

and, given C Ă ∆k and y P R, let yC be the dilation of C defined by
yC ..“ tpyx1, . . . , yxkq : px1, . . . , xkq P C u.

Our hypothesis is that the error term Ehpxq is small on average over dilates of
certain bounded convex sets.

Hypothesis (k,C ,o). Fix an integer k ě 1, and a bounded convex set C Ă ∆k. Set
o ..“ H, or set o ..“ t0u. Let x and y be real parameters tending to infinity in such a
way that yR1pxq „ 1. There exists a function εpxq, with εpxq Ñ 0 as x Ñ 8, such
that for x sufficiently large in terms of k and C ,

ˇ

ˇ

ˇ

ˇ

ÿ

ph1,...,hkqPyCXZk
EoYhpxq

ˇ

ˇ

ˇ

ˇ

ď εpxq
ÿ

ph1,...,hkqPyCXZk
SoYh, (1.11)

where h “ th1, . . . , hku in both summands.

Under the above hypothesis we find that the spacing distribution (1.1) is
indeed Poissonian. Moreover, the distribution of the number of points in inter-
vals of size comparable to the mean spacing is consistent with that of a Poisson
process. (We remark that our hypothesis can be weakened slightly: see Section
4.)

Theorem 1.2. Let x and y be real parameters tending to infinity in such a way that
yR1pxq „ 1. Fix integers m ě 0 and r ě 1, and fix λ, λ1, . . . , λr P R`. Assume that
Hypothesis (k,C , t0u)) (respectively, Hypothesis (k,C ,H) holds for all k ě 1, and all
bounded, convex sets C Ă ∆k. Then (a) (respectively, (b)) holds.

(a) We have
1

Npxq
#tEn ď x : @j ď r, En`j ´ En`j´1 ď λjyu „

r
ź

j“1

∫λj
0

e´t dt pxÑ 8q.

(1.12)
(b) We have

1

x
#tn ď x : Npn` λyq ´Npnq “ mu „ e´λ

λm

m!
pxÑ 8q. (1.13)

In [28], Rudnick and Ueberschär considered the spectrum of “toral point
scatterers”, namely the Laplace operator, perturbed by a delta potential, on two
dimensional tori. They showed (cf. [28, Corollary 1.3]) that the level spacings
of the perturbed eigenvalues, in the weak coupling limit, have the same distri-
bution as the level spacings of the unperturbed eigenvalues (after removing
multiplicities.) An interesting consequence of Conjecture 1.1 (or, to be precise,
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Hypothesis (k,C , t0u)), is thus that the Berry–Tabor conjecture holds for toral
point scatterers, in the weak coupling limit, for arithmetic tori of the form R2{Z2.

We remark that Gallagher [8] proved the analog of Theorem 1.2 (b) for primes.
As in Gallagher’s proof, a key technical result is that the singular series is of
average order one, over certain geometric regions.

Proposition 1.3. Fix an integer k ě 1, and a bounded convex set C Ă ∆k. Set
o ..“ H, or set o ..“ t0u. As y Ñ 8, we have

ÿ

ph1,...,hkqPyCXZk
SoYh “ yk

´

volpC q `O
`

y´2{3`op1q
˘

¯

, (1.14)

where h “ th1, . . . , hku in the summand, and vol stands for volume in Rk.

We note that any qualitative error term in Proposition 1.3 is sufficient to
deduce Theorem 1.2. (See Remark 6.6 at the end of Section 6 for a brief outline
how Ford’s [7] and Pintz’s [26] simplification of Gallagher’s arguments can be
adapted to give a weaker error term in Proposition 1.3.)

Acknowledgements. We thank Z. Rudnick for stimulating discussions on
the subject matter, D. Koukoulopoulos for his comments on an early version of
the paper, and the anonymous referee for helpful comments. T. F. was partially
supported by a grant from the Göran Gustafsson Foundation for Research in
Natural Sciences and Medicine. P. K. and L. R. were partially supported by
grants from the Göran Gustafsson Foundation for Research in Natural Sciences
and Medicine, and the Swedish Research Council (621-2011-5498).

2. Discussion

Connors and Keating [5] determined the singular series for shifted pairs of
sums of two squares, giving a probabilistic derivation of Conjecture 1.1 in the
special case k “ 2, and found that it matched numerics quite well (to within
2%). Smilansky [30] then expressed the singular series for pairs as products of
p-adic densities, showing that its mean value (over short intervals of shifts) is
consistent with a Poisson distribution, and that the same is true for sums of two
squares, on assuming a uniform version of Conjecture 1.1 for k “ 2. Smilansky
also gave the singular series for triples corresponding to the shifts h “ t0, 1, 2u.

As already mentioned, the analog of Theorem 1.2 (b) for primes is due to
Gallagher, who in [8] showed that an appropriate form of the Hardy–Littlewood
prime k-tuples conjecture implies the prime analog of (1.12). (That it implies
the prime analog of (1.13) is mentioned in Hooley’s survey article [13, p. 137].)
To show that the singular series is one on average (i.e., the prime analog of
Proposition 1.3), Gallagher uses combinatorial identities for Stirling numbers of
the second kind. In [19], Kowalski developed an elegant probabilistic framework
for evaluating averages of singular series. Rather than using combinatorial
identities, Kowalski showed that a certain duality between k-th moments of
m-tuples and m-th moments of k-tuples holds [19, Theorem 1]. That the k-
th moment of 1-tuples is equal to one is more or less trivial, but, by duality,
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Kowalski obtains the non-trivial consequence that first moments of k-tuples is
also equal to one. (Note that (1.14) can be viewed as a first moment of k-tuples
when o “ H.)

Our approach originates with techniques developed in [20,21], and further
refined in [10,22]. Loosely speaking, the singular series Sh is expanded into
local factors of the form 1` εhppq, and thus

Sh “
ź

p

p1` εhppqq “
ÿ

dě1
squarefree

εhpdq,

where εhp1q “ 1 and εhpdq ..“
ś

p|d εhppq. Hence
ÿ

h

Sh “
ÿ

dě1
squarefree

ÿ

h

εhpdq,

and the main term is given by d “ 1. For d large, |εhpdq| can be shown to be
small on average. For d small, we use that εhpdq (approximately) only depends
on h mod d, together with complete cancellation when summing over the full
set of residues modulo d, i.e.,

ř

h mod d εhpdq “ 0. This follows, via the Chinese
remainder theorem, from local cancellations

ř

h mod p εhppq “ 0, which in turn
can be deduced from the following easily verifiable identity: given any subset
Xp Ď Z{pZ, we have (see Lemma 6.3 (b) and its proof for more details):

ÿ

ph1,h2,...,hkq P pZ{pZqk

ÿ

m PZ{pZ
@iďk,m`hi PXp

1 “
ÿ

ph1,h2,...,hkq P pXpqk

1

However, unlike the setup in [10,20,22], where the local error term εhppq is
determined by h mod p, in the current setting, it is not determined by h mod pα,
for any fixed α. On the other hand, the function h Ñ εhppq has nice p-adic
regularity properties, allowing us to approximate εhppq by truncations εhppαq,
which do only depend on h mod pα, and for which εhppq ´ εhppαq ! 1{pα´1 for
all α. Apart from making the argument more complicated, this also results in
a weaker error term: if εhppq only depended on h mod p, in (1.14) we would
get a relative error of size y´1`op1q, rather than y´2{3`op1q. We also note that
David, Koukoulopoulos, and Smith [6], in studying statistics of elliptic curves,
have developed quite general methods for finding asymptotics of weighted
sums

ř

hwhSh, provided that the local factors have p-adic regularity properties
similar to those referred to above. In fact, Proposition 1.3, though with a weaker
error term, can be deduced from [6, Theorem 4.2].

We finally remark that the corresponding question in the function field
setting is better understood: Bary–Soroker and Fehm [1] have recently shown
that the sums of two squares analog of the k-tuple conjecture holds in the large
q-limit for the function field setting (e.g., replacing Z by FqrT s, and Zris by
Fqr
?
´T s).

2.1. Evidence towards Conjecture 1.1. We begin by stating a qualitative ver-
sion of Conjecture 1.1.
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Conjecture 2.1. Fix k ě 1, and a set h “ th1, . . . , hku Ď Z with #h “ k. If Sh ą 0,
then there exist infinitely many integers n such that n` h Ď E.

We remark that whether or not Sh ą 0 can be determined by a finite computa-
tion: this follows from Propositions 5.2 and 5.3. Examples of sets h for which
Sh “ 0 are t0, 1, 2, 3u and t0, 1, 2, 4, 5, 8, 16, 21u: any translate of t0, 1, 2, 3u con-
tains an integer congruent to 3 modulo 4, and hence δhp2q “ 0; any translate
of t0, 1, 2, 4, 5, 8, 16, 21u contains an integer congruent to 3 or 6 modulo 9, and
hence δhp3q “ 0.

It is possible to show that Sh ą 0 for any set h containing at most three inte-
gers. The question of whether, for any h1, h2, h3 P Z, we have n`th1, h2, h3u Ď E
for infinitely many n, was apparently raised by Littlewood, and was answered
in the affirmative by Hooley [14], using the theory of ternary quadratic forms.
Conjecture 2.1 remains open for k ě 4.

For fixed k ě 1, and h “ th1, . . . , hkuwith #h “ k, the upper bound
ÿ

nďx

1Epn` h1q ¨ ¨ ¨1Epn` hkq !k
x

plog xqk{2

ź

p”3 mod 4
p|hj´hj

some i ă j

ˆ

1`
k

p

˙

,

can be deduced from Selberg’s sieve (see [29]), which is of the correct order of
magnitude, according to Conjecture 1.1. The special case h “ t0, 1u is due to
Rieger [27]; the special case h “ t0, 1, 2u is due to Cochrane and Dressler [4];
the general case is due to Nowak [25].

Lower bounds are more subtle. For k “ 2, Hooley [15] and Indlekofer [16]
showed that, for any nonzero integer h,

ÿ

nďx

1Epnq1Epn` hq "
x

log x

ź

p|h
p”3 mod 4

ˆ

1`
1

p

˙

,

but we are not aware of any such bounds for k ě 3.
Assuming that a certain analog of the Elliott–Halberstam conjecture holds

for sums of two squares, it is possible to deduce, from a result of Iwaniec [17,
Theorem 4], the asymptotic

ř

nďx 1Epnq1Epn ` 1q „ x{p2 log xq, as x Ñ 8, in
agreement with the aforementioned conjecture of Connors and Keating [5], and
Conjecture 1.1. (See (2.3), and Figure 2 for a numerical comparison.) We remark
that, on a slightly weaker formulation of an Elliott–Halberstam analogue for
sums of two squares, Iwaniec [17, Corollary 2, (2.3)] gives

ř

nďx 1Epnq1Epn `
1q „ 3x{p8 log xq, as x Ñ 8. (Few details are given, so it is hard to pinpoint
the discrepancy in the constants; possibly the contribution from those n with
n ” 0 mod 8 is not taken into account).

2.2. Numerical evidence. Using Propositions 5.2 (b), (c) and 5.3 (b), (c), we
can give Sh explicitly, as in the following examples. Let us first record that the
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constant C in (1.5) is the Landau–Ramanujan constant, given by

C ..“
1
?

2

ź

p”3 mod 4

ˆ

1´
1

p2

˙´1{2

“ 0.764223 . . . . (2.1)

It is straightforward to verify that

St0,1u “
1

2C2
“ 0.856108 . . . . (2.2)

If (1.8) holds with h “ t0, 1u then, by (1.5) and (2.2),

Npt0, 1u;xq ..“
ÿ

nďx

1Epnq1Epn` 1q „
x

2C2

`

R1pxq
˘2
„

x

2 log x
pxÑ 8q. (2.3)

The agreement with numerics is quite good (to within 1%).

x Npt0, 1u;xq xSt0,1upR1pxqq
2 Ratio

1000000000 25927011 25690391.1 1.00921
2000000000 50042411 49603435.5 1.00885
3000000000 73560246 72930222.0 1.00864
4000000000 96705170 95891759.7 1.00848
5000000000 119584162 118589346.3 1.00839
6000000000 142253331 141080935.2 1.00831
7000000000 164749254 163403937.1 1.00823
8000000000 187100631 185584673.5 1.00817
9000000000 209327440 207642640.3 1.00811

Figure 2. Observed data vs prediction for h “ t0, 1u.

As the simplest example with k “ 3, we verify that

St0,1,2u “
A

4C2
, A ..“

ź

p”3 mod 4

ˆ

1´
2

ppp´ 1q

˙

,

so Conjecture 1.1 implies that

Npt0, 1, 2u;xq ..“
ÿ

nďx

1Epnq1Epn` 1q1Epn` 2q „
Ax

4C2

`

R1pxq
˘3
„

ACx

4plog xq3{2

as xÑ 8. The agreement between numerics and model is only to within 10%.

3. Notation

We define the set of natural numbers as N ..“ t1, 2, . . .u. The letter p stands for
a prime, n for an integer. We let �`� stand for a generic element of E, possibly
a different element each time. Thus, for instance, a`h ” �`� mod pα denotes
that a ` h ” E mod pα for some E P E. We view k as a fixed natural number,
and h as a nonempty, finite set of integers, with #h “ k unless otherwise
indicated. We let n` h ..“ tn` h : h P hu. For n P N, ωpnq denotes the number
of distinct prime divisors of n, νppnq the p-adic valuation of n. (We also define
νpp0q ..“ 8.) That νppnq “ α may also be denoted by pα || n. The radical of
n is radpnq ..“

ś

p|n p, not to be confused with the squarefree part of n, viz.
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x Npt0, 1, 2u;xq xSt0,1,2upR1pxqq
3 Ratio

1000000000 1490691 1362419.3 1.09415
2000000000 2818128 2584683.5 1.09032
3000000000 4093602 3762317.2 1.08805
4000000000 5338091 4912433.3 1.08665
5000000000 6560430 6042800.3 1.08566
6000000000 7764604 7157833.6 1.08477
7000000000 8954282 8260369.7 1.08400
8000000000 10132295 9352396.2 1.08339
9000000000 11299877 10435380.5 1.08284

Figure 3. Observed data vs prediction for h “ t0, 1, 2u.

sfpnq ..“
ś

p||n p. By the least residue of an integer a modulo n we mean the
integer r such that a ” r mod n and 0 ď r ă n. When written in an exponent,
α mod 2 is to be interpreted as the least residue of α modulo 2: for instance,
pα mod 2 “ 1 if α is even.

We view x as a real parameter tending to infinity. Expressions of the form
A „ B denote that A{B Ñ 1 as x Ñ 8. We also view y as real parameter
tending to infinity, typically in such a way that yR1pxq „ 1, i.e. y „ x{Npxq. We
may assume that x and y are sufficiently large in terms of any fixed quantity.
Expressions of the form A “ OpBq, A ! B andB " A all denote that |A| ď c|B|,
where c is some positive constant, throughout the domain of the quantityA. The
constant c is to be regarded as independent of any parameter unless indicated
otherwise by subscripts, as in A “ OkpBq (c depends on k only), A !k,λ B (c
depends on k and λ only), etc. By op1qwe mean a quantity that tends to zero as
y Ñ 8.

4. Deducing Theorem 1.2 from Proposition 1.3

Given~ι “ pi1, . . . , irq P Nr such that i1`¨ ¨ ¨`ir “ k, and ~λ “ pλ1, . . . , λrq P Rr,
let

Θ~ι,~λ
..“ tpx1, . . . , xkq P ∆k : xi1`¨¨¨`ij ´ xi1`¨¨¨`ij´1

ď λj, j “ 1, . . . , ru, (4.1)

where for j “ 1 we let xi1`ij´1
“ x0

..“ 0. In the case where r “ 1 and ~λ “ pλq,

Θ~ι,~λ “ Θk,λ
..“ tpx1, . . . , xkq P Rk : 0 ă x1 ă ¨ ¨ ¨ ă xk ď λu. (4.2)

The following proof shows that Theorem 1.2 (a) and (b) hold under slightly
weaker hypotheses than the ones stated: for (a), it is enough to assume that
Hypothesis (k,Θ~ι,~λ, t0u), where~ι “ pi1, . . . , irq and ~λ “ pλ1, . . . , λrq, holds for
all k ě r, and all~ι P Nr satisfying i1`¨ ¨ ¨` ir “ k; for (b), it is enough to assume
that Hypothesis (k,Θk,λ,H) holds for all k ě 1.

Deduction of Theorem 1.2. As this argument has appeared many times in the
literature, we merely give an outline of it and provide references. (a) To ease
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notation, we let~ι “ pi1, . . . , irq, ~h “ ph1, . . . , hkq, h “ th1, . . . , hku, and

Npt0u Y h;xq ..“
ÿ

nďx

1Epnq1Epn` h1q ¨ ¨ ¨1Epn` hkq.

Let ` ě 0 be an integer, arbitrarily large but fixed. An inclusion-exclusion
argument (see [12], [20, Appendix A] or [18, Key Lemma 2.4.12]) shows that

r`2``1
ÿ

k“r

p´1qk´r
ÿ

i1`¨¨¨`ir“k

ÿ

~h P yΘ
~ι,~λ
XZk

Npt0u Y h;xq

ď
ÿ

Enďx
En`j´En`j´1ďλjy

j“1,...,r

1 ď
r`2`
ÿ

k“r

p´1qk´r
ÿ

i1`¨¨¨`ir“k

ÿ

~h P yΘ
~ι,~λ
XZk

Npt0u Y h;xq,

(4.3)
the sums over i1 ` ¨ ¨ ¨ ` ir “ k, here and below, being over all~ι P Nr for which
i1 ` ¨ ¨ ¨ ` ir “ k. We make the substitution (1.9), with t0u Y h and k ` 1 in
place of h and k; we apply Hypothesis (k,Θ~ι,~λ, t0u) for all k and ~ι satisfying
r ď k ď r ` 2` ` 1 and i1 ` ¨ ¨ ¨ ` ir “ k; we use Proposition 1.3, and our
assumption that yR1pxq „ 1, i.e. y „ x{Npxq, as xÑ 8. Thus, we deduce from
(4.3) that

r`2``1
ÿ

k“r

p´1qk´r
ÿ

i1`¨¨¨`ir“k

volpΘ~ι,~λq ď lim inf
xÑ8

1

Npxq

ÿ

Enďx
En`j´En`j´1ďλjy

j“1,...,r

1, (4.4)

and

lim sup
xÑ8

1

Npxq

ÿ

Enďx
En`j´En`j´1ďλjy

j“1,...,r

1 ď
r`2`
ÿ

k“r

p´1qk´r
ÿ

i1`¨¨¨`ir“k

volpΘ~ι,~λq. (4.5)

Since volpΘ~ι,~λq “ λi11 ¨ ¨ ¨λ
ir
r {pi1! ¨ ¨ ¨ ir!q, the sums on the left and right of (4.4)

and (4.5) are truncations of the Taylor series for p1 ´ e´λ1q ¨ ¨ ¨ p1 ´ e´λrq. We
have chosen ` arbitrarily large, so we may conclude that (1.12) holds, provided
Hypothesis (k,Θ~ι,~λ, t0u) does whenever k ě r and i1 ` ¨ ¨ ¨ ` ir “ k.

(b) We use an argument of Gallagher [8], who proved an analogous result
for primes. Let ` ě 1 be an integer, arbitrarily large but fixed. We have
ÿ

nďx

`

Npn` λyq ´Npnq
˘`
“

ÿ

nďx

ˆ

ÿ

0ăhďλy

1Epn` hq

˙`

“
ÿ

nďx

ÿ

0ăh1,...,h`ďλy

1Epn` h1q ¨ ¨ ¨1Epn` h`q

“
ÿ̀

k“1

%p`, kq
ÿ

0ăh1ă¨¨¨ăhkďλy

ÿ

nďx

1Epn` h1q ¨ ¨ ¨1Epn` hkq,
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where %p`, kq denotes the number of maps from t1, . . . , `u onto t1, . . . , ku. Thus,

1

x

ÿ

nďx

`

Npn` λyq ´Npnq
˘`
“

ÿ̀

k“1

ˆ

Npxq

x

˙k

%p`, kq
ÿ

0ăh1ă¨¨¨ăhkďλy

`

Sh ` Ehpxq
˘

,

with h “ th1, . . . , hku in the last summand. To sum over 0 ă h1 ă ¨ ¨ ¨ ă hk ď λy
is to sum over ph1, . . . , hkq P yΘk,λ X Zk (see (4.2)). If Hypothesis (k,Θk,λ,H)
holds then for some function εpxqwith εpxq Ñ 0 (xÑ 8), we have

ÿ

0ăh1ă¨¨¨ăhkďλy

`

Sh ` Ehpxq
˘

“
`

1`Oλ,kpεpxqq
˘

ÿ

0ăh1ă¨¨¨ăhkďλy

Sh.

Applying Proposition 1.3 (noting that volpΘk,λq “ λk{k!), and our assumption
that yR1pxq „ 1, i.e. y „ x{Npxq, as xÑ 8, we see that if Hypothesis (k,Θk,λ,H)
holds for 1 ď k ď `, then

1

x

ÿ

nďx

`

Npn` λyq ´Npnq
˘`
„

ÿ̀

k“1

%p`, kq
λk

k!
pxÑ 8q. (4.6)

Gallagher’s calculation in [8, Section 3] shows that
ř`
k“1 %p`, kqλ

k{k! is the `th
moment of the Poisson distribution with parameter λ, and that the correspond-
ing moment generating function is entire. Since a Poisson distribution is deter-
mined by its moments, it follows (see [3, Section 30]) that for any given m ě 0,
(1.13) holds as xÑ 8, provided Hypothesis (k,Θk,λ,H) holds for all k ě 1. �

5. Preliminaries

A positive integer n is a sum of two squares if, and only if,

n “ 2β2
ź

p”1 mod 4

pβp
ź

p”3 mod 4

p2βp ,

where β2, βp denote nonnegative integers. (See [11, Theorem 366].) In view of
this and the next proposition, whose proof, being routine and elementary, is
omitted, we have E “XpSp, where Sp “Xαě1tn P Z : n ” �`� mod pαu.
Further, as Sp “ Z for primes p ” 1 mod 4, we may write E “Xpı1 mod 4Sp.

Proposition 5.1. Let n P Z. We have n P S2 if, and only if, either n “ 0 or n “ 2βm
for some β ě 0 and m ” 1 mod 4. For p ” 3 mod 4, we have n P Sp if, and only if,
either n “ 0 or n “ p2βm for some β ě 0 and m ı 0 mod p. For p ” 1 mod 4, we
have Sp “ Z.

Let us introduce some notation in order to state further results. Given a
nonempty, finite set h Ď Z, let

detphq ..“
ź

h,h1Ph
hąh1

ph´ h1q ą 0. (5.1)

Note that if p ď k ´ 1, where k “ #h, then two elements of h occupy the same
congruence class modulo p, so p | detphq. In other words, if p - detphq then
k ď p.
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Let
hp ..“ th1 P h : ´h1 ` h Ď Spu. (5.2)

Note that h2 contains at most one element, for if h, h1 P h2 then ˘ph´ h1q P S2,
which by Proposition 5.1 holds only if h ´ h1 “ 0. Similarly, if k “ 1 or k “ 2,
then #h2 “ 1. By Proposition 5.1, hp for p ” 3 mod 4 consists precisely of those
elements h1 of h for which 2 | νpph´ h

1q for every h P hwith h ‰ h1. (Recall that
νppnq denotes the p-adic valuation of n.) For instance, if p - detphq then hp “ h.

Given α ě 1, let
Thp2

α`1
q ..“ t0 ď a ă 2α`1 : a` h Ď S2 and maxhPhν2pa` hq ă αu. (5.3)

By Proposition 5.1, this is the (possibly empty) set of least residues a modulo
2α`1 such that, for each h P h, there is some β ď α ´ 1 and m ” 1 mod 4 such
that a` h “ 2βm. Finally, for p ” 3 mod 4, let

Thpp
α
q ..“ t0 ď a ă pα : a` h Ď Sp and maxhPhνppa` hq ă αu. (5.4)

This is the (possibly empty) set of least residues a modulo pα such that, for each
h P h, there exists β ď pα ´ 1q{2 for which p2β || a` h. Note that, for α ě 2 and
odd p, the difference between Thp2

αq and Thpp
αq is that Thp2αq contains only

integers a for which maxhPh ν2pa ` hq ď α ´ 2, whereas Thppαq contains a for
which maxhPh νppa` hq ď α´ 1. As may be expected in view of Proposition 5.1,
we will need to treat p “ 2 as a separate case throughout.

Recall from (1.6) that δhppq ..“ limαÑ8 #Shpp
αq{pα, where

Shpp
α
q ..“ t0 ď a ă pα : @h P h, a` h ” �`� mod pαu.

We have introduced Thppαq because it is more convenient than Shppαq to work
with. It is not difficult to see that, for p ı 1 mod 4, 0 ď #Shpp

αq ´ #Thpp
αq ď 1

once α is sufficiently large. (One may verify Proposition 5.1 by showing that
n ” �`� mod 2α if, and only if, n ” 2βm mod 2α for some β ě 0 and odd m,
and, for p ” 3 mod 4, that n ” �`� mod pα if, and only if, n ” p2βm mod pα

for some β ě 0 and m ı 0 mod p.) Thus, the limit δhppq exists if, and only if,
limαÑ8 #Thpp

αq{pα exists, in which case the two limits are equal.
In the next two propositions, and throughout, we allow for the possibility

that k “ 1. In case h “ th1u, we define maxi‰j νpphi ´ hjq to be zero (and
detphq ..“ 1).

Proposition 5.2. Let h “ th1, . . . , hku be a set of k ě 1 distinct integers.
(a) The limits δhp2q (see (1.6)) and limαÑ8 #Thp2

α`1q{2α`1 exist, and are equal:

δhp2q “ lim
αÑ8

#Thp2
α`1q

2α`1
. (5.5)

Moreover, for all α ě 1, we have
ˇ

ˇ

ˇ

ˇ

#Thp2
α`1q

2α`1
´ δhp2q

ˇ

ˇ

ˇ

ˇ

ď
k

2α
. (5.6)
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(b) For any α ě 2`maxi‰j ν2phi ´ hjq, we have

δhp2q “
#Thp2

α`1q ` #h2

2α`1
, (5.7)

the right-hand side being constant for α in this range.
(c) If 2 - detphq (in which case k ď 2), then δhp2q “ p1{2qk. As a special case, we

record here that δt0up2q “ 1{2.

Proof. In essence, we use a Hensel-type argument: for α ě 1, the condition
that n ” �`� mod 2α can be lifted to n ” �`� mod 2α`1, unless n “ 2αm for
some m ” 3 mod 4.

(a) As already noted, to show that δhp2q and the right-hand side of (5.5)
exist and are equal, it suffices to show that the right-hand side of (5.5) exists.
Let α ě 1, and let 0 ď b ă 2α`2, so b “ a ` 2α`1q, where 0 ď a ă 2α`1 and
either q “ 0 or q “ 1. Suppose that, for each i, there exists βi ď α ´ 1 and
mi ” ˘1 mod 4 such that b ` hi “ 2βimi. Then, for each i, a ` hi “ 2βim1

i and
a ` 2α`1 ` hi “ 2βim2

i , where m1
i ” m2

i ” mi mod 4. Recalling Proposition 5.1
and definition (5.3), we see that the following statements are equivalent: (i)
b P Thp2

α`2q; (ii) both a and a` 2α`1 are in Thp2α`2q; (iii) a P Thp2α`1q.
We have shown that we have a partition

Thp2
α`2
q “ ta, a` 2α`1 : a P Thp2

α`1
qu Y Uhp2

α`2
q,

where
Uhp2

α`2
q ..“ t0 ď b ă 2α`2 : b` h Ď S2 and maxhPhν2pb` hq “ αu

is the set of elements b of Thp2α`2q for which ν2pb ` hjq “ α for some hj P h.
Any element of Uhp2α`2q is a least residue of ˘2α´hj for some hj P h, of which
there are at most 2k. We see that

#Thp2
α`2q

2α`2
´

#Thp2
α`1q

2α`1
“

#Uhp2
α`2q

2α`2
ď

k

2α`1
.

Consequently, for any β with β ě α, we have

0 ď
#Thp2

β`1q

2β`1
´

#Thp2
α`1q

2α`1
“

β´α
ÿ

r“1

#Uhp2
α`r`1q

2α`r`1
ă

k

2α
.

It follows that the limit on the right-hand side of (5.5) exists, and that (5.6) holds
for all α ě 1.

(b) Assume that α ě 2`maxi‰j ν2phi ´ hjq. Suppose that, for some j, there
exists q such that b` hj “ 2αp1` 2qq. We have b` hj P S2 if, and only if, 2 | q,
equivalently, b ` hj ” 2α mod 2α`2. For i ‰ j we may write hi ´ hj “ 2βijmij

with βij ď α ´ 2 and mij ” ˘1 mod 4. Thus,
b` hi “ 2βijpmij ` 2α´βijp1` 2qqq

is in S2 if, and only if, mij ” 1 mod 4, equivalently, hi ´ hj P S2. By definition
of h2, this holds for each i ‰ j if, and only if, hj P h2. We have shown that
b P Thp2

α`2q and ν2pb` hjq “ α for some hj P h if, and only if, h2 is nonempty,



POISSON SPACINGS BETWEEN SUMS OF TWO SQUARES 13

hj is the (necessarily unique) element of h2, and b` hj ” 2α mod 2α`2. Thus,
Uhp2

α`2
q “ t0 ď b ă 2α`2 : Dh1 P h2, b ” 2α ´ h1 mod 2α`2

u,

and #Uhp2
α`2q “ #h2. Also, #Thp2

α`2q “ 2#Thp2
α`1q ` #h2. Hence

#Thp2
α`2q ` #h2

2α`2
“

#Thp2
α`1q ` #h2

2α`1
.

(c) Suppose 2 - detphq. If k “ 1, i.e. if h “ th1u, then the elements of Thp8q are
precisely the least residues of 1´ h1, 2´ h1 and 5´ h1 modulo 8. Also, h2 “ h.
If k “ 2, i.e. if h “ th1, h2u, then either h2 ´ h1 ” 1 mod 4 or h1 ´ h2 ” 1 mod 4.
Without loss of generality, suppose h2 ´ h1 ” 1 mod 4. Then the sole element
of Thp8q is the least residue of h2 ´ 2h1 modulo 8. Also, h2 “ th1u. Therefore,
by (b), δhp2q “ p1{2qk. �

For the next proposition, recall that α mod 2, when written in an exponent,
denotes the least residue of α modulo 2. For instance, pα mod 2 “ 1 if α is even.

Proposition 5.3. Let h “ th1, . . . , hku be a set of k ě 1 distinct integers, and let p be
a prime with p ” 3 mod 4.

(a) The limits δhppq (see (1.6)) and limαÑ8 #Thpp
αq{pα exist, and are equal:

δhppq “ lim
αÑ8

#Thpp
αq

pα
. (5.8)

Moreover, for all α ě 1, we have
ˇ

ˇ

ˇ

ˇ

#Thpp
αq

pα
´ δhppq

ˇ

ˇ

ˇ

ˇ

ď
k

pα

ˆ

1`
1

p

˙´1
1

pα mod 2
. (5.9)

(b) For any α ě 1`maxi‰j νpphi ´ hjq, we have

δhppq “
1

pα

ˆ

#Thpp
α
q ` #hp

ˆ

1`
1

p

˙´1
1

pα mod 2

˙

, (5.10)

the right-hand side being constant for α in this range.
(c) We have

δhppq ě

ˆ

1`
1

p

˙´1ˆ

1´
mintk ´ 1, pu

p

˙

, (5.11)

with equality attained if p - detphq (in which case k ď p). As a special case, we record
here that δt0uppq “ p1` 1{pq´1.

Proof. (a) As noted above the statement of Proposition 5.2, to show that δhppq
and the right-hand side of (5.8) exist and are equal, it suffices to show that
the right-hand side of (5.8) exists. Let α ě 1 and let 0 ď b ă pα`1. Thus,
b “ a ` pαq, where 0 ď a ă pα and 0 ď q ă p. Suppose that, for each i, there
exists βi ď α ´ 1 and mi ı 0 mod p such that b ` hi “ pβimi. Then, for each i
and each q1, 0 ď q1 ă p, we have a`pαq1`hi “ pβim1

i, wherem1
i ” mi ı 0 mod p.

Recalling Proposition 5.1 and definition (5.4), we see that the following are
equivalent: (i) b P Thppα`1q; (ii) a ` pαq1 ` hi P Thpp

α`1q for 0 ď q1 ă p; (iii)
a P Thpp

αq.
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We have shown that we have a partition
Thpp

α`1
q “ ta` pαq : a P Thpp

α
q, 0 ď q ă pu Y Uhpp

α`1
q,

where
Uhpp

α`1
q ..“ t0 ď b ă pα`1 : b` h Ď Sp and maxhPhνppb` hq “ αu

is the set of elements b of Thppα`1q for which νppb ` hjq “ α for some hj P h.
Plainly, Uhppα`1q is empty if α is odd. (If b ` h Ď Sp then, by Proposition 5.1,
νppb ` hjq is even, and hence not equal to any odd α.) Also, any element of
Uhpp

α`1q is a least residue of pαq ´ hj mod pα`1, for some 0 ă q ă p and hj P h,
of which there are at most pp´ 1qk. We see that

#Thpp
α`1q

pα`1
´

#Thpp
αq

pα
“

#Uhpp
α`1q

pα`1
, (5.12)

and that
0 ď

#Uhpp
α`1q

pα`1
ď

ˆ

1´
1

p

˙

k

pα
, (5.13)

with equality on the left if α is odd. Consequently, for any β with β ě α, we have

0 ď
#Thpp

βq

pβ
´

#Thpp
αq

pα
“

β´α
ÿ

r“1

#Uhpp
α`rq

pα`r
ă

ˆ

1´
1

p

˙

k

pα

ÿ

r´1ě0
r´1”α mod 2

1

pr´1
.

Since this last sum is equal to 1{p1´ 1{p2q if α is even, and to 1{ppp1´ 1{p2qq if
α is odd, we have

0 ď
#Thpp

βq

pβ
´

#Thpp
αq

pα
ă

k

pα

ˆ

1`
1

p

˙´1
1

pα mod 2
.

It follows that the limit on the right-hand side of (5.8) exists, and that (5.9) holds
for all α ě 1.

(b) Let 0 ď b ă pα`1, and assume now that α ě 1 ` maxi‰j νpphi ´ hjq.
Suppose that, for some j, we have b ` hj “ pαmj for some mj ı 0 mod p. We
have b`hj P Sp if, and only if, α is even. Let i ‰ j. We may write hi´hj “ pβijmij

with βij ď α´ 1 and mij ı 0 mod p. Thus, b` hi “ pβijpmij ` p
α´βijmjq is in Sp

if, and only if, βij is even, equivalently, hi ´ hj P Sp. By definition of hp, this
holds for each i ‰ j if, and only if, hj P hp. In that case, for 0 ď q1 ă p with
q1 ı ´mj mod p, we have b` pαq1 ` hi P Sp and νppb` pαq1 ` hiq “ βij ă α for
i ‰ j; b` pαq1` hj P Sp if, and only if, b` hj P Sp, and νppb` pαq1` hjq “ α. For
q1 ” ´mj mod p, νppb` pαq1 ` hjq ą α.

Thus, if Uhppα`1q ‰ H, then α is even and hp ‰ H; and if b P Uhppα`1q, then
the hj for which νppb` hjq “ α is uniquely determined by b and must lie in hp.
If α is even, then, writing hj “ pαqj ` rj , with 0 ď rj ă pα, we see that

Uhpp
α`1
q “YhjPhptp

α
pq1 ` 1q ´ rj : 0 ď q1 ă p, q1 ı ´qj mod pu.
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Thus, #Thpp
α`1q “ p#Thpp

αq if α is odd, and #Thpp
α`1q “ p#Thpp

αq`pp´1q#hp
if α is even. Consequently, if α is odd, then

1

pα`1

ˆ

#Thpp
α`1
q ` #hp

p

p` 1

˙

“
1

pα

ˆ

#Thpp
α
q ` #hp

1

p` 1

˙

,

while if α is even, then
1

pα`1

ˆ

#Thpp
α`1
q ` #hp

1

p` 1

˙

“
1

pα

ˆ

#Thpp
α
q ` #hp

p

p` 1

˙

.

(c) Note that Thppq “ t0 ď a ă p : @i, a ı ´hi mod pu, so #Thppq “ p ´ κ
where κ is the number of distinct congruence classes in thi mod p : hi P hu.
Thus, κ “ k if, and only if, p - detphq. First, consider the case p | detphq, i.e.
κ ď k ´ 1. As δhppq ě 0, (5.11) is trivial for p ď k ´ 1, so let us assume that
k ď p. The relation (5.12) shows that #Thpp

α`1q{pα`1 ě #Thpp
αq{pα for α ě 1,

and hence
δhppq ě

#Thppq

p
ě
p´ pk ´ 1q

p
ą 1´

k

p` 1
.

The right-hand side of (5.11) is equal to 1´k{pp`1qwhen mintk´1, pu “ k´1,
as we are currently assuming. Next, consider the case p - detphq, i.e. κ “ k. In
this case, we have #h “ #hp “ k, and, by (5.10),

δhppq “
1

p

ˆ

#Thppq ` #hp

ˆ

1`
1

p

˙´1
1

p

˙

“

ˆ

1`
1

p

˙´1ˆ

1´
k ´ 1

p

˙

,

which is equal to the right-hand side of (5.11) (since p ě κ “ k). �

Notice that, for all p ı 1 mod 4, we have 0 ď δhppq ď 1, by definition. By the
following proposition, the nonvanishing of Sh

..“
ś

pı1 mod 4 δt0uppq
´kδhppq (the

singular series for h [see (1.7)]), is equivalent to δhppq ą 0 for all p ı 1 mod 4.

Proposition 5.4. Let h “ th1, . . . , hku be a set of k ě 1 distinct integers. We have

e´pk´1q
ď

ź

pı1 mod 4
p-detphq

δt0uppq
´kδhppq ď 1, (5.14)

and the product converges. Consequently,
2kδhp2q

ek´1

ź

p”3 mod 4
p|detphq

ˆˆ

1`
1

p

˙k

δhppq

˙

ď Sh ď 2kδhp2q
ź

p”3 mod 4
p|detphq

ˆˆ

1`
1

p

˙k

δhppq

˙

.

(5.15)

Proof. If 2 - detphq, then k ď 2 and δt0up2q
´kδhp2q “ 1 by Proposition 5.2 (c), so

only the primes p ” 3 mod 4 have any bearing on the product in (5.14). Let
p ” 3 mod 4, and suppose p - detphq. By Proposition 5.3 (c), k ď p and

δt0uppq
´kδhppq “

ˆ

1`
1

p

˙k´1ˆ

1´
k ´ 1

p

˙

. (5.16)

Thus, δt0uppq´kδhppq “ 1 ` Okp1{p
2q, and consequently the product in (5.14)

converges.
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More precisely, from (5.16) we have, on the one hand,

δt0uppq
´kδhppq “ 1´

k
ÿ

j“2

"

pk ´ 1q

ˆ

k ´ 1

j ´ 1

˙

´

ˆ

k ´ 1

j

˙*

p´j ď 1,

with equality attained if k “ 1, which gives the upper bound in (5.14), and also
the lower bound for k “ 1. On the other hand we have

δt0uppq
´kδhppq ě 1´

pk ´ 1q2

p2
.

For k “ 2 we see that the product in (5.14) is at least
ś

p”3 mod 4p1´1{p2q, which is
equal to 1{p2C2q “ 0.856108 . . . (with C being the Landau–Ramanujan constant;
see (1.5)), and is greater than e´1. For k ě 3 we apply the basic inequality
logp1´ xq ě ´x{p1´ xq (0 ď x ă 1) to the above, obtaining

log δt0uppq
´kδhppq ě ´

pk´1q2

p2

´

1´ pk´1q2

p2

¯´1

ě ´
pk´1q2

p2

´

1´ pk´1q2

k2

¯´1

(since k ď p). Noting that ´
ř

p-detphq 1{p2 ě ´
ř

něk 1{n2 ě ´1{pk ´ 1q2, and
that ´p1´ pk ´ 1q2{k2q´1 “ ´k2{p2k ´ 1q ą ´pk ´ 1q, then exponentiating, we
see that product in (5.14) is greater than e´pk´1q. The inequalities in (5.15) follow
upon recalling that δt0uppq “ p1` 1{pqk for p ” 3 mod 4 (see Proposition 5.3 (c)),
and again that δt0up2q´kδhp2q “ 1 if 2 - detphq (see Proposition 5.2 (c)). �

6. Proof of Proposition 1.3

We will make use of the following elementary bounds. Recall that, for n P N,
ωpnq ..“ #tp : p | nu, radpnq ..“

ś

p|n p, and sfpnq ..“
ś

p||n p.

Lemma 6.1. Let
N ..“ tab2 radpbq : a, b P N, pa, bq “ 1, a squarefreeu. (6.1)

Fix any number A ě 1. For y ě 1 and integers D ě 1, we have
ÿ

nPN
nąy

Aωpnq
pD, radpnqq

n sfpnq
!A p1` Aq

2ωpDqy
Op1{ log log 3yq

y2{3
, (6.2)

and
ÿ

nPN
nďy

Aωpnq

sfpnq
!A y

1{3`Op1{ log log 3yq. (6.3)

Proof. Let y ě 1 and let D ě 1. We claim that the following four bounds hold:
ÿ

nąy
squarefree

Aωpnq
pD,nq

n2
!A p1` Aq

ωpDqy
Op1{ log log 3yq

y
; (6.4)

ÿ

nďy
squarefree

Aωpnq
pD,nq

n
!A p1` Aq

ωpDqyOp1{ log log 3yq; (6.5)
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ÿ

n2 radpnqąy

AωpnqpD, radpnqq

n2 radpnq
!A p1` Aq

ωpDqy
Op1{ log log 3yq

y2{3
; (6.6)

and
ÿ

n2 radpnqďy

Aωpnq !A y
1{3`Op1{ log log 3yq. (6.7)

Let us deduce (6.2) and (6.3). The left-hand side of (6.2) is at most
ÿ

aďy2{3

squarefree

Aωpaq
pD, aq

a2

ÿ

b2 radpbqąy{a

AωpbqpD, radpbqq

b2 radpbq
`

ÿ

aąy2{3

squarefree

Aωpaq
pD, aq

a2

ÿ

bě1

Aωpbq

b2
.

By (6.5) and (6.6), the first double sum is

!A p1` Aq
ωpDqy´2{3`op1q

ÿ

aďy2{3

squarefree

Aωpaq
pD, aq

a4{3
!A p1` Aq

2ωpDqy
Op1{ log log 3yq

y2{3
.

By (6.4), and since
ř

bě1pA
ωpbq{b2q !A 1,

ÿ

aąy2{3

squarefree

Aωpaq
pD, aq

a2

ÿ

bě1

Aωpbq

b2
!A p1` Aq

ωpDqy
Op1{ log log 3yq

y2{3
.

Combining gives (6.2). The left-hand side of (6.3) is at most
ÿ

aďy
squarefree

Aωpaq

a

ÿ

b2 radpbqďy

Aωpbq;

applying (6.5) and (6.7) gives (6.3).
We now prove our claim. For (6.4), we first consider the case D “ 1. Note

that
ÿ

n1ďy
squarefree

pA´ 1qωpn1q

n1

ď
ź

pďy

ˆ

1`
A´ 1

p

˙

ď
ź

pďy

ˆ

1`
1

p

˙A´1

!A plog 3yqA´1,

(6.8)
because 1` 1{p ă e1{p and

ř

pďy 1{p “ log log 3y`Op1qMertens’ theorem. Now,
ÿ

nąy
squarefree

Aωpnq

n2
“

ÿ

nąy
squarefree

1

n2

ÿ

n1|n

pA´ 1qωpn1q ď
ÿ

n1ě1
squarefree

pA´ 1qωpn1q

n2
1

ÿ

mąy{n1

squarefree

1

m2
,

the inner sum being Opn1{yq for n1 ď y and Op1q for n1 ą y. Thus,
ÿ

nąy
squarefree

Aωpnq

n2
!A

plog 3yqA´1

y
`

ÿ

n1ąy
squarefree

pA´ 1qωpn1q

n2
1

.
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If A ď 2, then this last sum is Op1{yq; otherwise, repeating the argument as
many times as necessary gives

ÿ

nąy
squarefree

Aωpnq

n2
!A

plog 3yqA´1

y
.

It follows that, for any integer d ě 1,
ÿ

nąy, d|n
squarefree

Aωpnq

n2
!A

Aωpdq

d
¨
plog 3yqA´1

y
.

For any integer D ě 1, we trivially have pD,nq ď
ř

d|D, d|n d, and hence
ÿ

nąy
squarefree

Aωpnq
pD,nq

n2
ď

ÿ

d|D
squarefree

ÿ

nąy, d|n
squarefree

Aωpnq

n2
!A

plog 3yqA´1

y

ÿ

d|D
squarefree

Aωpdq

d
.

Since
ř

d|D, squarefree A
ωpdq “ p1 ` AqωpDq and plog 3yqA´1 !A yOp1{ log log 3yq, this

gives (6.4). The bound (6.5) follows from (6.8) and pD,nq ď
ř

d|D, d|n d.
For (6.6), we use the following ancillary bound. We have

ÿ

nąy
radpnq“m

1

n
!
yOp1{ log log 3yq

y
, (6.9)

uniformly for integers squarefree integers m ě 1. To establish (6.9), we use an
estimate involving smooth numbers: for y ě z ě 2, let

Ψpy, zq ..“ #tn ď y : p | nñ p ď zu

denote the number of z-smooth positive integers n ď y. The following can be
found in [9, (1.19)]: for y ě z ě 2,

log Ψpy, zq “

ˆ

log y

log z

˙

g

ˆ

z

log y

˙ˆ

1`O

ˆ

1

log z
`

1

log log x

˙˙

, (6.10)

where gpwq “ logp1` wq ` w logp1` 1{wq ď w ` 1 (w ą 0). Noting that
ÿ

ně1
radpnq“m

1

n1{2
“

1

m1{2

ÿ

ně1
radpnq|m

1

n1{2
“

1

m1{2

ź

p|m

ˆ

ÿ

aě0

1

pa{2

˙

“
ź

p|m

ˆ

1

p1{2 ´ 1

˙

,

we see that
ÿ

nąy2

radpnq“m

1

n
ď

ÿ

nąy2

radpnq“m

1

n

ˆ

n

y2

˙1{2

ď
1

y

ÿ

ně1
radpnq“m

1

n1{2
!

1

y
. (6.11)

If m ą y2, then
ř

nąy, radpnq“m 1{n “
ř

nąy2, radpnq“m 1{n, and we are done. Let
us assume, then, that y2 ě m. Let `1, . . . , `r denote the prime divisors of m,
and let p1 “ 2 ă p2 “ 3 ă ¨ ¨ ¨ ă pr denote the r smallest primes. Note that
#tpα1, . . . , αrq P Nr : `α1

1 ¨ ¨ ¨ `αrr ď y2u ď #tpα1, . . . , αrq P Nr : pα1
1 ¨ ¨ ¨ pαrr ď y2u,

i.e. note that #tn ď y2 : radpnq “ mu ď #tn ď y2 : radpnq “ p1 ¨ ¨ ¨ pru. Since
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y2 ě m ě p1 ¨ ¨ ¨ pr, we have 4 log y2 ě 4 logm ě 4 logpp1 ¨ ¨ ¨ prq ą pr by one of
Chebyshev’s bounds for primes, so if radpnq “ p1 ¨ ¨ ¨ pr, then n is y-smooth,
where y “ 4 log y2. Therefore,

ÿ

yănďy2

radpnq“m

1

n
ă

1

y

ÿ

nďy2

radpnq“m

1 ď
1

y

ÿ

nďy2

radpnq“p1¨¨¨pr

1 ď
Ψpy2, 4 log y2q

y
!
yOp1{ log log 3yq

y
,

(6.12)
where the last bound follows, upon exponentiating, from (6.10). Combining
(6.11) and (6.12) gives (6.9).

The left-hand side of (6.6) is at most
ÿ

mďy1{3

squarefree

AωpmqpD,mq

m

ÿ

n2ąy2{3

radpnq“m

1

n2
`

ÿ

mąy1{3

squarefree

AωpmqpD,mq

m

ÿ

ně1
radpnq“m

1

n2
.

By (6.5) and (6.9) (note that 1{n2 ă 1{py1{3nqwhen n2 ą y2{3), we have
ÿ

mďy1{3

squarefree

AωpmqpD,mq

m

ÿ

n2ąy2{3

radpnq“m

1

n2
!A p1` Aq

ωpmqy
Op1{ log log 3yq

y2{3
;

by (6.4) (note that 1{m3 ă 1{py1{3m2qwhen m ą y1{3), and since
ÿ

ně1
radpnq“m

1

n2
“

1

m2

ÿ

ně1
radpnq|m

1

n2
“

1

m2

ź

p|m

ˆ

ÿ

aě0

1

p2a

˙

!
1

m2
,

we have
ÿ

mąy1{3

squarefree

AωpmqpD,mq

m

ÿ

ně1
radpnq“m

1

n2
!

ÿ

mąy1{3

squarefree

AωpmqpD,mq

m3
!A

p1` AqωpDq

y2{3
.

Combining gives (6.6).
For (6.7), we note that since radpnq3 ď n2 radpnq and Aωpnq “ Aωpradpnqq,

ÿ

n2 radpnqďy

Aωpnq ď
ÿ

aďy1{3

squarefree

Aωpaq
ÿ

b2ďy
radpbq“a

1.

An argument similar to the one leading up to (6.12) shows that, uniformly for
a ď y1{3, we have

ř

b2ďy, radpbq“a 1 ! yOp1{ log log 3yq, and
ÿ

aďy1{3

squarefree

Aωpaq ď y1{3
ÿ

aďy1{3

squarefree

Aωpaq

a
!A y

1{3`Op1{ log log 3yq

by (6.5). Combining gives (6.7). �

To prove Proposition 1.3, we express Sh as a series. To this end, let us
introduce some notation and establish some basic inequalities. Let a nonempty,
finite set h Ď Z be given, and let k ..“ #h. Recall that Thp2αq is defined (and
nonempty when h “ t0u) for α ě 2, and for p ” 3 mod 4, Thppαq is defined (and
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nonempty when h “ t0u) for α ě 1. Let us set Thp1q ..“ t1u and Thp2q ..“ t1, 2u
for completeness. For p ı 1 mod 4 and α ě 1, we may then define

εhpp
α
q ..“

ˆ

#Tt0upp
αq

pα

˙´kˆ#Thpp
αq

pα

˙

´

ˆ

#Tt0upp
α´1q

pα´1

˙´kˆ#Thpp
α´1q

pα´1

˙

. (6.13)

Note that εhp22q “ 0 by definition.

Lemma 6.2. Let h be a nonempty, finite set of integers, and let k ..“ #h.
(a) For p ” 3 mod 4 and even α ě 2, we have εhppαq “ 0.
(b) For p ı 1 mod 4, we have

εhppq !k
pdetphq, pq

p2
. (6.14)

(c) For p ı 1 mod 4 and α ě 1, we have

εhpp
α
q !k

pdetphq, pq

pα
. (6.15)

(d) For β ě 1, we have

δt0up2q
´kδhp2q “ 1`

β
ÿ

α“2

εhp2
α
q `Ok

ˆ

1

2β

˙

. (6.16)

For p ” 3 mod 4 and β ě 1, we have

δt0uppq
´kδhppq “ 1`

β
ÿ

α“1

εhpp
2α´1

q `Ok

ˆ

1

p2β

˙

. (6.17)

Proof. (a) Let p ” 3 mod 4 and let α ě 1. As can be seen from Proposition 5.3,
(5.10) and part (c), we have

#Tt0upp
αq

pα
“

ˆ

1`
1

p

˙´1ˆ

1´
1

pα`α mod 2

˙

. (6.18)

For even α we therefore have

εhpp
α
q “

ˆ

1`
1

p

˙kˆ

1´
1

pα

˙kˆ#Thpp
αq

pα
´

#Thpp
α´1q

pα´1

˙

,

and as we noted following (5.12) and (5.13), #Thpp
αq{pα ´ #Thpp

α´1q{pα´1 “ 0.
(b) Consider p ” 3 mod 4 (the case p “ 2 is similar). Let α ě 1. Define ηhppαq

and κhppq as the numbers given by the relations
#Thpp

αq

pα
“.. δhppq ` ηhpp

α
q and δhppq “..

ˆ

1`
1

p

˙´1ˆ

1´
κhppq

p

˙

. (6.19)

Note that by Proposition 5.3, (5.9) and part (c), |ηhppαq| ă k{pα`pα mod 2q and
κhppq ď mintk ´ 1, pu, with κhppq “ k ´ 1 if p - detphq. Also, κhppq ě ´1
(because δhppq ď 1). Since α ` pα mod 2q ě 2, we have

#Thpp
αq

pα
“

ˆ

1`
1

p

˙´1ˆ

1´
κhppq

p
`O

ˆ

k

p2

˙˙

.
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In the special case h “ t0uwe can take κhppq “ 0. We therefore have
ˆ

#Tt0upp
αq

pα

˙´k#Thpp
αq

pα
“

ˆ

1`
1

p

˙k´1ˆ

1´
κhppq

p
`Ok

ˆ

1

p2

˙˙

“

ˆ

1`
k ´ 1

p
`Ok

ˆ

1

p2

˙˙ˆ

1´
κhppq

p
`Ok

ˆ

1

p2

˙˙

“ 1`
k ´ 1´ κhppq

p
`Ok

ˆ

1

p2

˙

.

Writing ξhppq ..“ k ´ 1´ κhppq, we have
ˆ

#Tt0upp
αq

pα

˙´k#Thpp
αq

pα
´ 1 !k

ξhppq

p
`

1

p2
.

If p | detphq, then ξhppq{p “ ξhppqpdetphq, pq{p2, and if p - detphq then, as already
noted, κhppq “ k ´ 1, i.e. ξhppq “ 0, so ξhppq{p “ ξhppqpdetphq, pq{p2 in any case.
Since, as already noted, ´1 ď κhppq ď k ´ 1, we have 0 ď ξhppq ď k. Thus,

ˆ

#Tt0upp
αq

pα

˙´k#Thpp
αq

pα
´ 1 !k

pdetphq, pq

p2
`

1

p2
!
pdetphq, pq

p2
.

For α “ 1, the left-hand side is equal to εhppq (see (6.13)), so this gives (6.14).
(c) Consider p ” 3 mod 4 (the case p “ 2 is similar). Let α ě 1. By (a) and

(b), the result holds for α “ 1 and α ě 2 even, so we may assume that α ě 3 is
odd. In that case, using (6.18) in the definition (6.13) of εhppαq, we see that

εhpp
α
q “

ˆ

1`
1

p

˙k"ˆ

1´
1

pα`1

˙´k#Thpp
αq

pα
´

ˆ

1´
1

pα´1

˙´k#Thpp
α´1q

pα´1

*

“

ˆ

1`
1

p

˙k"#Thpp
αq

pα
´

#Thpp
α´1q

pα´1
`Ok

ˆ

1

pα´1

˙*

,

since, for any α ě 1, p1 ´ 1{pαq´k “ 1 ` Okp1{p
αq and #Thpp

αq{pα “ Op1q. We
deduce, from (5.12) and (5.13), that εhppαq !k 1{pα´1, which is (6.15) in the case
p | detphq.

Now consider the case p - detphq. Note that, by Proposition 5.3, (5.9) and
part (c), we have, for any α ě 1,

#Thpp
αq

pα
“

ˆ

1`
1

p

˙´1ˆ

1´
k ´ 1

p
´

k

pα`α mod 2

˙

.

In view of this and (the special case) (6.18), we have, for odd α ě 3,

εhpp
α
q “

ˆ

1`
1

p

˙k´1"ˆ

1´
1

pα`1

˙´kˆ

1´
k ´ 1

p
´

k

pα`1

˙

´

ˆ

1´
1

pα´1

˙´kˆ

1´
k ´ 1

p
´

k

pα´1

˙*

.

Since p1´ 1{pα`1q´k “ 1` k{pα`1 `Okp1{p
α`2q, we have

ˆ

1´
1

pα`1

˙´kˆ

1´
k ´ 1

p
´

k

pα`1

˙

“ 1´
k ´ 1

p
`Ok

ˆ

1

pα`2

˙

;
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similarly,
ˆ

1´
1

pα´1

˙´kˆ

1´
k ´ 1

p
´

k

pα´1

˙

“ 1´
k ´ 1

p
`Ok

ˆ

1

pα

˙

.

Combining gives εhppαq !k 1{pα, i.e. (6.15), for odd α ě 3.
(d) Consider p ” 3 mod 4 (the case p “ 2 is similar). Let β ě 1. We have

1`
β
ÿ

α“1

εhpp
2α´1

q “ 1`
2β
ÿ

α“1

εhpp
α
q “

ˆ

#Tt0upp
2βq

p2β

˙´kˆ#Thpp
2βq

p2β

˙

,

because εhppαq “ 0 for α even (by (a)), and the middle sum telescopes. Now,
Proposition 5.3 (c) gives δt0uppq´k “ p1` 1{pqk, and by definition of ηhpp2βq (see
(6.19)), δhppq “

`

#Thpp
2βq{p2β

˘

´ ηhpp
2βq. With these substitutions, and (6.18),

we verify that

δt0uppq
´kδhppq ´

ˆ

#Tt0upp
2βq

p2β

˙´kˆ#Thpp
2βq

p2β

˙

“
#Thpp

2βq

p2β

ˆ

1`
1

p

˙kˆ

1´

ˆ

1´
1

p2β

˙´k

´ ηhpp
2β
q

˙

.

Now, #Thpp
2βq{p2β ď 1, p1 ` 1{pqk !k 1, p1 ´ 1{p2βq´k “ 1 ` Okp1{p

2βq, and
as noted in (b), Proposition 5.3, (5.9) and part (c) show that |ηhpp2βq| ă k{p2β.
Combining gives (6.17). �

For n P N such that p | n implies p ı 1 mod 4, we extend (6.13) by defining

εhpnq ..“
ź

pα||n

εhpp
α
q.

For such n, Lemma 6.2 (b) and (c) give

|εhpnq| ď A
ωpnq
k

pdetphq, radpnqq

n sfpnq
, (6.20)

provided Ak is sufficiently large in terms of k. Since εhp2q “ 0 by definition, and
by Lemma 6.2 (a), εhpnq “ 0 if either ν2pnq “ 1 or νppnq is even (and nonzero)
for some p ” 3 mod 4. Letting N1

..“ tn P N : p | n ñ p ı 1 mod 4u, where N
is as in (6.1), we define

D ..“ N1 Y t2n : n P N1, 2 | nu. (6.21)
Thus,

D “
 

2αp2α1´1
1 ¨ ¨ ¨ p2αr´1

r : α ě 0, α ‰ 1, r, αi ě 1, pi ” 3 mod 4 (i ď r)
(

,

and εhpnq “ 0 unless n P D. By definition (1.7) and Lemma 6.2 (d),

Sh “

ˆ

1`
ÿ

αě2

εhp2
α
q

˙

ź

pı1 mod 4

ˆ

1`
ÿ

αě1

εhpp
2α´1

q

˙

“ 1`
ÿ

dPD
εhpdq, (6.22)

the last sum being absolutely convergent in view of Lemma 6.1 and (6.20).
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For the purposes of stating and proving the next lemma, we define

εhpp
α; jq ..“

ˆ

#Tt0upp
αq

pα

˙´jˆ#Thpp
αq

pα

˙

´

ˆ

#Tt0upp
α´1q

pα´1

˙´jˆ#Thpp
α´1q

pα´1

˙

,

for p ı 1 mod 4, α ě 1, and j ě 1; we then set εhpn; jq ..“
ś

pα||n εhpp
α; jq for n

composed of primes p ı 1 mod 4. Thus, εhpnq “ εhpn; jqwhen j “ #h.

Lemma 6.3. Set o ..“ H, or set o ..“ t0u. Let n ě 2 be such that p | n implies
p ı 1 mod 4, and let R1, . . . , Rk be complete residue systems modulo n. We have

ÿ

h1PR1

¨ ¨ ¨
ÿ

hkPRk

εoYhpn; #o` kq “ 0,

where h “ th1, . . . , hku in the summand. (Note that we may have #h ă k here.)

Proof. Let p ı 1 mod 4, α ě 1. Suppose h “ th1, . . . , hku and h1 “ th11, . . . , h1ku
satisfy hi ” h1i mod pα, and hence hi ” h1i mod pα´1 as well, for i “ 1, . . . , k. For
p ” 3 mod 4, it is clear from (5.4) that #ToYhpp

βq “ #ToYh1pp
βq for β “ α, and

for β “ α´ 1 as well. Thus, εoYhppα; #o` kq “ εoYh1pp
α; #o` kq. Similarly, we

have εoYhp2α; #o` kq “ εoYh1p2
α; #o` kq (see (5.3)). Therefore, by the Chinese

remainder theorem,
ÿ

h1PR1

¨ ¨ ¨
ÿ

hkPRk

εoYhpn; #o` kq “
ź

pα||n

ˆ

ÿ

h1PZpα
¨ ¨ ¨

ÿ

hkPZpα
εoYhpp

α; #o` kq

˙

,

where h “ th1, . . . , hku in both summands, and Zpα ..“ t0, . . . , pα ´ 1u. It
therefore suffices to show that

ÿ

h1PZpα
¨ ¨ ¨

ÿ

hkPZpα
εoYhpp

α; #o` kq “ 0 (6.23)

for all p ı 1 mod 4 and α ě 1.
Consider the case o “ H. For p ” 3 mod 4 and α ě 1, we have

ÿ

h1PZpα
¨ ¨ ¨

ÿ

hkPZpα

#Thpp
α
q “

ÿ

aPZpα

ÿ

h1PZpα
a`h1PSp

νppa`h1qăα

¨ ¨ ¨
ÿ

hkPZpα
a`hkPSp

νppa`hkqăα

1,

as can be seen by applying the definition (5.4) of Thppαq and changing the
order of summation. For i “ 1, . . . , k, each sum over hi on the right-hand side
enumerates a translation of Tt0uppαq, so the entire sum (i.e. the left-hand side) is
equal to pαp#Tt0uppαqqk. Whence

ÿ

h1PZpα
¨ ¨ ¨

ÿ

hkPZpα

ˆ

#Tt0upp
αq

pα

˙´kˆ#Thpp
αq

pα

˙

“ pkα.

Since
ÿ

h1PZpα
¨ ¨ ¨

ÿ

hkPZpα

#Thpp
α´1
q “ pk

ÿ

h1PZpα´1

¨ ¨ ¨
ÿ

hkPZpα´1

#Thpp
α´1
q,
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we similarly have
ÿ

h1PZpα
¨ ¨ ¨

ÿ

hkPZpα

ˆ

#Tt0upp
α´1q

pα´1

˙´kˆ#Thpp
α´1q

pα´1

˙

“ pkpkpα´1q
“ pkα.

Subtracting gives (6.23) for α ě 1. In a similar fashion, we obtain (6.23) in the
case o “ t0u. An analogous argument gives the same results for p “ 2. �

In the proof of Proposition 1.3, we also make use of basic lattice point count-
ing arguments, as in the final two lemmas below.

Lemma 6.4. Let D be as in (6.21). Set o ..“ H, or set o ..“ t0u. Fix an integer k ě 1,
and a number Mk ě 1 that depends on k only. Also, fix B ě 1. For y ě 1, we have

ÿ

dPD
dąy

M
ωpdq
k

d sfpdq

ÿ

0ăh1ă¨¨¨ăhkďBy

pdetpoY hq, radpdqq !k,B y
k´2{3`Op1{ log log 3yq, (6.24)

where h “ th1, . . . , hku in the summand.

Proof. Let y ě 1. Let us first show that, for any squarefree integer c ě 1,
ÿ

0ăh1ă¨¨¨ăhkďBy

c|detpt0,h1,...,hkuq

1 ď k2ωpcq

ˆ

pByqk

c
`Ok

`

pByqk´1
˘

˙

. (6.25)

Let h0 “ 0, h1, . . . , hk be pairwise distinct integers, and suppose that c divides
ś

0ďiăjďkphi ´ hjq. Then, since c is squarefree, there exist pairwise coprime
positive integers cij such that c “

ś

0ďiăjďk cij and cij | hi ´ hj , 0 ď i ă j ď k.
Therefore,

ÿ

0ăh1ă¨¨¨ăhkďBy

c|detpth0,h1,...,hkuq

1 ď
ÿ

c“c01¨¨¨cpk´1qk

ÿ

h1PIBy

ÿ

h2PIBy

¨ ¨ ¨
ÿ

hk´1PIBy

0ďiăjďk´1ñcij |hi´hj

ÿ

hkPIBy
0ďiďk´1ñcik|hi´hk

1,

where on the right-hand side, the outermost sum is over all decompositions of
c as a product of

`

k`1
2

˘

positive integers, and IBy ..“ p0, Bys.
Consider the decomposition c “ c01 ¨ ¨ ¨ cpk´1qk. Let us define cj ..“

śj´1
i“0 cij

for j “ 1, . . . , k. Notice that c “
śk

j“1 cj . By the Chinese remainder theorem,
the condition on hk in the innermost sum above is equivalent to hk being in
some congruence class modulo ck, uniquely determined by h0, h1, . . . , hk´1. The
sum is therefore equal to By{ck `Op1q. Iterating this argument k times, we see
that the inner sum over h1, . . . , hk is equal to

k
ź

j“1

ˆ

By

cj
`Op1q

˙

“
pByqk

c
`OkppByq

k´1
q.

The bound (6.25) follows by combining and noting that, since c is squarefree, the
number of ways of writing c as a product of

`

k`1
2

˘

positive integers is
`

k`1
2

˘ωpcq,
and that

`

k`1
2

˘

ď k2.
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For h “ th1, . . . , hku, with h1, . . . , hk pairwise distinct, nonzero integers, and
any d P N, we trivially have pdetpo Y hq, radpdqq ď

ř

c|detpt0,h1,...,hkuq, radpdq c. If
h1, . . . , hk ď By as well, then p | c implies p ď By. From this and (6.25), it
follows that

ÿ

0ăh1ă¨¨¨ăhkďBy

pdetpoY h, radpdqq !k,B y
k

ÿ

c|radpdq

k2ωpcq
` yk´1

ÿ

c|radpdq
p|cñpďBy

ck2ωpcq,

where h “ th1, . . . , hku in the summand on the left. Now, for c | radpdq we have
k2ωpcq ď k2ωpdq, and

ř

c|radpdq 1 “ 2ωpdq. Applying these bounds to the left-hand
side of (6.24), we see that it is

!k,B y
k
ÿ

dPD
dąy

A
ωpdq
k

d sfpdq
` yk´1

ÿ

dPD

A
ωpdq
k

d sfpdq

ÿ

c|radpdq
p|cñpďBy

c, (6.26)

where Ak, here and below, denotes a sufficiently large number depending on k,
which may be a different number at each occurrence.

By definition (6.21) of D, for every d P D, we have d “ n or d “ 2n for some
n P N , where N is as in (6.1). Therefore, as a direct consequence of Lemma 6.1,
we have

ÿ

dPD
dąy

A
ωpdq
k

d sfpdq
!k

yOp1{ log log 3yq

y2{3
. (6.27)

More specifically, for every d P D, we have d “ ab2 radpbq or d “ 2ab2 radpbq
for some uniquely determined a, b P N, where a is squarefree and pa, bq “ 1.
Furthermore, d is not exactly divisible by 2, and so we have 2 - a in the case
d “ ab2 radpbq, while 2 | ab in the case d “ 2ab2 radpbq. In either case, we have the
following: Aωpdqk “ A

ωpaq
k A

ωpbq
k ; d sfpdq “ a2b2 radpbq or d sfpdq “ 2a2b2 radpbq; and

radpdq “ a radpbq. Thus, if c | radpdq, then c “ c1c2, where c1 | a and c2 | radpbq.
Consequently,

ÿ

dPD

A
ωpdq
k

d sfpdq

ÿ

c|radpdq
p|cñpďBy

c !
ÿ

aě1
squarefree

A
ωpaq
k

a2

ÿ

bě1

A
ωpbq
k

b2 radpbq

ÿ

c1|a
p|c1ñpďBy

c1

ÿ

c2|radpbq
p|c2ñpďBy

c2.

Now,
ÿ

aě1
squarefree

A
ωpaq
k

a2

ÿ

c1|a
p|c1ñpďBy

c1 ď
ÿ

c1ě1
squarefree
p|c1ñpďBy

A
ωpc1q
k

c1

ÿ

a1ě1
squarefree

A
ωpa1q
k

a2
1

!k

ÿ

c1ě1
squarefree
p|c1ñpďBy

A
ωpc1q
k

c1

;

as can be seen by writing a “ a1c1 and changing order of summation; also
ÿ

c1ě1
squarefree
p|c1ñpďBy

A
ωpc1q
k

c1

ď
ź

pďBy

ˆ

1`
Ak
p

˙

!k,B plog 3yqAk .
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(See (6.8).) Next, note that since
ř

c2|radpbq c2 ď radpbq
ř

c2|radpbq 1 ď 2ωpbq radpbq,

ÿ

bě1

A
ωpbq
k

b2 radpbq

ÿ

c2|radpbq
p|c2ñpďBy

c2 ď
ÿ

bě1

A
ωpbq
k

b2

ÿ

c2|radpbq

1 ď
ÿ

bě1

A
ωpbq
k

b2
!k 1.

Combining all of this gives
ÿ

dPD

A
ωpdq
k

d sfpdq

ÿ

c|radpdq
p|cñpďBy

c !k,B plog 3yqAk . (6.28)

Finally, we obtain (6.24) by combining (6.26) with (6.27) and (6.28). �

Lemma 6.5. Fix an integer k ě 1, and a bounded convex set C Ă Rk. For y ě 1 we
have #pyC X Zkq “ ykvolpC q `Ok,C py

k´1q.

Proof. This is a special case of [24, pp. 128–129]. �

Proof of Proposition 1.3. Fix an integer k ě 1, and a bounded convex set C Ă ∆k,
where ∆k ..“ tpx1, . . . , xkq P Rk : 0 ă x1 ă ¨ ¨ ¨ ă xku (see (1.10)). Set o ..“ H,
or set o ..“ t0u. Let y ě 1. To ease notation throughout, let H ..“ yC X Zk,
~h “ ph1, . . . , hkq, and h “ th1, . . . , hku. Note that 0 ă h1 ă ¨ ¨ ¨ ă hk !C y for
~h P H. Also, let Ak stand for a sufficiently large number depending on k, which
may be a different number at each occurrence.

In view of (6.22) we see, upon partitioning the sum over d and changing
order of summation, that

ÿ

~hPH

SoYh “
ÿ

~hPH

1`
ÿ

dPD
dďy

ÿ

~hPH

εoYhpdq `
ÿ

dPD
dąy

ÿ

~hPH

εoYhpdq, (6.29)

with D as defined in (6.21). By Lemma 6.5, we have
ÿ

~hPH

1 “ ykvolpC q `Ok,C py
k´1
q. (6.30)

By (6.20) and Lemma 6.4, we have
ÿ

dPD
dąy

ÿ

~hPH

|εoYhpdq| ď
ÿ

dPD
dąy

ÿ

~hPH

A
ωpdq
k

pdetpoY hq, radpdqq

d sfpdq
!k,C yk´1y

Op1{ log log 3yq

y2{3
.

(6.31)
Consider the middle sum on the right-hand side of (6.29). Let d be any

element of D with d ď y, and partition Rk into cubes
Cd,~t

..“ tpx1, . . . , xkq P Rk : tid ď xi ă pti ` 1qd, i “ 1, . . . , ku,

with ~t ..“ pt1, . . . , tkq running over Zk. Each ~h P H is a point in a unique cube
of this form: we call ~h a d-interior point if this cube is entirely contained in
yC , and ~h a d-boundary point if this cube has a nonempty intersection with the
boundary of yC . We partition H into d-interior points and d-boundary points.
As ~h runs over all d-interior points of H, hi (i “ 1, . . . , k) runs over a pairwise
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disjoint union of complete residue systems modulo d, none of which contain 0.
By Lemma 6.3 (we have #poY hq “ #o` k for each ~h P H), it follows that

ÿ

dPD
dďy

ÿ

~hPH

εoYhpdq “
ÿ

dPD
dďy

ÿ

~hPH
d-boundary

εoYhpdq. (6.32)

By (6.20), and the aforementioned trivial bound for pdetpoY hq, radpdqq,
ÿ

dPD
dďy

ÿ

~hPH
d-boundary

|εoYhpdq| ď
ÿ

dPD
dďy

A
ωpdq
k

d sfpdq

ÿ

~hPH
d-boundary

pdetpoY hq, radpdqq

ď
ÿ

dPD
dďy

A
ωpdq
k

d sfpdq

ÿ

c|radpdq

c
ÿ

~hPH
d-boundary

c|detpt0,h1,...,hkuq

1.

For each d P D with y{d ě 1, the proof of Lemma 6.5 (see [24, pp. 128–129])
shows that there are !k,C py{dqk´1 cubes Cd,~t that have a nonempty intersection
with the boundary of yC . For each such boundary cube Cd,~t, the corresponding
d-boundary points are all in Cd,~t X Zk, which is a product of complete residue
systems modulo d, and, given that c | radpdq (and hence c | d), the condition c |
detpt0, h1, . . . , hkuq is equivalent to c | detpt0, h11, . . . , h

1
kuq when hi ” h1i mod d,

i “ 1, . . . , k.
If follows that, for d P D with d ď y, and for c | radpdq, we have

ÿ

~hPH
d-boundary

c|detpt0,h1,...,hkuq

1 !k,C
yk´1

dk´1

ÿ

0ăh1ă¨¨¨ăhkďd
c|detpt0,h1,...,hkuq

1 !k y
k´1d

ˆ

A
ωpcq
k

c

˙

by (6.25). Whence
ÿ

dPD
dďy

ÿ

~hPH
d-boundary

|εoYhpdq| !k,C yk´1
ÿ

dPD
dďy

A
ωpdq
k

sfpdq

ÿ

c|radpdq

A
ωpcq
k ď yk´1

ÿ

dPD
dďy

A
ωpdq
k

sfpdq
,

since
ř

c|radpdqA
ωpcq
k is at most Aωpdqk

ř

c|radpdq 1 “ p2Akq
ωpdq. By (6.3), this last sum

is !k y1{3`Op1{ log log 3yq. Combining, we obtain
ÿ

dPD
dďy

ÿ

~hPH

εoYhpdq !k,C yk´1y1{3`Op1{ log log 3yq. (6.33)

Combining (6.29) with (6.30), (6.31), and (6.33) gives (1.14). �

Remark 6.6. A simpler argument, though giving a much weaker error term,
is to take P “

ś

păy p
ep and y “ 1

3
log t in Ford’s argument [7] and choosing

pepqpăy appropriately; together with the results in Section 5 we can then obtain
a lower bound of the form

ÿ

ph1,...,hkq P tCXZk
SoYh ě tkp1` op1qq, tÑ 8.
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Further, by removing the condition νppa ` hq ă α in the definition of Th, we
obtain upper bounds for the p-adic densities, and a similar adaption of Ford’s
argument then gives a matching upper bound (up to lower order errors). �
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