POISSON DISTRIBUTION FOR GAPS BETWEEN SUMS OF TWO
SQUARES AND LEVEL SPACINGS FOR TORAL POINT SCATTERERS

TRISTAN FREIBERG, PAR KURLBERG, AND LIOR ROSENZWEIG

AsstrACT. We investigate the level spacing distribution for the quantum spec-
trum of the square billiard. Extending work of Connors-Keating, and Smilan-
sky, we formulate an analog of the Hardy-Littlewood prime k-tuple conjecture
for sums of two squares, and show that it implies that the spectral gaps, after
removing degeneracies and rescaling, are Poisson distributed. Consequently,
by work of Rudnick and Ueberschir, the level spacings of arithmetic toral point
scatterers, in the weak coupling limit, are also Poisson distributed. We also
give numerical evidence for the conjecture and its implications.

1. INTRODUCTION

According to the Berry—Tabor conjecture [2], the energy levels for generic
integrable systems should be Poisson distributed in the semiclassical limit. As
noted by Connors and Keating [5], the square billiard, though integrable, is not
generic: due to spectral degeneracies, the level spacing distribution tends to a
d-function at zero. However, if we remove the degeneracies and rescale so that
the mean spacing is unity, numerics indicate Poisson spacings.
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Ficure 1. Rescaled gaps between consecutive energy levels in
[10%,10% + 110000], after removing degeneracies. The rescaled
gaps have mean one; without rescaling the mean gap is 19.42- - -.
Number of gaps: 5663. We also plot the density function (red in
color printout) P(x) = e~*, consistent with Poisson spacings.

The energy levels of the square billiard, say with side length 27, are num-
ber theoretical in nature, and given by a? + b* for a,b € Z. After removing
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degeneracies and rescaling, we are led to study the nearest neighbor spacing
distribution

1 En+1 - En
— B, < ———— 1.1
S B e St < (D
(as z — o), where E,, denotes the nth smallest element of the set
E:={a*+b*:a,beZ}, and N(z):=#{E,<z:E,eE}. (1.2)

(In our setting, the leading order of the density of states is asymptotically equal
to C/y/logz as © — oo [see (1.5)], and hence the spacing distribution of the
unfolded levels (CE,/v/log E,),_, is asymptotically the same as that of the
gaps in (1.1).)

Rather than studying the spacing distribution directly, we shall proceed
by investigating unordered k-tuples of elements in E. Thus, given k£ > 1 and

h ={hy,..., h} € Z with #h = k, consider the correlation function
1

Ri(h;z) = EélE(n+h1)~--1E(n+hk), (1.3)

where 15 denotes the indicator function of E. If h = {0}, this is the level density
N(x
By a classical result of Landau [23],
C
R ~ — o0 1.5

where C' > 0 is an explicitly given constant (see (2.1)). To formulate an analog
of (1.5) for k > 1 we need some further notation. Given a prime p # 1 mod 4,
define

g OL: = (03
S (p) = lim#{o a<p*:Yheh,a+h D+Dmodp}'

a—o0 pa

(1.6)

(That this limit exists is shown in Section 5, see Propositions 5.3 and 5.2.) Further,
fork > 1and aset h = {hy,...,h} < Z with #h = k, we define the singular
series for h by

On(p)

k?

p#£1 mod 4 (6{0} (p))
with ¢ (p) and 0x(p) as in (1.6). We note that d;p;(p) > 0 for all p # 1 mod 4,
and that the product converges to a nonzero limit if 5 (p) > 0 forall p # 1 mod 4
(see Proposition 5.4). If 0, (p) = 0 for some p # 1 mod 4, we define Sy, to be
zero; it is easy to see that Ry (h; x) = 0 for all z if &5, = 0.

We can now formulate an analog of the Hardy-Littlewood prime k-tuple
conjecture.

Sy = (1.7)

Conjecture 1.1. Fix k > 1,andaset h = {hy, ..., h} € Z with#h = k. If &}, > 0,
then .
Ry(h;x) ~ Sp(Ry(2))"  (z — o). (1.8)
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Our main result, Theorem 1.2 below, is conditional on the hypothesis that (1.8)
holds on average. To be precise, let &, (z) be defined by the relation

Ri(h;z) = (&h + En(2)) (Ri(2))". (1.9)
Further, let A* be the region in R* defined by
AF = {(zy,... z) e R : 0 <2y < - < a3}, (1.10)

and, given ¢ = A* and y € R, let y% be the dilation of ¢ defined by
Y6 = {(yxr, ... yzn) s (21, ) € 6

Our hypothesis is that the error term & (z) is small on average over dilates of
certain bounded convex sets.

Hypothesis (k, ¢, 0). Fix an integer k > 1, and a bounded convex set € < AF. Set
o := J, or set o := {0}. Let x and y be real parameters tending to infinity in such a
way that yRy(x) ~ 1. There exists a function e(x), with ¢(z) — 0as x — oo, such
that for x sufficiently large in terms of k and €,

> Eoun()

<elx) D Goun (1.11)

where h = {hy, ..., hy} in both summands.

Under the above hypothesis we find that the spacing distribution (1.1) is
indeed Poissonian. Moreover, the distribution of the number of points in inter-
vals of size comparable to the mean spacing is consistent with that of a Poisson
process. (We remark that our hypothesis can be weakened slightly: see Section
4.)

Theorem 1.2. Let x and y be real parameters tending to infinity in such a way that
yRi(z) ~ 1. Fix integers m > 0 and r = 1, and fix \, Ay, ..., A\, € R*. Assume that
Hypothesis (k, €, {0})) (respectively, Hypothesis (k, € , &) holds for all k > 1, and all
bounded, convex sets € = A*. Then (a) (respectively, (b)) holds.

(a) We have
1 —
W#{En <z VJ <, En+j — En+j—l < )\Jy} ~ HJO e_t dt (ZL’ — OO)
j=1
(1.12)
(b) We have
l#{n <z:N(n+Ay)—N(n)=m}~ e_’\% (x — o). (1.13)
x !

In [28], Rudnick and Ueberschir considered the spectrum of “toral point
scatterers”, namely the Laplace operator, perturbed by a delta potential, on two
dimensional tori. They showed (cf. [28, Corollary 1.3]) that the level spacings
of the perturbed eigenvalues, in the weak coupling limit, have the same distri-
bution as the level spacings of the unperturbed eigenvalues (after removing
multiplicities.) An interesting consequence of Conjecture 1.1 (or, to be precise,
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Hypothesis (k, ¢, {0})), is thus that the Berry—Tabor conjecture holds for toral
point scatterers, in the weak coupling limit, for arithmetic tori of the form R? /Z>.

We remark that Gallagher [8] proved the analog of Theorem 1.2 (b) for primes.
As in Gallagher’s proof, a key technical result is that the singular series is of
average order one, over certain geometric regions.

Proposition 1.3. Fix an integer k > 1, and a bounded convex set € < AF. Set
o:= &, or set o := {0}. Asy — o0, we have

> Goun =y (vol(®) + Oy ), (1.14)

(h1 ..... hk)Ey%ﬁ 7k

where h = {hy, ..., h} in the summand, and vol stands for volume in R,

We note that any qualitative error term in Proposition 1.3 is sufficient to
deduce Theorem 1.2. (See Remark 6.6 at the end of Section 6 for a brief outline
how Ford’s [7] and Pintz’s [26] simplification of Gallagher’s arguments can be
adapted to give a weaker error term in Proposition 1.3.)

Acknowledgements. We thank Z. Rudnick for stimulating discussions on
the subject matter, D. Koukoulopoulos for his comments on an early version of
the paper, and the anonymous referee for helpful comments. T. F. was partially
supported by a grant from the Goran Gustafsson Foundation for Research in
Natural Sciences and Medicine. P. K. and L. R. were partially supported by
grants from the Goran Gustafsson Foundation for Research in Natural Sciences
and Medicine, and the Swedish Research Council (621-2011-5498).

2. DiscussioN

Connors and Keating [5] determined the singular series for shifted pairs of
sums of two squares, giving a probabilistic derivation of Conjecture 1.1 in the
special case k = 2, and found that it matched numerics quite well (to within
2%). Smilansky [30] then expressed the singular series for pairs as products of
p-adic densities, showing that its mean value (over short intervals of shifts) is
consistent with a Poisson distribution, and that the same is true for sums of two
squares, on assuming a uniform version of Conjecture 1.1 for k£ = 2. Smilansky
also gave the singular series for triples corresponding to the shifts b = {0, 1, 2}.

As already mentioned, the analog of Theorem 1.2 (b) for primes is due to
Gallagher, who in [8] showed that an appropriate form of the Hardy-Littlewood
prime k-tuples conjecture implies the prime analog of (1.12). (That it implies
the prime analog of (1.13) is mentioned in Hooley’s survey article [13, p. 137].)
To show that the singular series is one on average (i.e., the prime analog of
Proposition 1.3), Gallagher uses combinatorial identities for Stirling numbers of
the second kind. In [19], Kowalski developed an elegant probabilistic framework
for evaluating averages of singular series. Rather than using combinatorial
identities, Kowalski showed that a certain duality between k-th moments of
m-tuples and m-th moments of k-tuples holds [19, Theorem 1]. That the &-
th moment of 1-tuples is equal to one is more or less trivial, but, by duality,
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Kowalski obtains the non-trivial consequence that first moments of k-tuples is
also equal to one. (Note that (1.14) can be viewed as a first moment of k-tuples
when o = J.)

Our approach originates with techniques developed in [20,21], and further
refined in [10,22]. Loosely speaking, the singular series &}, is expanded into
local factors of the form 1 + ¢, (p), and thus

Sn=[]0+eam) = ) el

p d=1
squarefree

where €,(1) = 1 and en(d) =[], n(p). Hence

2.6n= 0, ) en(d,

d=1 h
squarefree

and the main term is given by d = 1. For d large, |es(d)| can be shown to be
small on average. For d small, we use that €5 (d) (approximately) only depends
on h mod d, together with complete cancellation when summing over the full
set of residues modulo d, i.e., >, ., €n(d) = 0. This follows, via the Chinese
remainder theorem, from local cancellations >, .4, €n(p) = 0, which in turn
can be deduced from the following easily verifiable identity: given any subset
X, € Z/pZ, we have (see Lemma 6.3 (b) and its proof for more details):

D VD

(h1,h2,....hy) € (Z/pZ)F meZ/pL (h1,h2,....hy) € (Xp)E
Vi<k,m+h; € X

However, unlike the setup in [10,20,22], where the local error term e (p) is
determined by A mod p, in the current setting, it is not determined by A mod p®,
for any fixed a. On the other hand, the function h — ¢,(p) has nice p-adic
regularity properties, allowing us to approximate e, (p) by truncations e, (p®),
which do only depend on h mod p®, and for which €, (p) — ex(p®) « 1/p*! for
all . Apart from making the argument more complicated, this also results in
a weaker error term: if €, (p) only depended on h mod p, in (1.14) we would
get a relative error of size y~17°(), rather than y=2/3*°(). We also note that
David, Koukoulopoulos, and Smith [6], in studying statistics of elliptic curves,
have developed quite general methods for finding asymptotics of weighted
sums Y, wpSp, provided that the local factors have p-adic regularity properties
similar to those referred to above. In fact, Proposition 1.3, though with a weaker
error term, can be deduced from [6, Theorem 4.2].

We finally remark that the corresponding question in the function field
setting is better understood: Bary-Soroker and Fehm [1] have recently shown
that the sums of two squares analog of the k-tuple conjecture holds in the large
¢-limit for the function field setting (e.g., replacing Z by F,[T’], and Z[i] by
F,[vV=T]).

2.1. Evidence towards Conjecture 1.1. We begin by stating a qualitative ver-
sion of Conjecture 1.1.
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Conjecture 2.1. Fix k > 1,andaset h = {hy, ..., h} S Z with#h = k. If &, > 0,
then there exist infinitely many integers n such that n + h < E.

We remark that whether or not &;, > 0 can be determined by a finite computa-
tion: this follows from Propositions 5.2 and 5.3. Examples of sets h for which
Sy =0are {0,1,2,3} and {0,1,2,4,5, 8,16, 21}: any translate of {0, 1,2, 3} con-
tains an integer congruent to 3 modulo 4, and hence 6,(2) = 0; any translate
of {0,1,2,4,5,8,16,21} contains an integer congruent to 3 or 6 modulo 9, and
hence 0,(3) = 0.

It is possible to show that &;, > 0 for any set h containing at most three inte-
gers. The question of whether, for any hy, ho, hs € Z, wehave n+{hq, ho, h3} € E
for infinitely many n, was apparently raised by Littlewood, and was answered
in the affirmative by Hooley [14], using the theory of ternary quadratic forms.
Conjecture 2.1 remains open for k > 4.

For fixed k > 1,and h = {hy, ..., hy} with #h = k, the upper bound

N 10+ hy) - Le(n+ hy) «’“(10ng I1 (1+E),

n<e p=3 mod 4 p
plhj—h;
some i < j
can be deduced from Selberg’s sieve (see [29]), which is of the correct order of
magnitude, according to Conjecture 1.1. The special case h = {0, 1} is due to
Rieger [27]; the special case h = {0, 1,2} is due to Cochrane and Dressler [4];
the general case is due to Nowak [25].
Lower bounds are more subtle. For k£ = 2, Hooley [15] and Indlekofer [16]

showed that, for any nonzero integer h,
x 1

n<T
but we are not aware of any such bounds for k > 3.

Assuming that a certain analog of the Elliott-Halberstam conjecture holds
for sums of two squares, it is possible to deduce, from a result of Iwaniec [17,
Theorem 4], the asymptotic >} _ 1g(n)lg(n + 1) ~ z/(2logx), as z — oo, in
agreement with the aforementioned conjecture of Connors and Keating [5], and
Conjecture 1.1. (See (2.3), and Figure 2 for a numerical comparison.) We remark
that, on a slightly weaker formulation of an Elliott-Halberstam analogue for
sums of two squares, Iwaniec [17, Corollary 2, (2.3)] gives >} _ 1g(n)lg(n +
1) ~ 3z/(8logx), as © — . (Few details are given, so it is hard to pinpoint
the discrepancy in the constants; possibly the contribution from those n with
n = 0 mod 8 is not taken into account).

2.2. Numerical evidence. Using Propositions 5.2 (b), (c) and 5.3 (b), (c), we
can give &y, explicitly, as in the following examples. Let us first record that the
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constant C' in (1.5) is the Landau—Ramanujan constant, given by

1 —1/2
H (1—]?) = 0.764223 . ... 2.1)

p 3 mod 4

It is straightforward to verify that

1
Sy = 202 = 0.856108. (2.2)
If (1.8) holds with A = {0, 1} then, by (1.5) and (2.2),
2 X
N({0,1};2) == > 1g(n)lg(n + 1) ~ 2—02(31( 7)) ~ Tlon s (x — o). (2.3)

n<x

The agreement with numerics is quite good (to within 1%).

z | N({0,1};2) | 265013 (Ri(x))? Ratio
1000000000 | 25927011 25690391.1 | 1.00921
2000000000 | 50042411 49603435.5 | 1.00885
3000000000 | 73560246 72930222.0 | 1.00864
4000000000 | 96705170 95891759.7 | 1.00848
5000000000 | 119584162 118589346.3 | 1.00839
6000000000 | 142253331 141080935.2 | 1.00831
7000000000 | 164749254 163403937.1 | 1.00823
8000000000 | 187100631 185584673.5 | 1.00817
9000000000 | 209327440 207642640.3 | 1.00811

Ficure 2. Observed data vs prediction for h = {0, 1}.

As the simplest example with k£ = 3, we verify that

A 2
L 1—
12 = 1o I} ( p(p — 1))’

p=3 mod 4

so Conjecture 1.1 implies that

ACz

N({0 Z 1g(n)1g(n + 1)1g(n + 2) ~ Az (Ri(z ))3 ~ Tog2)?

4C?

n<x

as v — . The agreement between numerics and model is only to within 10%.

3. NoraTtion

We define the set of natural numbers as N := {1, 2,...}. The letter p stands for
a prime, n for an integer. We let 0 + O stand for a generic element of E, possibly
a different element each time. Thus, for instance, a + h = O + O mod p® denotes
that a + h = F mod p* for some F € E. We view £ as a fixed natural number,
and h as a nonempty, finite set of integers, with #h = k unless otherwise
indicated. We letn + h := {n + h : h € h}. For n € N, w(n) denotes the number
of distinct prime divisors of n, v,(n) the p-adic valuation of n. (We also define
vp(0) := 0.) That v,(n) = « may also be denoted by p® | n. The radical of
n is rad(n) = [],, p, not to be confused with the squarefree part of n, viz.



8 T. FREIBERG, P. KURLBERG, AND L. ROSENZWEIG

r | N({0,1,2};2) | 261,93 (Ri(x))? Ratio
1000000000 1490691 1362419.3 | 1.09415
2000000000 2818128 2584683.5 | 1.09032
3000000000 4093602 3762317.2 | 1.08805
4000000000 5338091 4912433.3 | 1.08665
5000000000 6560430 6042800.3 | 1.08566
6000000000 7764604 7157833.6 | 1.08477
7000000000 8954282 8260369.7 | 1.08400
8000000000 10132295 9352396.2 | 1.08339
9000000000 11299877 10435380.5 | 1.08284

Ficure 3. Observed data vs prediction for h = {0, 1, 2}.

sf(n) = [[,}, p- By the least residue of an integer @ modulo n we mean the
integer r such that a = » mod n and 0 < r < n. When written in an exponent,
a mod 2 is to be interpreted as the least residue of o modulo 2: for instance,
p* ™42 — 1 if o is even.

We view z as a real parameter tending to infinity. Expressions of the form
A ~ B denote that A/B — 1 as x — . We also view y as real parameter
tending to infinity, typically in such a way that yR,(z) ~ 1,i.e. y ~ x/N(x). We
may assume that z and y are sufficiently large in terms of any fixed quantity.
Expressions of the form A = O(B), A « Band B » Aall denote that |A| < ¢|B|,
where cis some positive constant, throughout the domain of the quantity A. The
constant c is to be regarded as independent of any parameter unless indicated
otherwise by subscripts, as in A = O(B) (c depends on k only), A <, B (c
depends on k and A only), etc. By o(1) we mean a quantity that tends to zero as
y — .

4. DepucING THEOREM 1.2 FROM PROPOSITION 1.3

Givenz = (i, ...,i,) € N"suchthati, +- - -+i, = k,and X = (\,..., \,) e R",
let

Opx = {(z1,..., 1) € AR Ty gy = ity <Ay J = 1,.,1) (4.1)
where for j = 1 welet z;, .5, , = 70 := 0. In the case where r = 1 and X=(\),
O;5 = O = {(z1,. .., 21) eRF:0<zy < <ap <AL 4.2)

The following proof shows that Theorem 1.2 (a) and (b) hold under slightly
weaker hypotheses than the ones stated: for (a), it is enough to assume that
Hypothesis (k, O, 5, {0}), where £ = (i1,...,i,) and X = (AL,...,\), holds for
all k > r,and all ¢ € N satisfying iy + - - - + 4, = k; for (b), it is enough to assume
that Hypothesis (k, Oy, 5, &) holds for all & > 1.

Deduction of Theorem 1.2. As this argument has appeared many times in the
literature, we merely give an outline of it and provide references. (a) To ease
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notation, we let ¢ = (iy, ... ,ir) h = (hl, - hk), h = {hy,..., hy}, and
n<

Let / > 0 be an integer, arbitrarily large but fixed. An inclusion-exclusion
argument (see [12], [20, Appendix A] or [18, Key Lemma 2.4.12]) shows that

r+20+1

DINCEVinEEDY Y, N{0}uhsa)

k=r i1+ +ir=k ﬁeyerxmzk
r+2¢
< Z 1< Z (1) Z Z N({0} U h;z),
FEn<x k=r i1+ +ir=k fLE O -7k
Entj—Entj— 1§)‘jy Yoex
Jj=1,...,r

(4.3)

the sums over 4; + - - - + 4, = k, here and below, being over all ¢ € N" for which
i1 + -+ + i, = k. We make the substitution (1.9), with {0} U h and k£ + 1 in
place of h and k; we apply Hypothesis (k, ©; 5, {0}) for all £ and ¢ satisfying
r<k<r+20+1landi; + -+, = k; we use Proposition 1.3, and our
assumption that yR,(z) ~ 1,i.e.y ~ ©/N(z), as © — 0. Thus, we deduce from

(4.3) that
r+20+1 1
(—1)’“_7“ vol(O. 5) < liminf —— 1, (4.4)
kz; i1+---2+irk 7 o N(z) Enzslx
Entj—Entj—1<XAy
Jj=1,...r
and
r+2¢
lim sup I Z 1< Z (—1)F Z vol(©; ). (4.5)
r—00 ( ) E,<z k=r i1+ tir=k
En+j*En+j71<Ajy
Jj=1,..,r

Since vol(©; ) = A N /() -+ -4,0), the sums on the left and right of (4.4)
and (4.5) are truncations of the Taylor series for (1 —e 1) (1 —e ). We
have chosen ¢ arbitrarily large, so we may conclude that (1.12) holds, provided
Hypothesis (k, ©, 5, {0}) does whenever k > r and i; + - - + i, = k.

(b) We use an érgument of Gallagher [8], who proved an analogous result
for primes. Let ¢ > 1 be an integer, arbitrarily large but fixed. We have

Z(N(n—l—)\y)—]\f(n))é:Z( Z 1E(n—|—h)>é

n<z n<z N0<h<)\y
n<z 0<hiy,....,hy<\y

14
=Mootk D D 1g(n+ hy) - 1g(n+ hy),
k=1

O<hi<--<hp<\y n<z
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where o(/, k) denotes the number of maps from {1,..., ¢} onto {1,...,k}. Thus,

- Z (n+ \y) — (n))é = Z (@) o(4, k) Z (Gh + Sh(:v)),

n<x k=1 O<hi<-<hp<A\y

with b = {hy, ..., hy} in the last summand. Tosum over 0 < hy < -+ < hy, < \y
is to sum over (hy, ..., h;) € yOr\ N Z" (see (4.2)). If I—Iypothe51s (k, Ok, I)
holds then for some function e(x) with e(x) — 0 (x — o), we have

Z (Gh + gh($)) = (1 + O)Hk(é‘(l’))) 2 Gy.
O<hi<--<hp<A\y O<hi<--<hp<\y

Applying Proposition 1.3 (noting that vol(©y, ) = A*/k!), and our assumption
thatyR;(z) ~ 1,i.e.y ~ /N (x), as v — o0, we see that if Hypothesis (k, O , &)
holds for 1 < k£ < /, then

1 ) ¢ )\k
— 2 (Nt Xy) = N(n)" ~ Yot k) (@ —o0). (4.6)
n<z k=1 ’

8

Gallagher’s calculation in [8, Section 3] shows that Zizl o(¢, k)\*/k! is the (th
moment of the Poisson distribution with parameter ), and that the correspond-
ing moment generating function is entire. Since a Poisson distribution is deter-

mined by its moments, it follows (see [3, Section 30]) that for any given m > 0,
(1.13) holds as x — o, provided Hypothesis (k, Oy », &) holds forall £ > 1. O

5. PRELIMINARIES

A positive integer n is a sum of two squares if, and only if,

n = 2ﬁ2 H pﬁp H p25p
p=1 mod 4 p=3 mod 4
where (3, 5, denote nonnegative integers. (See [11, Theorem 366].) In view of
this and the next proposition, whose proof, being routine and elementary, is
omitted, we have E = (M ,S,, where S, = (,>1{n € Z : n = O+ 0 mod p°}.
Further, as S, = Z for primes p = 1 mod 4, we may write E = (M)} 1m0d 45,

Proposition 5.1. Let n € Z. We have n € Sy if, and only if, either n = 0 or n = 2°m
for some B = 0 and m = 1 mod 4. For p = 3 mod 4, we have n € S, if, and only if,
either n = 0 or n = p**m for some B = 0 and m % 0 mod p. For p = 1 mod 4, we
have S, = Z.

Let us introduce some notation in order to state further results. Given a
nonempty, finite set h < Z, let

det(h) = [ (h—n')>0. (5.1)
h,h/eh
h>h'

Note that if p < k — 1, where k = #h, then two elements of h occupy the same
congruence class modulo p, so p | det(h). In other words, if p { det(h) then
k < p.
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Let
h,={hWeh:—h"+hcS,} (5.2)
Note that h, contains at most one element, for if h, i’ € hy then +(h — h') € S5,
which by Proposition 5.1 holds only if h — b’ = 0. Similarly, if k = 1 or k = 2,
then #h, = 1. By Proposition 5.1, h,, for p = 3 mod 4 consists precisely of those
elements /' of h for which 2 | v,(h — ') for every h € h with h # /. (Recall that
vp(n) denotes the p-adic valuation of n.) For instance, if p { det(h) then h, = h.
Given o > 1, let

Th(2a+1) = {0 <a< 2a+1 ca+hC SQ and maxhehyg(a + h) < Oé}. (53)

By Proposition 5.1, this is the (possibly empty) set of least residues a modulo
29+ such that, for each h € h, there is some 8 < a — 1 and m = 1 mod 4 such
that a + h = 2%m. Finally, for p = 3 mod 4, let

Th(p®) :={0<a<p®:a+h < S, and maxpepvp(a + h) < a}. (5.4)

This is the (possibly empty) set of least residues a modulo p* such that, for each
h € h, there exists 3 < (a — 1)/2 for which p?* | a + h. Note that, for « > 2 and
odd p, the difference between 7},(2%) and T} (p*) is that 75 (2%) contains only
integers a for which maxep, 12(a + h) < a — 2, whereas T} (p*) contains a for
which maxjep, vp(a + h) < o — 1. As may be expected in view of Proposition 5.1,
we will need to treat p = 2 as a separate case throughout.

Recall from (1.6) that 05, (p) := lim,_,, #Sk(p®)/p*, where

Sn(p™)={0<a<p*:Yheh,a+h=0+0modp"}.

We have introduced 7}, (p*) because it is more convenient than Sy (p®) to work
with. It is not difficult to see that, for p # 1 mod 4, 0 < #S(p®) — #Tr(p*) < 1
once « is sufficiently large. (One may verify Proposition 5.1 by showing that
n = 0+ 0 mod 2% if, and only if, n = 2°m mod 2* for some 8 > 0 and odd m,
and, for p = 3 mod 4, that n = O+ O mod p* if, and only if, n = p*’m mod p*
for some 5 > 0 and m # 0 mod p.) Thus, the limit 5 (p) exists if, and only if,
im0 #TH(p™)/p™ exists, in which case the two limits are equal.

In the next two propositions, and throughout, we allow for the possibility
that £ = 1. In case h = {h;}, we define max;.; v,(h; — h;) to be zero (and
det(h) :=1).

Proposition 5.2. Let h = {hy, ..., h;} be a set of k > 1 distinct integers.
(a) The limits 0p,(2) (see (1.6)) and lim,,_,o, #T5 (2*11) /29 exist, and are equal:

) #Th(2a+1>
5/1,(2) = C}l_r)];lo W. (55)
Moreover, for all o > 1, we have
#Tp (2971) k



12 T. FREIBERG, P. KURLBERG, AND L. ROSENZWEIG

(b) For any o = 2 + max;; v2(h; — h;), we have
 #TR(227Y) + #hy

2a+1 ’

on(2)

the right-hand side being constant for « in this range.
(¢) If 2 1 det(h) (in which case k < 2), then §,(2) = (1/2)*. As a special case, we
record here that d;py(2) = 1/2.

(5.7)

Proof. In essence, we use a Hensel-type argument: for o > 1, the condition
that n = O + O mod 2 can be lifted to n = 0 + 00 mod 2°*!, unless n = 2°m for
some m = 3 mod 4.

(a) As already noted, to show that §,(2) and the right-hand side of (5.5)
exist and are equal, it suffices to show that the right-hand side of (5.5) exists.
Leta > 1,and let 0 < b < 2%"2,s0b = a + 2°"q, where 0 < a < 2°"! and
either ¢ = 0 or ¢ = 1. Suppose that, for each i, there exists 5; < a — 1 and
m; = +1 mod 4 such that b + h; = 2%m,. Then, for each i, a + h; = 2°'m/ and
a + 20T + h; = 2%m!, where m; = m! = m; mod 4. Recalling Proposition 5.1
and definition (5.3), we see that the following statements are equivalent: (i)
b € Tp(2°%2); (ii) both a and a + 2> are in T}, (2%72); (iii) a € T, (2>T1).

We have shown that we have a partition

Th(2°%) = {a,a + 2°" 1 a e T(2*)} U Up(2*2),
where
Uh<2a+2) = {0 <b< 202 . p) +hcS, and maxhehug(b + h) = Oé}

is the set of elements b of T} (2*"?) for which 15(b + h;) = « for some h; € h.
Any element of Uy, (2°*2) is a least residue of £2* — h; for some h; € h, of which
there are at most 2k. We see that
#TW(2742)  #Th(2°%0) _ #Un(2*) _ &
Qa+2 a+1 9a+2 = 9a+1”

Consequently, for any 8 with 5 > «, we have

HT(2041)  #T(20°1) - f-o #U, (207 1) k

98+1 Qa+1 - Qot+r+1 < 20"
r=1

It follows that the limit on the right-hand side of (5.5) exists, and that (5.6) holds
forall a > 1.

(b) Assume that o > 2 + max;.; v2(h; — h;). Suppose that, for some j, there
exists ¢ such that b + h; = 2%(1 + 2¢). We have b + h; € S, if, and only if, 2 | ¢,
equivalently, b + h; = 2* mod 2°*2. For i # j we may write h; — h; = 2/3ifm,~j
with §;; < o — 2 and m;; = +1 mod 4. Thus,

b+ h = 2% (my; +2°7%5 (1 + 2q))

is in S, if, and only if, m;; = 1 mod 4, equivalently, h; — h; € S;. By definition
of hs, this holds for each i # j if, and only if, ; € h,. We have shown that
be Th(2°7%) and v5(b + hj) = « for some h; € h if, and only if, h, is nonempty,

~
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h; is the (necessarily unique) element of hy, and b + h; = 2* mod 2**2. Thus,
Un(2°%%) = {0 < b < 2°"? : 30 € hy, b = 2% — b/ mod 2°%?%},
and #U}, (2°12) = #h,. Also, #T3,(2°72) = 2#T,,(2%1) + #h,. Hence
#T5(29%2) + #hy  #T3,(2°7)) + #hy

2a+2 2a+1

(c) Suppose 2 t det(h). If k = 1,1i.e.if h = {h;}, then the elements of T} (8) are
precisely the least residues of 1 — k4,2 — h; and 5 — hy modulo 8. Also, hy = h.
If £ =2,i.e. if h = {hy, hy}, then either hy — hy =1 mod 4 or h; — hy = 1 mod 4.
Without loss of generality, suppose hy — h1 = 1 mod 4. Then the sole element
of Ty (8) is the least residue of hy — 2h; modulo 8. Also, hy = {h;}. Therefore,

by (b), 6n(2) = (1/2)". .

For the next proposition, recall that & mod 2, when written in an exponent,
denotes the least residue of a modulo 2. For instance, p® ™42 = 1 if a is even.

Proposition 5.3. Let h = {hy, ..., h;} bea set of k > 1 distinct integers, and let p be
a prime with p = 3 mod 4.
(a) The limits op,(p) (see (1.6)) and lim,_,o, #Tx(p™)/p™ exist, and are equal:

#1Th(p™
5n(p) = lim %. (5.8)
Moreover, for all o« > 1, we have
#Th(p ) k
' P ’ E < ) po namod 2 (59)
(b) For any o = 1 + max;; v,(h; — h;), we have
1 . N1
on(p) = p #Th(p®) + #hyp | 1 t2) pemeas ) (5.10)
the right-hand side being constant for « in this range.
(c) We have
I in{k — 1
On(p) = (1 + E) (1 - %’p}), (5.11)

with equality attained if p 1 det(h) (in which case k < p). As a special case, we record
here that 6oy (p) = (1 + 1/p)~!

Proof. (a) As noted above the statement of Proposition 5.2, to show that d(p)
and the right-hand side of (5.8) exist and are equal, it suffices to show that
the right-hand side of (5.8) exists. Leta > 1l and let 0 < b < p**'. Thus,
b= a+ p*q, where 0 < a < p* and 0 < ¢ < p. Suppose that, for each i, there
exists 3; < a — 1 and m; # 0 mod p such that b + h; = p”m,. Then, for each i
and each ¢/, 0 < ¢ < p, we have a+p®¢’ + h; = p*m/, where m/, = m; # 0 mod p.
Recalling Proposition 5.1 and definition (5.4), we see that the following are
equivalent: (i) b € Tp(p*™); (ii) a + p*¢ + h; € Th(p*™) for 0 < ¢ < p; (iii)
ae Th (pa).
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We have shown that we have a partition
Th(p™*') = {a+p*q: a € Th(p*),0 < g < p} U Un(p*™),
where
Un(p*™) == {0 <b<p*! :b+h < S, and maxjepv,(b+ h) = a}

is the set of elements b of T} (p**!) for which v,(b + h;) = « for some h; € h.
Plainly, Uy (p**!) is empty if a is odd. (If b + h = S, then, by Proposition 5.1,
vp(b + h;) is even, and hence not equal to any odd «.) Also, any element of
Un(p™*) is a least residue of p®q — h; mod p**!, for some 0 < ¢ < pand h; € h,
of which there are at most (p — 1)k. We see that

#Th(paJrl) B #Th(pa) _ #Uh(paJrl)

poc-‘rl poc pa+1 ’ (512)

and that AT (et N
0< % < (1——)—, (5.13)

p* p) p~

with equality on the left if « is odd. Consequently, for any 5 with 3 > «, we have

o < TTa’)  #Tu(p”) _ 521 FU™) <1 - l)ﬁ 3 !
pﬁ pa pCV+T D pa o prfl
r—1=a mod 2

r=1

Since this last sum is equal to 1/(1 — 1/p?) if « is even, and to 1/(p(1 — 1/p?)) if

« is odd, we have

AT AT _ K (1 N 1) oo
P’ p” p* p) p

It follows that the limit on the right-hand side of (5.8) exists, and that (5.9) holds

forall o > 1.

(b) Let 0 < b < p**!, and assume now that o > 1 + max;; v,(h; — hy).
Suppose that, for some j, we have b + h; = p“m; for some m; # 0 mod p. We
have b+h; € S, if, and only if, is even. Leti # j. We may write h;—h; = pPim,;
with 8;; < a — 1 and m;; # 0 mod p. Thus, b + h; = pPi (my; + p*Pim;)isin S,
if, and only if, 3;; is even, equivalently, h; — h; € S,. By definition of h,, this
holds for each i # j if, and only if, h; € h,. In that case, for 0 < ¢’ < p with
¢’ # —m; mod p, we have b + p*¢’ + h; € S, and v, (b + p“q' + h;) = 5;j < a for
i # 3;0+p*¢ + h; € S,if, and only if, b + h; € S, and v, (b + p*¢’ + h;) = «. For
¢ = —m; mod p, v,(b + p*¢ + h;j) > a.

Thus, if Uy (p**') # &, then ais even and h, # &J; and if b € Up,(p**!), then
the h; for which v,(b + h;) = « is uniquely determined by b and must lie in h,,.
If v is even, then, writing h; = p®q; + r;, with 0 < r; < p®, we see that

Un(p*™) = Upyen, {p*(d +1) =1 : 0< ¢ < p, ¢ # —g; mod p}.

0

amod 2’
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Thus, #T5 (p*™') = p#Th(p®) if ais odd, and #T, (p* ™) = p#Th(p*) + (p—1)#h,
if o is even. Consequently, if « is odd, then

1 a+1 p

while if «v is even, then

1 1 1 p
#T (p*T ) + #h, ——— | = — | #T #h, ———
p““( wB™) + p+1> pa( w(p%) + p+1)

(c) Note that T, (p) = {0 < a < p : Vi,a # —h; mod p}, so #T(p) = p — Kk
where « is the number of distinct congruence classes in {h; mod p : h; € h}.
Thus, k = k if, and only if, p {1 det(h). First, consider the case p | det(h), i.e.
k< k—1. Asop(p) = 0, (5.11) is trivial for p < k — 1, so let us assume that
k < p. The relation (5.12) shows that #T} (p**!)/p®*t = #Ty(p®)/p* for a > 1,
and hence

%(#Th(p ) + #h, L)

P +1

# —(k —
5 (p) > Th(p)>p k-1 _, _k
P D p+1

The right-hand side of (5.11) isequal to 1 — k/(p+ 1) when min{k — 1, p} = k—1,
as we are currently assuming. Next, consider the case p { det(h), i.e. x = k. In
this case, we have #h = #h, = k, and, by (5.10),

outp) = 5 (#7304 #1114 %)%) -(1 11?) (-57),

which is equal to the right-hand side of (5.11) (since p > k = k). O

Notice that, for all p # 1 mod 4, we have 0 < d,(p) < 1, by definition. By the
following proposition, the nonvanishing of &, == [ ], 104 4 910} () *0n(p) (the
singular series for h [see (1.7)]), is equivalent to 6, (p) > 0 for all p # 1 mod 4.

Proposition 5.4. Let h = {hy,. .., hy} be a set ofk: > 1 distinct integers. We have
< [ dy0) "onlp) < (5.14)

p#1 mod 4
pldet(h)

and the product converges. Consequently,

U (<1+;>k6h<p>><eh<zk5h<2> I ((H;)kah(p)).

p=3 mod 4 p=3 mod 4
p|det(h) pl|det(h)
(5.15)

Proof. If 2 1 det(h), then k < 2 and & (2) "6, (2) = 1 by Proposition 5.2 (c), so
only the primes p = 3 mod 4 have any bearing on the product in (5.14). Let
p = 3 mod 4, and suppose p { det(h). By Proposition 5.3 (c), £ < p and

1\ " k—1
Sg0y(p) *on(p) = (1 + 2—9) (1 - T) (5.16)

Thus, 60;(p) *0n(p) = 1 + Ok(1/p*), and consequently the product in (5.14)
converges.
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More precisely, from (5.16) we have, on the one hand,

o (p) () = 1= 3. {(k - 1)(’; B i) - (’“ ; 1) }p—j <1,

j=2
with equality attained if £ = 1, which gives the upper bound in (5.14), and also
the lower bound for £ = 1. On the other hand we have

_ k—1)2
Sl > 1~ E AL

For k = 2 we see that the product in (5.14) is atleast | [ ,_s ,,q 4(1—1/p*), whichiis
equal to 1/(2C?) = 0.856108.. .. (with C being the Landau-Ramanujan constant;
see (1.5)), and is greater than e~!. For k > 3 we apply the basic inequality
log(1 —z) > —z/(1 —z) (0 < x < 1) to the above, obtaining

—1)2 _1\2 —1 2 2 1
log 010} () *on(p) = —(kp;) (1 _ (kp21) ) > _(kp21) <1 _ Gy )

(since k < p). Noting that — 3} ., 1/0? = — 2,2 1/n* = —1/(k — 1)?, and
that —(1 — (k — 1)?/k*)~' = —k?/(2k — 1) > —(k — 1), then exponentiating, we
see that product in (5.14) is greater than e~(*~Y). The inequalities in (5.15) follow
upon recalling that §;oy(p) = (1 + 1/p)* for p = 3 mod 4 (see Proposition 5.3 (c)),
and again that 6} (2) *0p(2) = 1if 2 { det(h) (see Proposition 5.2 (c)). O

6. PROOF OF PROPOSITION 1.3

We will make use of the following elementary bounds. Recall that, for n € N,

w(n) :=#{p:p|n}, rad(n) =[], p and st(n) == [, p.

Lemma 6.1. Let

= {ab’rad(b) : a,b € N, (a,b) = 1, a squarefree}. (6.1)
Fix any number A > 1. For y > 1 and integers D > 1, we have
O(1/loglo,
Z () (D, rad() )) it A)Qw(D)y 1/ ;3 23y) 62)
nsf y ’
g
and o)
Z ; 4 y1/3+O(1/10g10g3y)' (63)
neN S <n)
n<y
Proof. Lety > 1 and let D > 1. We claim that the following four bounds hold:
O(1/loglog 3y)
oA ( ) N C ) S R —— (6.4)
n>y Y
squarefree
Z Aw(n 7 ) & (1 + A)w(D)yO(l/loglogSy); (65)
n<y

squarefree
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0O(1/log log 3y)

Z Aw(n) (D,rad(n)) <4 (1 4 A)w(D)y

——m ) (6.6)
2 2/3
n2rad(n)>y n rad(n) y /
and
Z Aw(n) <« y1/3+0(1/10g10g3y). (67)
n? rad(n)<y
Let us deduce (6.2) and (6.3). The left-hand side of (6.2) is at most
w(b) D d ) Aw(b)
w(a) <D7 CL) A ( ra w(a)
3 aolla v AUDm) Doy &
a<y?/3 b2 rad(b)>y/a a>y2/3 b>1
squarefree squarefree

By (6.5) and (6.6), the first double sum is
y O(1/loglog 3y)
y?2/3

«a (1+A)w(D —2/3+40(1 Z Awa 4/3) & (1+A)2w

a<y?/3
squarefree

By (6.4), and since Zb>1(A°"(b)/bZ) <al,

w(b) O(1/loglog 3y)

w(a w(D) y -
2 A 2 <A (1+A4) o
a>y?/3 b>1
squarefree

Combining gives (6.2). The left-hand side of (6.3) is at most

Aw(a)
2 2, A

a
asy b2 rad(b)<y
squarefree

applying (6.5) and (6.7) gives (6.3).
We now prove our claim. For (6.4), we first consider the case D = 1. Note

that
A — 1)wm) A-1 1\
> ggn(lﬁ-—) <n<1+—) «4 (log 3y)*~1,
ni p p
n1y P<Y Py
squarefree

(6.8)
because 1 +1/p < e'/? and Z <y 1/p = loglog 3y + O(1) Mertens’ theorem. Now,

Aw ™ (A — 1)0m) 1
2 27
n m
n=>y n>y n1|n ni=1 1 m>y/ni
squarefree squarefree squarefree squarefree

the inner sum being O(n;/y) for ny < y and O(1) for n; > y. Thus,

A0 (log3y)A-t A — 1))

Z — <4 (log 3y) I Z ( 2) ‘

n>y n Y ni>y nq
squarefree squarefree
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If A < 2, then this last sum is O(1/y); otherwise, repeating the argument as
many times as necessary gives
Aw(n) log 3 A-1
Z — <4 (log 3y)
n

n>y Y
squarefree

It follows that, for any integer d > 1

Aw(n) Aw(d) (lOg 3y)A71
y A A
n? d Y

n>y,d|n
squarefree

For any integer D > 1, we trivially have (D n) < X4 p,an & and hence

w(n win) log Sy)A_l Aw(d)
2, A <Y 3 e 2 g
n>y d|D n>y,d|n y d|D
squarefree squarefree squarefree squarefree

Since 35 squareiree A7 = (1 + A)*(P) and (log3y)*~" «, yO/1o8183) this

gives (6.4). The bound (6.5) follows from (6.8) and (D, n) < ded'n d.
For (6.6), we use the following ancillary bound. We have

yO(l/ log log 3y)

1
gL e 69)
n>y n Y
rad(n)=m

uniformly for integers squarefree integers m > 1. To establish (6.9), we use an
estimate involving smooth numbers: for y > z > 2, let
U(y,2) = #{n<y: p!n:p 2}

denote the number of z-smooth positive integers n < y. The following can be
found in [9, (1.19)]: fory > z > 2,

1 1 1
logV(y, z) = =kl g : 1+0 + : (6.10)
log 2 logy logz loglogx

where g(w) = log(1 + w) + wlog(l + 1/w) < w + 1 (w > 0). Noting that

1 1 ! L ! e
S orman 3wl (Sm) 1 Gmm)

p
n>=1 n=1 m ~a=0 m
rad(n)=m rad(n)|m 7| 4
we see that
1 1 | 11
Yo-< D = (%) <= — < (6.11)
, n L, n\y y Z on / Y
n>y n>y
rad(n)=m rad(n)=m rad( ):
If m > y? then 3, rod() = L/n = 32 rad(ny—m 1/7, and we are done. Let
us assume, then, that y?> > m. Let ¢y,...,¢, denote the prime divisors of m,

andletp, =2 <py =3 < -+ < p, denote the r smallest primes. Note that
#{(a1,...,0) e N U7 00 <y < #{(q, ..., 0p) € N7 It p2n < P,
i.e. note that #{n < y* : rad(n) = m} < #{n < y* : rad(n) = p; - - - p,}. Since
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y> > m = p; - p,, we have 4logy® > 4logm > 4log(p; -+ p.) > p, by one of
Chebyshev’s bounds for primes, so if rad(n) = p; - - - p,, then n is y-smooth,
where y = 4log y2. Therefore,

1 1 1 WU (y2. 41 2 O(1/loglog 3y)
il vl o voae (y*, 4logy®) |
no oy Yy Yy Yy
y<n<y? n<y? n<y?
rad(n)=m rad(n)=m rad(n)=p1---pr

(6.12)
where the last bound follows, upon exponentiating, from (6.10). Combining
(6.11) and (6.12) gives (6.9).

The left-hand side of (6.6) is at most

A“M) (D m 1 Awm
y APmoe Loy I

m<yl/3 n2>y2/3 m>yl/3
squarefree rad(n)=m squarefree

By (6.5) and (6.9) (note that 1/n% < 1/(y"/3n) when n? > y*?), we have

rad( ) m

Aw(m)(D m) 1 yO(l/loglog 3y)
e St R A — wmd .
Z - Z 5 <4 (1+A4) Ik ;

m<yl/3 n2>y2/3
squarefree rad(n)=m

by (6.4) (note that 1/m? < 1/(y'/*m?) when m > y'/3), and since

1 1 1 1 1 1
S w3 oo wll(Ze) <

n=1 n=1 plm a>0p
rad(n)=m rad(n)|m
we have
A<M (D m 1 A<M (D m, 1+ A)(D)
g ACDm L ADm (A
m n2 m3 y2/3
m>yl/3 n>1 m>yl/3
squarefree rad(n)=m squarefree

Combining gives (6.6).
For (6.7), we note that since rad(n)® < n?rad(n) and A« = Aw(ad®),

Z Aw n) < Z Aw(a) Z 1.

n?rad(n a<y'/3 b?<y
squarefree rad(b)=a

An argument similar to the one leading up to (6.12) shows that, uniformly for
a < y'/3, we have S, d(ty—a 1 < yO(/loglog3y) and

w(a)
Z Aw(a) < y1/3 Z A & y1/3+0(1/10g10g3y)
a

a<yl/3 a<yl/3
squarefree squarefree

y (6.5). Combining gives (6.7). O

To prove Proposition 1.3, we express &, as a series. To this end, let us
introduce some notation and establish some basic inequalities. Let a nonempty,
finite set h < Z be given, and let k := #h. Recall that 7} (2%) is defined (and
nonempty when h = {0}) for o > 2, and for p = 3 mod 4, T}, (p*) is defined (and
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nonempty when h = {0}) for o > 1. Let us set T, (1) := {1} and T (2) := {1, 2}
for completeness. For p %_ 1 mod 4 and a > 1, we may then define

Note that €5,(2?) = 0 by definition.

Lemma 6.2. Let h be a nonempty, finite set of integers, and let k := #h.
(a) For p = 3 mod 4 and even o = 2, we have ep(p®) = 0.
(b) For p # 1 mod 4, we have

(det(h), p)

en(p) <p I — (6.14)
(c) For p # 1 mod 4 and o > 1, we have
det(h),
en(p®) <, D) (6.15)
(d) For B = 1, we have
B
_ o 1
5{0}(2) k5h(2) =1+ 226h<2 ) + Oy, (2_,3> (6.16)
For p=3mod 4and 5 = 1, we have
B
1
S0y (0)onp) =1+ 3 enp ) + Ok(ﬁ) (6.17)
a=1

Proof. (a) Let p = 3 mod 4 and let o > 1. As can be seen from Proposition 5.3,
(5.10) and part (c), we have

#T{O}(pa) 1 ! 1
p—a: 1+]—9 1—W . (618)

For even a we therefore have

won=(13) (-5) (- )

and as we noted following (5.12) and (5.13), #T}, (p®)/p® — #Tp(p®~1)/p*~" = 0.
(b) Consider p = 3 mod 4 (the case p = 2 is similar). Let a > 1. Define 7y, (p*)
and kp(p) as the numbers given by the relations

%&pa) = 0n(p) + 7n(p®) and  On(p) = (1 + %) ; (1 - KhT(m)- (6.19)

Note that by Proposition 5.3, (5.9) and part (c), [nn(p®)| < k/p*+(@m°d2) and
kn(p) < min{k — 1,p}, with kp(p) = k — 1if p 1 det(h). Also, ku(p) = —1
(because 6, (p) < 1). Since a + (o mod 2) > 2, we have

(1) 5 0f2)
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In the special case h = {0} we can take xp(p) = 0. We therefore have

(B2 2 (1) (-2 0(3)

(o) 0 )

k—1-— 1
=1+ k= 1- knlp) + Oy <—2)
p p
Writing &, (p) := k — 1 — kn(p), we have
#T (07 —k (03
- - p p
If p | det(h), then &, (p)/p = &n(p)(det(h), p)/p? and if p  det(h) then, as already
noted, ku(p) = k — 1,i.e. &n(p) = 0,50 Eu(p)/p = En(p)(det(h), p)/p? in any case.
Since, as already noted, —1 < kp(p) < k — 1, we have 0 < £, (p) < k. Thus,

#Tyoy (0™)\ " #T0 (p

(M) ), Geiltp) 1 (de)
e p p

Enlp) | 1

p* p
For a = 1, the left-hand side is equal to 5 (p) (see (6.13)), so this gives (6.14).
(c) Consider p = 3 mod 4 (the case p = 2 is similar). Let & > 1. By (a) and
(b), the result holds for & = 1 and a > 2 even, so we may assume that o > 3 is
odd. In that case, using (6.18) in the definition (6.13) of e, (p®), we see that

eh<pa>=(1+l)k{<1_ 1 )"“#Th@a)_(l_ ! >—k#Th(pa1)}
p pa+1 pa pa—l pa—l
()

since, forany a > 1, (1 — 1/p®) ™% = 1 + Ox(1/p®) and #T5,(p*)/p™ = O(1). We
deduce, from (5.12) and (5.13), that €, (p®) <& 1/p*~!, which is (6.15) in the case

p | det(h).
Now consider the case p { det(h). Note that, by Proposition 5.3, (5.9) and
part (c), we have, for any o > 1,

#Th—(pa):<1+1)_l(1_k_1_ k >
poz D P poz+ocmod2

In view of this and (the special case) (6.18), we have, for odd a > 3,

e S e
- (1 - p“1‘1> (1 - % N p‘f‘l) }

Since (1 — 1/p**™1) =% =1 + k/p*™L + O, (1/p**?), we have

1 \°F E—1 k E—1 1
(1_19“*1) (1_ P _p“l): o +Ok<p“+2>;
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—k
(-5) (S ) o (L),
P p P p P~

Combining gives e, (p®) < 1/p®, i.e. (6.15), for odd o > 3.
(d) Consider p = 3 mod 4 (the case p = 2 is similar). Let 5 > 1. We have

B 28 26\\ —k 28
o N #T0y (p*”) #Th(p”")
e Bt = 1+ 3 () ()
a=1 a=1

because e, (p*) = 0 for a even (by (a)), and the middle sum telescopes. Now,
Proposition 5.3 (c) gives d;0y(p) % = (1 + 1/p)*, and by definition of 1, (p*’) (see
(6.19)), on(p) = (#Tn(»**)/p**) — nn(p*?). With these substitutions, and (6.18),
we verify that

similarly,

840 () " 0n(p) — (#T{;}Z(ﬁp%) ) : (#nggzﬁ) )

_ %(1 n %>k<1 - <1 —}%)46 —nh(pw))‘

Now, #T,(p*)/p*® < 1, (1 + 1/p)k <5, 1, (1 — 1/p*)~* = 1 + O4(1/p**), and
as noted in (b), Proposition 5.3, (5.9) and part (c) show that |n,(p**)| < k/p?".
Combining gives (6.17). O

For n € N such that p | n implies p # 1 mod 4, we extend (6.13) by defining

an(n) = [ enls™.

p*|n
For such n, Lemma 6.2 (b) and (c) give

w(n) (det(h), rad(n))
en(m)l < AL s

provided Ay is sufficiently large in terms of k. Since ¢,(2) = 0 by definition, and
by Lemma 6.2 (a), e(n) = 0 if either v»(n) = 1 or v,(n) is even (and nonzero)
for some p = 3 mod 4. Letting NV} := {n e N : p| n = p # 1 mod 4}, where V'
is as in (6.1), we define

(6.20)

D:=N,u{2n:neNy,2|n}. (6.21)
Thus,
D— {20‘p§a1_1 cepPrliaz0,a# 1L,ra; = 1,p;=3mod 4 (i < r)},
and €x(n) = 0 unless n € D. By definition (1.7) and Lemma 6.2 (d),

o= (1+Ya) [1 (1+Zaw) -1+ Ya@. 62

a=2 p#1 mod 4 az=1 deD

the last sum being absolutely convergent in view of Lemma 6.1 and (6.20).
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For the purposes of stating and proving the next lemma, we define

en(p”1j) = <#T{;}O@> _j<#T2((Xpa)> _ <#T{;L(f_1)>_j<#T}1;£‘Ii_l)>’

forp# 1mod4, a > 1,and j > 1; we then set e,(n;j) := Hpaun en(p®; j) for n
composed of primes p # 1 mod 4. Thus, e,(n) = €,(n;j) when j = #h.

Lemma 6.3. Set o := (J, or set o := {0}. Let n > 2 be such that p | n implies
p # 1 mod 4, and let Ry, ..., Ry, be complete residue systems modulo n. We have

Z Z €oun(n;#o0 + k) =0,
hi1eR1 thRk

where h = {hy, ..., hy} in the summand. (Note that we may have #h < k here.)

Proof. Letp # 1 mod 4, a > 1. Suppose h = {hy,...,h}and h' = {1}, ... h}}
satisfy h; = b} mod p®, and hence h; = h; mod p*~' as well, fori = 1,..., k. For
p = 3 mod 4, it is clear from (5.4) that #71, 1 (p°) = #T, 1 (p°) for 8 = a, and
for f = o — 1 as well. Thus, €,0n(p%; #0 + k) = €,0n (p*; #0 + k). Similarly, we
have €,,n (2% #0 + k) = €,0n/(2%; #0 + k) (see (5.3)). Therefore, by the Chinese
remainder theorem,

Z Z coun(n;#o + k) = 1_[( Z Z €ouh(P%; #0+k))

h1€Ry thRk pe ||n ]‘L1EZ fel thZ

where h = {h4,...,h;} in both summands, and Z,. = {0,...,p* — 1}. It
therefore suffices to show that
Z Z coun(p;#0+ k) =0 (6.23)
hleZpa thZpa

forall p % 1 mod 4 and o >
Consider the case o = (. For p =3 mod 4 and a > 1, we have

2o 4 A= ) )y e ) L

h1€Z thZ aEZ hleZ hkeZpa
a+h1€Sp a+hieSy
vp(a+hi)<a vp(at+hy)<a

as can be seen by applying the definition (5.4) of T} (p*) and changing the
order of summation. For¢ = 1, ..., k, each sum over h; on the right-hand side
enumerates a translation of Ty, (p®), so the entire sum (i.e. the left-hand side) is
equal to p*(#To; (p*))*. Whence

3 (1) (3

h1€Z thZ o4

2 Z #Th(p* ') = pP 2 Z #Th(p* ),

hleZpa thZpoz hleZpa_l thZpa—l

Since
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we similarly have

DY (#T{O} P 1)) <—#Th(€a_l)) prphet = phe,

a—1
h1€Z fe thZ a p

Subtracting gives (6.23) for a > 1. In a similar fashion, we obtain (6.23) in the
case o = {0}. An analogous argument gives the same results for p = 2. O

In the proof of Proposition 1.3, we also make use of basic lattice point count-
ing arguments, as in the final two lemmas below.

Lemma 6.4. Let D be as in (6.21). Set 0 := J, or set o := {0}. Fix an integer k >
and a number M, > 1 that depends on k only. Also, fix B > 1. Fory > 1, we have

ME@ .
> y ’I; > (det(ou k) rad(d)) «pp y* OO0 (6.04)
S O<hi<--<hp<By
d>y
where h = {hy, ..., h} in the summand.

Proof. Lety > 1. Let us first show that, for any squarefree integer c > 1,

> 1< k0O (@ + Ok((By)k1)>. (6.25)

O<hi<--<hp<By

cldet({0,h1,....hi })
Let hg = 0, hq, ..., hi, be pairwise distinct integers, and suppose that c divides
[ lo<izj<i(hi — Rj). Then, since c is squarefree, there exist pairwise coprime
positive integers ¢;; such that ¢ = [ [, ;< cijand cij | hy — Ry, 0 <i < j < k.
Therefore,

SRS YRND S YRS D YR

O<hi<--<hp<By c=Co1C(k—1)k h1€EIBy ha€lpy hi_1€lpy hr€lpy
c|det({ho,h1,....hi}) 0<i<j<k—1=c;;|hi—h; 0<i<k—1=cik|hi—hg
where on the right-hand side, the outermost sum is over all decompositions of
c as a product of (kH) positive integers, and I, := (0, By].
Consider the decomposition ¢ = ¢g; - - - ¢—1)x. Let us define ¢; := ]_[f:_é Cij
for j = 1,..., k. Notice that ¢ = []"_, ¢;. By the Chinese remainder theorem,

=1
the condition on Ay, in the innermost sum above is equivalent to h;, being in
some congruence class modulo ¢, uniquely determined by kg, h1, ..., hx—1. The
sum is therefore equal to By/c, + O(1). Iterating this argument £ times, we see
that the inner sum over hy, ..., hy is equal to
k k
1_[ <@ + 0(1)) _ By + Oc((By)* ).
j=1 Cj C

The bound (6.25) follows by combining and noting that, since c is squarefree, the
(k+1) w(e)

4

number of ways of writing c as a product of (*}') positive integers is
and that (*11) < k%
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For h = {hl, ..y hi}, with by, ..., by, pairwise distinct, nonzero integers and

.....

hy,.. hk < By as well, then p | ¢ 1mphes p < By. From this and (6 25) it
follows that

Z (det(o U h,rad(d)) <5 y* Z 2 4 gkt 2 ck?©

0<hi<--<hp<By c|rad(d) c|rad(d)
ple=p<By
where h = {hy, ..., hy} in the summand on the left. Now, for ¢ | rad(d) we have

R < B and 300 1 = 29 Applying these bounds to the left-hand
side of (6.24), we see that it is
w(d)

A
k k 1
<rp YY) Z ¢, (6.26)
deD de dS ) c|r;:(d)
d>y ple=p<By

where Ay, here and below, denotes a sufficiently large number depending on £,
which may be a different number at each occurrence.

By definition (6.21) of D, for every d € D, we have d = n or d = 2n for some
n € N, where N is as in (6.1). Therefore, as a direct consequence of Lemma 6.1,

we have
(1/ log log 3y)

Z e i e (6.27)

deD
d>y

More specifically, for every d € D, we have d = ab*rad(b) or d = 2ab*rad(b)
for some uniquely determined a,b € N, where a is squarefree and (a,b) = 1.
Furthermore, d is not exactly divisible by 2, and so we have 2 { a in the case
d = ab®rad(b), while 2 | abin the case d = 2ab*rad(b). In either case, we have the
following: AW — A2 420 4 sf(d) = a2b?rad(b) or dsf(d) = 2a2b? rad(b); and
rad(d) = arad(b). Thus, if ¢ | rad(d), then ¢ = ¢1¢y, where ¢; | a and ¢, | rad(b).

Consequently,
w(d w(a)
2, 2, e« ), 2 2 a ) e
d Sf (d) a? b2 rad
c|rad(d) a=1 cila ca|rad(b)
ple=p<By squarefree p\Cl =p<By  plez=p<By
Now,
w(a) w(cr) w(a1) w(cr)
a? as c 2k e
a=1 cila c1=1 1 a1=1 1 c1=1 1
squarefree ple1=p<By squarefree squarefree squarefree
pler=p<By pler=p<By

as can be seen by writing a = a;c; and changing order of summation; also

A:(Cl) ( Ak;) )
< 1+ — ] « log 3y)“**
2 o H » k5 (log 3y)

c1=1 p<By
squarefree
ple1=p<By
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(See (6.8).) Next, note that since 202|rad o < rad(b) ZCQ‘rad(b) 1 < 240 rad(b),
ALY
—rk <
Z b2 rad(b) Z Z Z b2 w1
b>1

ca|rad(b) b>1 ca|rad(b) b>1
plea=p<By

Combining all of this gives

k D e <pp (log3y)™. (6.28)
D de(d) clrad(d)
ple=>p<By
Finally, we obtain (6.24) by combining (6.26) with (6.27) and (6.28). U

Lemma 6.5. Fix an integer k > 1, and a bounded convex set ¢ = R*. Fory > 1 we
have #(y€ n ZF) = y*vol(€) + Ore(y*1).

Proof. This is a special case of [24, pp. 128-129]. O

Proof of Proposition 1.3. Fix an integer k > 1, and a bounded convex set ¢ < A,
where A* := {(z1,...,23) e R¥ : 0 < 2, < -+ < 23} (see (1.10)). Set 0 := &,
or set o := {0}. Lety > 1. To ease notation throughout, let H = y¢ n Z*,
h = (hi,...,hx), and h = {hy,..., h;}. Notethat 0 < hy < --- < hy <¢ y for
h € 7. Also, let A stand for a sufficiently large number depending on k, which
may be a different number at each occurrence.

In view of (6.22) we see, upon partitioning the sum over d and changing
order of summation, that

2 Gon =, 1+ D counld) + 3, > counld), (6.29)

B h deD p deD p
heH heH d<y heH d>y heH

with D as defined in (6.21). By Lemma 6.5, we have

D11 =y*vol(B) + Op (v ). (6.30)
heH
By (6.20) and Lemma 6.4, we have
) (det(o U h),rad(d)) k_lyO(l/log log 3y)
OU A (/) - a0 -
dZD 2, leounl g 2 dsf(d) ke Y WIE
d€>y heH d€>y heH
(6.31)

Consider the middle sum on the right-hand side of (6.29). Let d be any
element of D with d < y, and partition R” into cubes

Cyz = {(1,...,21) e R s tid <y < (4 + D)d,i = 1,... Kk},

with £ := (t1, ..., ;) running over Z*. Each h e H is a point in a unique cube
of this form: we call h a d-interior point if this cube is entirely contained in
y%,and h a d-boundary point if this cube has a nonempty intersection with the
boundary of y¢. We partition H into d-interior points and d-boundary points.
As h runs over all d-interior points of H, h; (¢ = 1,..., k) runs over a pairwise
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disjoint union of complete residue systems modulo d, none of which contain 0.
By Lemma 6.3 (we have #(o U h) = #0 + k for each h € #), it follows that

202 Counld) = Z €oun(d). (6.32)

deD pen deD
d<y d<y g4 boundary

By (6.20), and the aforementioned trivial bound for (det(o U h), rad(d)),

DD leounld \\stf Z (det(o U h),rad(d))

deD  fey heH
d<Y dg-boundary d-boundary

> e > 1.

c|rad(d) heM
d-boundary

c|det({0,h1,...,h1})

For each d € D with y/d > 1, the proof of Lemma 6.5 (see [24, pp. 128-129])
shows that there are «; ¢ (y/d)"~! cubes C, ; that have a nonempty intersection
with the boundary of y¢. For each such boundary cube C, ;, the corresponding
d-boundary points are all in C, ; n Z*, which is a product of complete residue
systems modulo d, and, given that ¢ | rad(d) (and hence ¢ | d), the condition ¢ |
det({0, hy, ..., hy}) is equivalent to ¢ | det({0, A}, ..., h}}) when h; = k] mod d,
1=1,...,k.
If follows that, for d € D with d < y, and for ¢ | rad(d), we have

Z ds )
i

- 49

Z 1 <o % Z 1 < y’“_ld<’fT>
heH O<hi<--<hp<d
d-boundary cldet({0,h1,....~x})

cldet({0,h1,...,h})
by (6.25). Whence

2 2 leoon(d)] <k ’”Zi@ 34 < kleZ’(d’
ouh ke Y Sf(d) . <y Sf(d) ,

deD  pey deD clrad(d) deD
d<y d-boundary d<y <y

since 3. Ar “() s at most A )Zc|rad 1 = (2A;)*@. By (6.3), this last sum
is «, yl/3+ou/ ogtos ) . Combining, we obtam

Z Z Gouh(d> Lrt yk—lyl/?;-‘rO(l/log log 3y) ) (633)
gllgDy heH
Combining (6.29) with (6.30), (6.31), and (6.33) gives (1.14). O

Remark 6.6. A simpler argument, though giving a much weaker error term,
is to take P = ]_[p <y D7 and y = %logt in Ford’s argument [7] and choosing
(ep)p<y appropriately; together with the results in Section 5 we can then obtain
a lower bound of the form

> Soun = t"(1+0(1)), t— .
(h1,..shi) ELE N ZE
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Further, by removing the condition v,(a + h) < « in the definition of 7}, we
obtain upper bounds for the p-adic densities, and a similar adaption of Ford’s
argument then gives a matching upper bound (up to lower order errors). [J
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