PRIME AND MOBIUS CORRELATIONS FOR VERY
SHORT INTERVALS IN F,[z].

PAR KURLBERG, LIOR ROSENZWEIG

ABSTRACT. We investigate function field analogs of the distribu-
tion of primes, and prime k-tuples, in “very short intervals” of the
form I(f) == {f(z) +a : a € F,} for f(z) € F,[x] and p prime,
as well as cancellation in sums of function field analogs of the
Mbobius p function and its correlations (similar to sums appearing
in Chowla’s conjecture). For generic f, i.e., for f a Morse polyno-
mial, the error terms are roughly of size O(,/p) (with typical main
terms of order p). For non-generic f we prove that independence
still holds for “generic” set of shifts. We can also exhibit exam-
ples for which there is no cancellation at all in M&bius/Chowla
type sums (in fact, it turns out that (square root) cancellation in
Mobius sums is equivalent to (square root) cancellation in Chowla
type sums), as well as intervals where the heuristic “primes are
independent” fails badly.

The results are deduced from a general theorem on correlations
of arithmetic class functions; these include characteristic functions
on primes, the Mobius p function, and divisor functions (e.g.,
function field analogs of the Titchmarsh divisor problem can be
treated.) We also prove analogous, but slightly weaker, results in
the more delicate fixed characteristic setting, i.e., for f(x) € Fy[x]
and intervals of the form f(z) + a for a € F,, where p is fixed and
q = p' grows.

1. INTRODUCTION

Given a prime p, let IF, denote the finite field with p elements, and
let

Mg = My(F,) :=={f € F,[z] : f is monic and deg(f) = d}

denote the set of monic polynomials of degree d. Gauss gave an exact
formula for the number of prime, or irreducible, polynomials in My(F,),

Date: July 1, 2020.

The authors were partially supported by grants from the Géran Gustafsson Foun-
dation for Research in Natural Sciences and Medicine, and the Swedish Research
Council (621-2011-5498, 2016-03701).

1



2 PAR KURLBERG, LIOR ROSENZWEIG

namely

1 € MuF,): f s prime } = 5 3" pldfel” =2 (1+ O,

eld

since |[My(F,)| = p? this can be viewed as a function field analog of the
Prime Number Theorem as p? tends to infinity, with 1/d playing the
role of the ”prime density”, with square root cancellation in the error
term. In this paper, we shall be concerned with “short interval” analogs
of Gauss’ result, various generalizations to prime k-tuples, square root
cancellation in Mobius p sums, as well as sums appearing in Chowla’s
conjecture (these will be described in detail below.) Given f € F,[z]
we define a very short interval around f as the set

I(f) ={f(@) +a:acF}

clearly |I(f)| = p. In order to avoid trivialities we will from now on
assume that deg(f) > 2. Further, as we are mainly interested in the
large p limit, we will assume that p > d unless otherwise noted (cf.
Section 7 for results when p is fixed but ¢ = p' grows.)

1.1. Results for generic intervals. An element f € My(F,) is said
to be a Morse polynomial provided that f has d — 1 distinct critical
values, i.e., [{f(¢) : f'(§) =0} =d— 1. A basic fact (cf. Section 2.2)
is that f is Morse for a generic choice of coefficients; in particular,
given f(x) € My(FF,), the polynomials f(z) + sz will be Morse for all
but O4(1) elements s € F,. Our first result is that an analog of the
Hardy-Littlewood prime k-tuple conjecture holds for almost all very
short intervals, namely the ones “centered” at Morse polynomials. For
simplicity we state the result only for simultaneous prime specializa-
tion, but in fact any set of k£ factorization patterns can be treated, cf.
Section 1.1.1.

Theorem 1. Assume that f € My(F,) is a Morse polynomial, and
d> 2. We then have

1) {9 € 1(f): g is prime }| = + Ou(v/p)

Moreover, giwen k distinct shifts hy, ha, ..., i € F,, we have
(2) Hgel(f): g+hi,g+ha,....,g+ hy are prime }|
p
= 25 + Oux(VD)

The latter assertion is a natural function field analogue of the prime
k-tuple conjecture for integers in short intervals. However, unlike
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the integer case, for f Morse there are no fluctuations in the Hardy-
Littlewood constants as hq, ..., h, varies over distinct elements. In-
terestingly, large variations do occur in the non-Morse case (cf. Sec-
tion 1.4), and, very surprisingly, there are non-Morse examples where
“prime independence” breaks down completely for certain rare shifts
(cf. Section 1.4.6.)

We remark that an easy consequence of (1) is a prime number theo-
rem for progressions that is valid for “very large” Morse moduli: given
b € F and a Morse polynomial ¢(x) € My(F,),

{a € Fp:a-q(x)+bis prime}| = p/d+ Oq(\/p).

The distribution of primes, and prime k-tuples, in “short intervals”,
i.e., sets of the form I(f,1) := {f(z) + a1z + ao : ap, a1 € F,}, or more
generally, sets of the form I(f,m) := {f(z)+ > " anz" : ag,...,an €
F,} for 1 < m < deg(f), has received considerable attention in the
large field limit, i.e., where ¢ = p* — oo (in particular allowing for p
fixed). That (1) holds for f “in general” (i.e., when f(x)—t has Galois
group S, over F(t)) goes back to Cohen’s pioneering work [8]; in [9] he
showed that it holds for the short interval I(f, 1) provided f € My(F,)
and p > d. In [4] Bary-Soroker removed this size condition for p odd,
and allowed for more general shifts. In [3], the second author, together
with Bank and Bary-Soroker, show that for any prime power ¢, for all
polynomials f, and m > 3

m+1

4
deg(f)
in fact, under minor restrictions on f and ¢ one may take m = 2 or
even m = 1 (it is also implicit that (1) holds for f Morse.) An ana-
log of the prime k-tuple conjecture for the “long” interval M,(F,) was
shown by Pollack [20] provided that (2p,d) = 1. This co-primality
condition was removed by Bary-Soroker [4]; Bank and Bary-Soroker
then treated the case of short intervals (i.e., I(f,m), m > 2) and ¢
odd in [2]. We also mention that Entin [11] has shown prime k-tuple
equidistribution for short intervals in a more general setting, namely
for “Bateman-Horn” type specializations (e.g., for nonassociate, sep-
arable and irreducible polynomials Fy(z,t),..., Fi(x,t) € F,[z,t], he
obtains the asymptotics for simultaneous irreducibility of the k special-
ized polynomials Fy(g(t),t),..., Fr(g(t),t), for g € I(f,m)); cf. [10]
for recent further developments. For a nice survey of recent results
on function field analogs of similar questions in classical number the-

ory, including analogs of cancellation in Mdbius g and Chowla sums
described below, see [21].

|{g S I(f; m) g is prime}| = + Odegf(qm+1/2>;
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A function field analog of the Mdbius p function on My(F,) can be
defined as follows: given a squarefree polynomial g € My(F,), write
g as a product of [ distinct monic irreducibles, i.e., g = Hﬁzl gi, and
define u(g) := (=1)% if g is not squarefree we set u(g) = 0. We then
find that there is square root cancellation in Mébius sums, as well as in
the auto-correlation type sums appearing in Chowla’s conjecture (cf.
[7]), for very short intervals in the large p limit.

Theorem 2. Assume that f € My(F,) is Morse, and d > 2. Then
(3) > 1lg) = OulVp).

g€l(f)
More generally, given distinct elements hi, ho, ..., h € Fp, we have
k
0 > (Tuto+ 1) =0ty
gel(f) \i=1

For general f (i.e., non-Morse) we shall see that square root cancel-
lation in (3) is equivalent to square root cancellation in (4); moreover
either there is square root cancellation, or there is no cancellation at
all. See Section 1.3 for more details, as well as examples of intervals
on which p has constant sign.

In [6], Carmon and Rudnick showed that Chowla type sums over
My(F,) has square root cancellation as ¢ — oo, provided ¢ is odd;
in [5], Carmon treated even ¢. In [16] Keating and Rudnick proved
square root cancellation for Mobius sum over intervals of type I(f, m)
for m > 2; they also gave examples of polynomials f for which the
Mébius sum over I(f, 1) has no cancellation at all. We also note that
Entin [11] can treat cancellation in short Chowla type sums in the more
general Bateman-Horn type setting described earlier.

1.1.1. Class function correlations. The above results are easily deduced
from a more general result valid for functions induced from class func-
tions on Sy, the symmetric group on d letters. Briefly, for squarefree
g € My(F,) we associate a conjugacy class o, in Sy as follows: fac-
toring ¢ into prime polynomials, i.e., writing g = Hizl P;, choose [
disjoint cycles ¢y, ..., ¢ € Sq such that the length of ¢; equals deg(P;)
for 1 <4 < [; we then define o, as the conjugacy class generated by
[T i

Now, given a class function ¢ on Sy (i.e. ¢(o) only depends on
the conjugacy class of ), the above construction allows us to define a
function, also denoted ¢, on the set of squarefree elements in My(IF,).
As the number of non-squarefree polynomials in I(f), for f € M,
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is O4(1) (cf. (9)) we may then choose any bounded extension of ¢
to My(F,). In order to simplify statements we will in what follows
always assume that the supremum norms of all class functions, and
their extensions, are bounded by some absolute constant.

Theorem 3. Assume that f € My(F,) is a Morse polynomial, and
d > 2. Further, let ¢1,...,¢r be class functions on Sy, extended as
above to functions on My(F,) .Then there exists constants {c(¢;)}r_;,

given by
7, 1 ) - ]., ey k
= 2 00
ocESy
such that
Y 6il9) =p-cdi) + Ou(\/P)
g€I(f)
fori=1,..., k. Moreover, given distinct elements hy, ho, ..., h; € F,
we have
k k
(%) > (H 0ilg + m)) =p- [ e(60) + Ounlv/p).
gel(f) \i=1 i=1

We remark that Theorem 3 does not hold in the large ¢ limit, cf. Sec-
tion 7 for further details, together with a suitably weakened indepen-
dence result valid for the large ¢ limit.

When detecting factorization patterns the constants c(¢;) can be
given a simple combinatorial interpretation. Namely, given a desired
factorization pattern of g € M,(F,), associate an Sy-conjugacy class
C as described above. This in turn can be interpreted as a partition
of d, ie., d = ij1 d;j (e.g., for the partition 4 =2+ 141, dy = 2,
do =1, and d; = 0 for j > 2). With ¢ = 1¢, where 1¢ denotes the
characteristic function of the conjugacy class C, we have

€l 1
o9) = o1 =
=15l T LG @)
(since |C] = =134 ) For example, if C = {0 € Sy: 0 ~ (123...d)},

I,5% ;)
we find that 1(; = lprime (the characteristic function on the set of prime
polynomials), and ¢(1pyime) = |C|/[S4| = (d — 1)!/d! = 1/d.

Other interesting examples of class functions include the Mobius p
function, as well as the function field analog of divisor functions d,. for
integer r > 2; e.g., da(g) is the number of ways to decompose g as a
product of two monic polynomials. In particular, Theorems 1 and 2 are
immediate consequences of Theorem 3. In similar fashion we can treat
short interval function field analogs of the “shifted divisor problem”,
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e.g., the sum >  ;» d,(g)d, (g + 1), as well as the Titchmarsh divisor
problem, e.g., sums of the form del(f) 1prime(9)d,(g+1). These results
can be viewed as very short interval versions of recent results [1] by
Andrade, Bary-Soroker and Rudnick for the full interval My(IF,).

We remark that Theorem 3 is, via the Chebotarev density theorem,
Galois theoretic at heart (cf. Section 2.3): to each polynomial f(x) +
h; +t we can associate a field extension Ly, /F,(t) with Galois group
Gp, = Gal(Ly, /F,(t)) ~ Sy, and the independence implicit in (5) boils
down to linear independence of the field extensions Ly, Lp,, ..., Lp,.

In particular, with L* denoting the compositium of Ly, ..., Ly,, we
have Gal(L*/F,(t)) ~ (Sq)*.

1.2. Independence results for non-generic intervals. For non-
Morse polynomials the situation is more complicated since G}, might
be smaller than Sy, and Gal(L*/F,(t)) is in general not a product of
groups. However, while independence can fail for non-Morse polyno-
mials (cf. Section 1.4.6), we can still show that independence holds for
“generic” choices of distinct shifts hq,..., hy € F, and p large.

Theorem 4. Let d > 2, and let ¢q,..., ¢ be class functions on Sy,
extended as before to functions on My(F,). There exists finite sets
C(¢1,d),...,C(¢k,d) (with C(¢;,d) only depending on ¢;,d) such that
the following holds: For f € My(F,),

>~ 6il9) = p-ci+ Oaly/D),

gel(f)
where ¢; € C(¢;,d), for i = 1,..., k. Moreover, there exists a set
B(f) C F,, of cardinality at most (d —1)?, with the following property:
given distinct elements hy, ho, ..., hy € F), such that h; —h; & B(f) for
1 # j, we have

k k
> <H (g + hz‘)) =p-[[ e+ Our(vp).
geI(f) \i=1 i=1

Note that the number of distinct shifts hy,...,hy € F, such that
hi—h; € B(f)is Opa(p*~'), hence independence holds for most choices
of shifts.

Determining the constants ¢; is delicate' and requires some knowl-
edge about Gp,, = Gal(Lyp, /F,(t)) (it turns out that the isomorphism
class of G, does not change with h;.) With I, = Ly, N E denot-
ing the field of constants in Ly, , let G, geom := Gal(Lyp, /Iy, (t)) denote

1E.g., some factorization patterns might not occur at all, cf. Section 1.4.
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the “geometric part” of GGj,,. After making a non-canonical labeling of
the roots of f(x)+ hy +t and f(x) + h; +t (regarded as polynomials
with coefficients in F,(¢)), we obtain an identification and inclusion
Gp, ~ Gy, C S4 and can write

(6) =t 4(0)

G
| hl,geom| UET'Ghl,geom

where 7 € G}, is any element such that T]lhl acts as Frobenious on
the finite field extension [y, /F,, i.e., 7(a) = o for a € [,,. For some
examples where class function constants are computed using Galois
theory, see Sections 1.4.3 and 1.4.4.

The independence can also be explained in terms of Galois theory.
Briefly, after making non-canonical identifications Gj, ~ G}, for ¢ =
2,3,...,k, we obtain inclusions

Gal(L* /F,(t cHGh (Ghy)"*

and the independence amounts to Frobemus equidistribution inside the
coset (7 - Gp,y geom)®. We note that the methods (cf. the remark after
Proposition 12) allows us to take ¢q,..., ¢ to be class functions on
Gh,, ..., Gh,, rather than on Sy, and this sometimes allows for going
beyond factorization patterns. E.g., the cycles (123) and (132) are
conjugate in S3, but not in Az (the latter group is abelian); when
G, ~ As, after a non-canonical labeling of the roots, we can distinguish
the two cases in terms of the Frobenious action on the roots. Another
example is given in Section 1.4.5.

A more detailed discussion, in particular regarding the set B(f) can
be found in Sections 2.3 and 2.4.

1.3. Lack of cancellation in Mo6bius and Chowla sums. An un-
expected phenomena is the existence of elements f € My(F,) for which
there is no cancellation in short interval Mobius sum, i.e.,

S 1lg)| = p+04(1)

g€I(f)

For example, for d odd and p = 1 mod d, take f(z) = 2% (cf.
Sections 1.4.2 and 5.1.1). Even more surprising, as noted in [16], for
f(x) = 2P there is complete lack of cancellation for the sum over the
longer interval I(f,1). In fact, either there is square root cancellation in
both the Mobius sum as well as the Chowla sum, or there is essentially
no cancellation whatsoever in either sum (cf. Theorem 2.)
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Theorem 5. Let f € My(F,) for d > 2, and let hy,... hy € F, be
distinct elements. Then one of the following occurs: either both

| =p+041), | (H (g + hi)> =p+ Ora(1)

g€I(f) gel(f) \i=1
holds, or both

> ulg)| =0a(vp), | (Hu(nghi)) = Ora(v/p)

g€I(f) g€eI(f) \i=1
holds.

We remark that lack of cancellation is equivalent to the “geometric
part” of a certain Galois group being contained in the alternating group
Ag. More details on this, as well as the proof of Theorem 5 can be found
in Section 5. Moreover, we note that Theorem 5 is not true in the large
q limit (i.e., for p fixed), cf. Section 7.

1.4. Further examples of degenerate intervals. We next give some
additional examples of short intervals exhibiting irregular behavior. For
more details regarding these examples, see Section 6.

1.4.1. Prime density fluctuations. Let f(z) = 2% and take ¢; = ¢ =
Iprime.- Here the constants vary with p, namely ¢(1psime,p) = 2/3 for
p =1 mod 3, whereas ¢(1psime,p) = 0 for p =2 mod 3. In fact, there
are no primes in I(f) if p = 2 mod 3, and in this case the second
part of Theorem 4 is trivial. On the other hand, it can be shown that
B(f) = 0 and hence, for p=1 mod 3 and h # 0 mod p,

(7) S Tpoimne(9)Iprime(g + h) = (2/3)2 - p+ O(\/p).

g€I(f)

In other words, after taking into account the larger than expected
prime density (for generic degree 3 polynomials it is 1/3), the short
interval contains the expected number of twin primes (and similarly
for prime k-tuples) — the heuristic “primes are independent” indeed
holds in I(f) as p — oo, even though f(x) = 23 is not Morse.

1.4.2. Lack of cancellation in Mébius sums. Again we take f(z) = 3

and, as noted before, for p =1 mod 3, either f(x)+a splits completely
or is irreducible. In either case, f(z) + a factors into an odd number
of irreducibles and hence pu(f(z) +a) = —1 if f(z) + a is square free,
i.e., for all nonzero a € F,. If p =2 mod 3, 2° 4+ a is a permutation
for all a € IF,. Consequently for all nonzero a, f(z)+ a has one linear
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factor, and one irreducible quadratic factor, and thus p(z® +a) = 1 for
all nonzero a € IF),.

1.4.3. Class function constants via Galois theory. To illustrate how av-
erages over cosets of the geometric part of Gy determines the class
function constants (cf. (6)) we return to the example f(z) = 23. Then
Lo = Fy(t, (3, /—t), where (3 denotes a non-trivial third root of unity,
and lp = Lo ﬂ]BTp =TF,(¢). If p=1 mod 3, we have (3 € F,, hence
lo =TF,, and Gy = G geom = As. Letting ¢y, @2, @3 denote characteris-
tic functions of the three Ss-conjugacy classes {()}, {(123), (132)}, and
{(12), (13), (23)}, the corresponding class function constants given by
Theorem 4 and (6) is then given by ¢; = 1/3,¢2 = 2/3,¢3 = 0 (the key
point is that Frobenious equidistributes in Aj.)

If p =2 mod 3, then Iy = F,((3) = Fp2, and thus Gy ~ S; and
Gogeom =~ As. Further, as the action of the Frobenious map a — o®
must act nontrivially on [y, the image of Frobenious equidistributes
in the single conjugacy class given by the non-trival coset of Az (in
S3), consisting of the three transpositions {(12), (13),(23)}. Hence, for
p=2 mod 3, we have ¢; = ¢ = 0,¢c3 = 1.

1.4.4. Class function constants and “missing” factorization patterns.
Let p be a large prime and let f(x) = z*—2x2. Then Gal(f(x)+t,F,(t))
is isomorphic to Dy, the dihedral group with 8 elements. Regarding D,
as a subgroup of Sy, the elements of Dy, in cycle notation, are

{(1,4)(2,3),(1,3)(2,4), (1,3),(2,4),(1,2)(3,4),(1,2,3,4),(1,4,3,2) }.

Parametrizing the factorization patterns of f(z) + a, for a € F,, by
partitions of 4, we find that the different factorization patterns occurs
with the following frequencies: 4 = 1+14+1+1: 1/8,4 =2+1+1: 2/8,
4=3+1:0/8,4=2+2:3/8, and finally 4 = 4: 2/8. In particular,
f(z) 4+ a cannot split into a linear and a cubic (irreducible) factor.

Let ¢1,...,¢s denote class functions (in S4) that equals one on all
permutations corresponding to the factorization pattern given by the
5 different partitions of 4 (see above), and zero otherwise. The corre-
sponding class function constants in Theorem 4 are then the same as
the corresponding frequencies listed above, and thus ¢; = 1/8, ¢y = 2/8,
c3=0,c4 =3/8, and ¢5 = 2/8.

1.4.5. Going beyond factorization patterns. Again take f(z) = 2*—22%
as noted above we then have Gal(f(z) + ¢,IF,(t)) ~ D,. The elements
of D4 that are products of two disjoint transpositions fall into two Dy
conjugacy classes, namely {(1,2)(3,4),(1,4)(2,3)} and {(1,3)(2,4)};
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these two cases (after labeling the roots) can then be distinguished if
we take class functions on D, rather than on Sj.

1.4.6. Breakdown of independence of primes. For general f the issue
of independence for “bad shifts” appears delicate, but we can give an
explicit example of a polynomial f € My(F,) for which the interval
I(f) has the expected prime density, yet prime independence breaks
down for a few “bad” shifts h — there can be large fluctuations in the
Hardy-Littlewood constants for f non-Morse.

Again let f(x) = x* — 22% and first consider primes p = 1 mod 4;
abusing notation we will let f = f,, denote the reduction of f modulo
p. Then

) " teinels) = 72+ O(V)

gel(f)
and for h € F,, \ {0, £1} we have

1
Z 1Prime(g) : 1Prime(g + h) = E P + O(\/ﬁ)a
g€I(f)

i.e., prime independence holds. However, for h = +1, we have

1
Z 1Prime(g) : 1Prime(g + h) = g P + O(\/ﬁ)
g€1(f)

and independence is clearly violated.
On the other hand, for p = 3 mod 4, the prime density is still 1/4
(e.g., (8) holds), but if h = £1, then

Z 1Prime(g) : 1Prime(g + h) = O(\/ﬁ)v

geI(f)

in a sense independence is violated in the worst possible way as the
“twin prime constant” is zero.

We remark that the p-averaged twin prime constant (asymptotically
p =1 mod 4 holds for half the primes) equals 1/2-1/8+1/2-0 = 1/42
i.e., we arrive at the expected “independent” density — this is no
coincidence, cf. Section 6.2.

1.5. Acknowledgments. We thank L. Bary-Soroker, A. Granville,
and Z. Rudnick for stimulating and fruitful discussions, as well as their
comments on an early draft, and L. Klurman for pointing out the ap-
plication to primes in progressions to very large moduli.
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2. PRELIMINARIES

2.1. Squarefree polynomials in very short intervals. As we are
concerned with class functions on very short intervals we begin by
recording the useful fact that almost all g € I(f) are squarefree, for
f € My(F,) and ¢ large. In fact, given f € M, and distinct shifts
hl,...,thFq,

9) WHgel(f):g9+hi,...,g+ hy are squarefree}| = ¢ + Ogq(1)

To see this it is enough to verify that (f + h, f’) = 1 for all but O4(1)
choices of h € F,, but this is clear as f'(§) = 0 for at most d — 1 values
of £ € F,, so the number of h so that f(£) +h = 0 is at most d — 1.

2.2. Morse polynomials are generic. As recalled in the introduc-
tion, a polynomial of degree d is called a Morse polynomial if the set
of critical values is of cardinality d — 1. It turns out that for f a Morse
polynomial, the Galois group of f(x) — t is maximal (over Q(¢) this
goes back to Hilbert [14].)

Proposition 6 (Cf. [23], Theorem 4.4.5). Assume that (¢,2d) =1 and
that f € My(F,) is a Morse polynomial. Then Gal(f(x)—t/F,(t)) ~ S4.

We remark that Geyer, in the appendix of [15], also treats the case
(q¢,d) = 1 by introducing a more general notion of Morseness, namely
assuming non-vanishing of the second Hasse-Schmidt derivative of f.
Moreover, he also gives a beautiful Galois theoretic proof that “generic”
polynomials are Morse.

Proposition 7. Let f(x) € My(F,) with f"(x) # 0, and assume that
(g,2d) = 1. Then, for all but O4(1) values of s € F,, the polynomial
fs(x) = f(z) + sz is a Morse polynomial.

Although not stated this way, Proposition 7 is in fact proved in the
last page of the proof of Proposition 4.3 in [15].

Similar criteria for showing that Gal(f(z) + ta™/F,(t)) ~ Sy for
“generic” f and integer m € [1,d — 1] can be found in [18, Section 5].

2.3. Galois theory and the Chebotarev density theorem. For
the convenience of the reader, we collect here some results about Galois
groups of function fields over finite fields. Before doing so, we begin

with the following notations, similar to the ones used in [13, 17].
For f € My(F,) and h € F,, define Fy,(x,t) € F,[z,t] by

Fu(x,t) == f(x) + h+t.
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Set Kj, = F,(t)[z]/(Fn(z,t)), let Lj denote its Galois closure, and
let I}, .= Ly N IFT, be the corresponding field of constants. As [ is
independent of A (cf. [17, Lemma 5]), it is convenient to define | = [.

Given k distinct shifts hy, ..., hy € Fp, let LF .= Ly, -Lpy ... Ly, be
the compositum of the fields Ly, ..., Ly,, and let G¥ = Gal(L*/F,(t)).
Note that G* is not necessarily a product of groups. We also de-
fine Gp,, = Gal(Ly,/Fy(t)) for i = 1,...,k; after labeling the roots
of Fy(z,t) we obtain a natural inclusion Gj, < Sg; similarly we obtain
a natural inclusion G* — Sk

Let [¥ := L*NF, denote the field of constants in L*, and let G’geom =
Gal(L*/I¥(t)) denote the geometric part of G*. Similarly let G, geom :=
Gal(Ly, /1n,(t)) = Gal(Lp,/l(t)) denote the geometric parts of Gy, for
i =1,...,k. (Here we use that I, does not depend on h, and that
l = lo)

The set of critical values of f is given by

Rp:={f(&): £ €Fy, f/(€) =0}
we then put

B(f) = ((Ry = Bp) \ {0}) N,
where Ry — Ry denotes the set of differences {ry —ry : 11,72 € Rf}.

We shall make use of the following properties of the Artin symbol.

Let F(x,t) € F,[z,t] be a separable irreducible polynomial, and let
L denote its splitting field over F,(¢). For all but finitely many a €
F,, the prime ideal p, = (t — a) C F,[t] is unramified in L, yielding
a well defined conjugacy class (%) € Gal(L/F,(t)) — the Artin
symbol. Moreover, for these choices of a the splitting type, or the
cycle pattern, of the polynomial F(x,a) (i.e., when specializing t —
a € F,) is the same as the cycle pattern of (%), interpreted as a
permutation on the roots of F(x,t). Further, given a conjugacy class
C C Gal(L/F,(T)), the density of prime ideals for which Artin symbol
lies in C is given by the Chebotarev density Theorem.

Proposition 8 ([12], Proposition 6.4.8.). Let K be a function field over
F,, let d = [K : Fy(t)], let L/K be a finite Galois extension, and let
C be a conjugacy class in Gal(L/K). With Fn denoting the algebraic
closure of F, in L, let m = [L : KFn]. Let b be a positive integer with
TeSFn T = TESF,. Frobg for each T € C. Let k be a positive integer. If
k#b mod n, then Cy,(L/K,C) is empty. If k =b mod n, then

_ e . 2|C|

< = ((m4g1) "2 +m(29x+1)¢"* + g1 +dm).

CUL/K.O) = | < 12



PRIME AND MOBIUS CORRELATIONS FOR VERY SHORT INTERVALS 13

Here Frob, € Gal(F,/F,) is the Frobenius map given by Frob,(a) =
al, g1, gk are the genera of the fields L, K, and

Cx(L/K,C) = {p C Ok : deg(p) = k, p unramified, (L/TK) = C}

where Ok C K is the integral closure of F,[¢] in K. In our applications
we will always take K = F,(¢) and in this case O = F,[t].

For a squarefree polynomial f € My(F,), define a conjugacy class
o = o5 C Sy by the Frobenius action o — «? on the roots of f.
Further, if we let f,(z) := f(z) 4+ a, the conjugacy classes o, (as
a € F, ranges over elements such that f, is squarefree) is the same
as the Artin symbols (Lp/—aK) as a € F, ranges over elements for which
the prime ideal p, := (¢t — a) is unramified, if we take K = F,(¢) and
L = L, with notation as above (also note that m = |G geom| inn this
case.)

We next collect some crucial facts about the Galois extensions intro-
duced above. Given a finite extension E/FF,, it will be convenient to let

Frobg denote the map o — ol

Proposition 9 ([17], Section 2). Let f € My(F,). Then

(1) For any h € Fy, I, = ly and G}, ~ Gy.

(2) If h = (hy,..., hy) is such that h; — h; ¢ B(f), then the field
extensions Ly, /I(T), ..., Ly, JUT) are linearly disjoint, where
1 =1y is the field of constants of L*. In particular,

k
k k
Ggeom = H Ghi,geom = (G0:9€0m>

=1

(3) For h = (hy,...,h) such that h; — h; & B(f), let C C G* be
a conjugacy class of the form C = C; x ...Cy, where each C;
is the corresponding conjugacy class in Gy, (i.e., where GF <
Ghy X -+ - X Gy, and C; = m;(C) is the image of C under the i-th
projection.) Then

{7 e Gyl = Frobp, |z, € Cp, Vi=1,.. .,l{;}

1s 1 1 — 1 correspondence with

k
H{’Y & Go . '7|l = Fl"Obl,’}/ - CZ}

=1
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which, if we let 6 € Gy denote any element such that 6|, = Froby,
s l—1 correspondence with

H ((6 - Go geom) N Ci)
=1

Proof. The proof of the proposition is the content of Lemma 5, Propo-
sition 8, and (the proof of) Lemma 10 in [17]. We note that in Propo-
sition 8 and Lemma 10, the first author shows that if Ry +hy,..., Ry +
hy, are pairwise disjoint (more precisely, he considers hy = 0, and
Fy(z,t) = f(x)— (h+t), and therefore the sets are of the form Ry —h;),
then linear disjointedness holds, and from that also Lemma 10. We note
that the sets are indeed pairwise disjoint if h;—h; ¢ B(f) fori # 5. O

To prove independence when disjoint ramification does not hold, we
need the following key result (cf. [13], Proposition 17 and Lemma 16.)

Proposition 10. If f € My(F,) is a Morse polynomial and hy, . .., hy €
F, are distinct then G* = S% provided that p > 45T4=1 + 1.

2.4. Class functions. As mentioned in the introduction, any class
function on S, can be viewed as an arithmetic class function on the set
of squarefree polynomials in My(F,); we then consider any bounded

(by some absolute constant) extension to the set of all polynomials in
Md(Fp)'

Proposition 11. Let f € My(F,), d > 2 and let ¢ be a class function
on Sy. Choose v € Gg such that |, acts via o — o, and let Go geom
denote the geometric part of Gy. Then

S 6(g) = e(9) - p+ Ouly/P)

gelI(f)

where
1

‘ GO,geom ’

co(¢) =

> ¢lo)

UE’Y'GO,geDm

Proof. The contribution from non-squarefree g € I(f)is Oq4(1) (cf. (9).)
The result now follows from the Chebotarev density theorem. U

Remark: If f is Morse and h € F,,, then Gj geom = Sq. In the non-
Morse case, the set of possible constants C(¢, d) can be shown to only
depend on ¢ and d by noting that C(¢,d) is a subset of

(10)
] 7 ol

iy €8y, H < Sy acts transitively on {1, . d}}
cevH
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As an immediate consequence of the Chebotarev density theorem we
can give a more precise description of what the constants might be for
several shifts, when independence is allowed to break down.

Proposition 12. Let ¢, ..., ¢ be class functions on Sq and let hq, ..., hy €
F, be distinct shifts. Choosing v € G* such that v|;x acts via o — o,

we have
> <H¢ (9 + h ) =c-p+ Our(y/p)
g€l(f)
where
1 k
c= S ] e )
|Ggeom| -
oey-Gk,,,, \i=l1
and (o1, ...,0) € S% denotes the image of o € G* under the natural

inclusion GF — S%.

Remark. In order to go beyond factorization patterns (to distinguish
conjugacy classes having the same factorization pattern), note that the
proof gives a slightly more general version of Proposition 12, where
o1, ..., 0k are class functions on Gy,, ..., Gh,, and using the inclusion
G* C Gy X Gy X -+ x Gy, to map o € G* to (01,...,01) € Gy, X
Gp, X -+ x Gy,

3. PROOFS OF THEOREMS 3 AND 4

We begin with proving Theorem 3. The first part of the Theorem
is an immediate corollary of Propositions 6 and 11. Indeed, for f €
My(FF,) Morse, Gy = G geom = Sq, and the sums in Theorem 3 and in
Proposition 11 are the same. As for the second part, for p sufficiently

large, Proposition 10 gives that G* = G'g“eom = Sk By Proposition 12,
> (H@ g+ hi ) =c-p+ O4u(v/D)
gel(f)
where
k
¢= g 2 H@ o) | = [0
|Sd| oesk \i=1 i=1

and c(¢;) = |Sd\ Y oes, Qilo) fori=1,...k.
The proof of Theorem 4 is similar. The first part follows from Propo-

sition 11; letting ¢; = m D 0e5-Gogoom Pi(0) it s clear that C'(¢y, d),
the set of possible values of ¢;, is clearly a subset of the finite set given
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n (10). As for the second part, we note that, by part (2) of Proposition

9, G’geom = (G geom)* and it follows that the constant in front of p is
1 k
a2 (T -
| geom’ c Gk i=1
&Y -Ggeom
1 k k
o AL\ 2 ol =1l
M -1\ 0€5-Go,geom i=1

where v € G* is some element such that 7| = Frobs, and 7 denotes
the image of v under the projection from G* to Gj.

4. PROOF OF THEOREM 1

Recall that f € My(F,) denotes a Morse polynomial. We begin by
showing that the characteristic function on prime polynomials is a class
function. With

1 o= (i1 -iq) is a d-cycle
lgec =
reyce(9) {0 otherwise

the function

0 otherwise

o(f) = {1d'°ydeS<‘7f) [ is squarefree

on My(F,) is a class function, which equals 1pyinme since a polynomial is
irreducible if and only if o is a d-cycle. Hence ¢(1pyime) is the density
of d-cycles in S;, namely %, and Theorem 1 now follows from Theorem
3.

In a similar way, the “Titchmarsh divisor problem”, and the “shifted
divisor problem” for very short intervals I(f) may be treated. The
former consider sums of the form

Z 1Primedr(f+ h)
g€l(f)

where d,.(f) is the number of ways to decompose f as a product of r
monic polynomials, and the latter concerns sums of the form

Y de(f+h) - do (f + )
g€I(f)

where rq,..., 7 are positive integers, and hy,...h; € IF, are distinct.
Once again, d,.(f) is a class function, since for f squarefree, d,(f) =
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d.(oy), where d, (o) is the number of ways to decompose the permu-
tation ¢ as a product of r disjoint cycles (here we allow for empty
cycles.) We can therefore apply Theorem 3 for these sums and get that
for distinct hyq, ..., hy € Fp,

k

n+r—1

1) % dutf ey () =TT ("7 ) 00
9el(f) i=1 :

(the constants are derived in [1, Lemma 2.2]), and for all nonzero h € F,

(12) Z 1Prime : dr(f + h) = %( )p + O(p1/2)
)

geI(f

n+r—1
r—1

5. MOBIUS AND CHOWLA TYPE SUMS IN VERY SHORT INTERVALS

In this section we give proofs of Theorems 2 and 5. We begin with
a discussion of the Mdbius i function for function fields.

Given a polynomial f € My(F,), let w(f) denote the number of
distinct irreducible divisors of f. It is natural to define the function
field Mébius p-function by p(f) := (=1)*) for f squarefree; otherwise
we set p(f) = 0. For p large and f € My(F,), essentially all g € I(f)
are squarefree (cf. (9)), and hence p is a class function in the sense
previously discussed.

Given o € Sy, let ¢(o) denote the number of cycles in the cycle
representation of o, including all 1-cycles, e.g., for (12) € Sy we write
(12) = (12)(3)(4) and find that c¢(o) = 3. Thus u(f), for f squarefree,
is given by (—1)°°s), It is convenient to abuse notation and define
p(o) == (=1)%) for o € Sy. It turns out that (—1)°() is closely related
to sgn(o), the sign of o regarded as a permutation:

plo) = (1)) = (=1)* - sgn(o)

To see this consider the disjoint cycle decomposition o = Hle ¢ (in-
cluding one-cycles). We then have p(o) = (=1)L. Now, with L,
denoting the number of even length cycles, and L, the number of
odd length cycles, we trivially have . = L; + L, and moreover that
sgn(o) = (—1)%. As the sum of the length of all cycles ¢y, . . ., ¢, equals
d (here it is crucial to include one-cycles), we find that L, and d has
the same parity. Hence

sgn(o) = (—1)" = (=1)F 2 = (=) = (o) (-1)

and we find that u(o) = +sgn(o), where the sign is given by the parity
of d.
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Now, if f is Morse, we have Gy = Ggeom = Sa, hence (cf. Theorem 4

_ 1 _ (=1 B
(i) = g7 > ulo) = 5 > sen(o) = 0.

geGo gESy

Thus Theorem 2 immediately follows from Theorem 3.

5.1. The non-Morse case. We begin by characterizing short intervals
on which there is no cancellation in the sum > ;s p1(g). Fix v € Go
such that v|; acts as a — a?.

First case: We begin by considering the case Gogeom C Aq (With
Ay C Sy denoting the alternating group.) Since p is a class function,
(6) gives that

1
co(p) = G Z (o)
| O’geom| UG’Y'GO,geom

and since sgn is trivial on G geom C Aq4, we find that p(g) has constant
sign for g € I(f), with the possible exception of O(1) non-squarefree

g- Hence | > ;5 1(9)] = p + Oal(/D)-
Second case: If Gggeom is not contained in Ay, there exist at least

one odd permutation 7 € G geom; in particular, Y geom sgn(o) = 0.
Thus,
1 (—=1)?sgn(v)
c(p) = Comeom] > ulo) = Comeon| > sen(o) =0,
07ge0m UG'YGO,geom 07geom UGGO,geom

and hence Theorem 3 gives that

> ulg) = 0(yp)

geI(f)

In summary, there is (square root) cancellation in »° ;) u(g) if and

only if there is sign cancellation in sgn(o).

0€G0,geom
5.1.1. Cancellation in Chowla sums. We first note that if hy,..., hy €
[, are distinct elements such that h; — h; & B(f) (“the uncorrelated
case”), Theorem 5 follows immediately from Theorem 4.

If h; — h; € B(f) (“the correlated case”) we argue as follows. As we
have seen, no cancellation in the Mébius sum > ;s £(g + 1) (which
in turn happens if and only if there is no cancellation in the unshifted

sum - g f(9), or in any other shifted sum 3y, p(g + i), @ =
2,...,k) is equivalent to Gy, geom C Aq for all i. In particular, G¥, = C

geom
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Hf:1 Ghi,geom - Al:l Since del(f) H?:l ,U,(g + hz) =c-p+ Od,k(\/]_))

where
1 k

eom (‘717'“»0—76)67'Ggeom

(cf. Proposition 12 and use the natural embedding G* — S*) we find
that there is no cancellation in the Chowla sum.

On the other hand, if there is cancellation in the short Mobius sum,
there must be some odd permutation in G, geom, and this in fact implies
that the same holds for Ggeom, provided p is sufficiently large (in terms
of k.) To see this, define R.qqa C Ry as the set of critical values of f
giving rise to odd permutations in G, geom. Then, as G, geom iS gener-
ated by the inertia subgroups of points outside oo, and their conjugates
(cf. [23, Proposition 4.4.6]), Roqq is nonempty. By [13, Lemma 16] (in
particular, take H = {—hy, —hs, ..., —hy}, S = Roqq and note that we
may assume that p > 4ktd > gk+lReadl gince the implied constants in
the error terms are allowed to depend on d and k) there must be some
element in the multi-set generated by Roqq + b1, - .., Rogqa + hi that has
odd parity, and hence G’g“eom contains an odd element given by a prod-
uct of an odd number of odd permutations. Thus the elements of G’g“eom
do not have constant sign, and hence there is square root cancellation
in the Chowla sum also in this case.

To see that G geom C Aq does indeed occur (for p large and d fixed,;
for interesting examples when p|d, see [6]), we can take f(z) = 2! and
p =1 mod [ for some odd prime [; then G = Ggeom is cyclic of order
[, and all nontrivial elements are given by even [-cycles.

6. EXAMPLES OF DEGENERATE INTERVALS — FURTHER DETAILS

6.1. Prime density fluctuations. We take f(z) = 23, ¢ = ¢p =
Iprime- As I(f) = {a® —¢,t € F,} it is enough to consider splitting
patterns of 22 —t = 0. For primes p =1 mod 3, z® — t has either zero
or three roots in F,; the latter happens if and only if ¢ is a cube of
some element in [F,,, and there are 1 + (p — 1)/3 such elements. Hence
¢(Iprime,p) = 2/3 for p = 1 mod 3. On the other hand, for p = 2
mod 3, the map x — 2% is a permutation of the elements in F,, hence
3 —t = 0 has one root in F, no matter what ¢ is. In particular,
¢(1pyime, p) = 0 for p =2 mod 3.

Since 2% only has one critical value, |R;| = 1 and hence (hy + Ry) N
(ha+ Ry) = 0 unless hy = hy; in particular B(f) = (Ry— Ry)\{0} = 0,

and (7) follows from Theorem 4.
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6.2. Breakdown of independence of primes. Take f(z) = 2*—22?,
and let p be a large prime. The following was shown in [13, Section
4.2): G ~ Dy, and for hy = 0,hy = 1, we have G* = Gal(L?/F,(T))
(where L? denotes the compositum Ly, Ly, ), and G? genuinely depends
on p. Namely, for p = 3 mod 4 we have G* ~ D, x D,, whereas for
p=1 mod4, G* = G?_,, = H is a certain index two subgroup of

geom

D4 x Dy. More precisely,
H={((6,7),(2,3)(5,6)(7,8),(1,2)(3,4)) C Dy X Dy,

where we have identified the first copy of D, as permutation of {1, 2, 3,4},
and the second copy as a permutation of {5,6,7,8}. As

Dy =1{(1,4)(2,3),(1,3)(2,4), (1,3),(2,4), (1,2)(3,4),(1,2,3,4),(1,4,3,2)}

(note that D, contains exactly two 4-cycles) the Chebotarev density
theorem gives that

c(lPrime) = 2/|D4| = 2/8 = 1/4

A tedious but straightforward calculation gives that |H| = 32 and
that there are exactly four elements in H corresponding to both f(x)+t
and f(z) + 1+ ¢ being prime for ¢ € F,, namely (1, 3,4,2)(5,7,8,6),
(1,3,4,2)(5,6,8,7), (1,2,4,3)(5,6,8,7), and (1,2,4,3)(5,7,8,6). Hence
the “twin prime density” for the shift h = 1 equals 4/|H| = 4/32 =
1/8 # 1/42. Similarly, the density for the shift h = —1 also equals 1/8.

As mentioned above, for p = 3 mod 4, the compositum L? of Ly and
L, was shown to have maximal Galois group, namely G? ~ D, x Dy;
further the field of constants of the compositum was shown to equal
F,[i] (where i* = 1). Thus, if 0 € G is any element such that o (i) =
—1, we find that Frobenius takes values in the coset cH C Dy X Djy.
In particular, as all elements of G consisting of two 4-cycles in Dy X
D, are contained in H, there are no such elements in the coset o H.
Consequently the Chebotarev density for (g,g 4+ 1) both being prime
is zero for p=3 mod 4 and g € I(f) (even though ¢(1psme) = 1/4.)

On the other hand, the critical points of f (i.e., zeros of f’) are
{0, —1,1}, and thus the critical values of f are given by Ry = {0, —1}.
Hence B(f) = (Ry — Ry) \ {0} = {—1,1}, and thus Theorem 4 gives
independence in the sense that the simultaneous prime density for g, g+
h equals 1/4? for h # 0, %1 and g € I(f).

The “coincidence” of getting the expected twin prime density when
averaging over all primes p can be explained as follows. We lift the
setup to Q and consider G = Gal(f(x) + t, f(z) + 1 +t/Q(t)). Then
G ~ D, x Dy, and the constant field extension is Q(¢). Thus, if we first
average over primes p, and then over ¢ € [F,, the Frobenius element
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equidistributes in all of G (for p = 1 mod 4 it equidistributes in H,
and for p = 3 mod 4 it equidistributes in the nontrivial coset of H,
and G is the union of these two cosets.) In particular, as there are
4 elements in G whose cycle structure corresponds two simultaneous
prime specialization, we find that the p-averaged twin prime density
equals 4/|G| = 4/64 = 1/42, “as expected”.

7. THE LARGE ¢ LIMIT

The previous results can be extended to the setting of very short
intervals in My(F,) for ¢ = p' as long as p grows (the key point is that
the proof of Lemma 16 in [13] also works for F, provided p is sufficiently
large).

The setting of p fixed and letting [ grow is more complicated. We
first note there is an obvious obstruction to f(x) + sz being Morse
for any value of s € F, in case p|deg(f) — clearly deg(f’) < d—1
and hence there are at most d — 2 critical values. However, even if we
assume (deg(f),p) = 1 there are other obstructions for the the Galois
group being maximal (ie., that G, = S§), even though G, = Sq
for 1 < i < k. For example, consider the family f,(z) = 2 + sz for
s € F, where ¢ = p! and p > 3 is fixed. For all but O(1) choices
of s, fs(x) is Morse, and f/(z) = 3z® + s is a quadratic with two
distinct roots in F2, and it is easy to see that Ry = {as, —a,} for
some ag € Fp2. Taking k = p and letting h; = io, for 1 < i < k, we
find that the multiset-union of R + hy, R+ ho,..., R+ hy, as a set is
a linear [F-subspace in 2, with each element having multiplicity two
(since |R| = 2). Consequently G]g“eom contains only even permutations.
In particular, the equivalence between cancellation in Mobius sums and
Chowla sums (cf. Theorem 5) does not hold in the large ¢ limit.

A more subtle example of independence breaking down can also be
given. For f(z) = a* + 2% + 32% € My(F,), the critical values are
given by R = {0,1,3}; taking (hq,...,hs) = (0,1,2,4) we find that
the multiset union of h; + R has multiplicity two on its support. This
type of example cannot occur for p large, but if we fix p and consider
polynomials of the form fs(x) = f(x) + sz, s € Fu for growing [, it
is clear that the above phenomena occur at least once (for s = 0.)
However, if we fiz hy,..., hy, in some extension of F,, this can only
happen for Oy (1) values s € F, (but note that this set of “exceptional”
s-values depends on the shifts hy, ..., h.)

Theorem 13. Fix distinct elements hy,...,hy € E, and let fy €
My(F,) with (p,d(d — 1)) = 1, and let ¢ = p' for some | > 1 large
enough so that fo € F,[z] and hy,... . h, € F,. Given s € F,, let
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fs(x) = fo(z) + sz and for i = 1,...,k, let K;/F,(t) denote the field
extension generated by fs(x)+h;+t, let L; denote the Galois closure of
K;, and let L* denote the compositum of L+, ..., L. Then, for all but
Oax(1) values of s € ¥, fs is Morse, and we have Gal(LF/F,(t)) ~ S&.

Before giving the proof of Theorem 13 we deduce an immediate corol-
lary, namely a somewhat weaker “large ¢” analogue of Theorems 1, 2
and 3. To do so we need some additional notation: given f € My(F,),
let Is,(f) == {f(z) +a : a € Fg}, and as usual, for s € [, let

fol@) = f(x) + sz

Corollary 14. Fiz distinct elements hy,...,hy € E, and let fy €
My(F,) with (p,d(d—1)) = 1. There ezists a subset Spea C Fp, depend-
ing on fo and hq, ..., hg, with the following properties:

(1) |Sbaal = Oar(1).

(2) Let ¢ = p' be any prime power such that hy,... h, € F, and
fo € Fylz]. Then, for s € F,\ Spaq, Theorems 1, 2, and 8 hold
for the very short interval Iy, (fs). For example, if s € Fg\ Spad,
then

H{g € Ir,(fs) : g+ h1,..., 9+ hy are irreducible }| = % + Oar(+/q),

and

> (Hu<g+m>) = Our(/2)-

gEI]Fq(fs) i=1

As for the proof of Theorem 13, we first show that critical values
having constant difference is a rare occurrence.

Proposition 15. Let f € My(F,) where ¢ = p', and assume that
ptd(d—1). With s transcendental over F,,, denote f,(x) := f(z)+ sz,
and let Ty, be distinct roots of fi(z) = f'(x) +s=0. Then fi(m) —

fs(m2) ¢ F_p'

Proof. Assume by contradiction that ¢ = fi(r;) — fi(r2) € F,, and
define E = F,(c). Now, fs(z) = f(z) + sz and fl(z) = f'(z) + s
are irreducible polynomials over E(s), so for both i = 1,2, [E(7;) :
E(s)] = d — 1, and [E(7;) : E(fs(r))] = d. Since the degrees of both
extensions are co-prime we find that E(r;) = E(s, fs(7;)), and thus,
since we assume that fi(m) = fs(72) + ¢, we find that E(ry) = E(7).

This implies that there exist A, B, C, D € E such that , = égig. We
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claim that C' = 0, otherwise (note that f'(7;) = —s for i = 1,2)

(13)

f(m)=f(m)m = f(n)+sm = fu(n) = fo(r2)+c = f(r2) +sm2+c =

An+ B An+B ,,, An+ B
() = f(m)m+e= f(OTi 1 D) a 07'1 i D /(CTi i D) To

and after clearing denominators we find that 7 is a root of a polynomial
of degree 2d (here we use p { d—1 so that deg(f(z)—zf'(z)) = d), with
coefficients in F,, contradicting that 7, is transcendental. Therefore
C =0, and thus 7» = Am + B for some A, B € E. Denote h(x) =
f(z) —xf(x). Then h(x) — ¢ = h(Azxz + B). Let Rj, be the multiset
of critical values of h, and Aj, the set of critical points of h. For any
a € Ay, (a—B)/A is a critical point of h(Az+ B), and h(a) is a critical
value of h(Az + B). Therefore Ry, is the multiset of critical values also
for h(Az+B). On the other hand, by the equality h(z)—c = h(Az+B),
we find that R, = R, — c. By [15] (cf. Claim D’ in the proof of
Proposition 4.3), critical values are distinct and hence ¢ # 0. We
thus find that there exists a nontrivial [F,-action on the multiset Ry,
and therefore p divides the multiset cardinality of Rj, i.e., p divides
deg(h’) = d — 1, contradicting the assumption that p{d — 1. O

Corollary 16. For f € My(F,) such that (q,d(d—1)) =1, and any set
of k distinct elements H = {hy,...,h} CF,, the set B(fs)N(H — H)
is empty for all but Oy (1) values of s, where B(fs) = (R, —Ry,)\{0}.

Proof. By Proposition 15, for s transcendental over F,, h; # h;, and
7, # 7; denoting any two distinct roots of fl(x),

fs(i) = fs(7j) — (hi = hy) # 0
H H fs 7_1 fs T]) ( 7 h]))

hiF#hj T, #T;
Then II(s) # 0, and as II(s) is a symmetric polynomial in the roots of
fi(z) =0, it is a polynomial in s, of degree bounded in terms of d and
k. Since B(fs) N (H — H) # 0 is equivalent to II(s) = 0, the result
follows. O

Let

Theorem 13 now follows easily as the extensions L, ..., L are lin-
early disjoint by Corollary 16.
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