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1. Introduction

We are interested in obtaining lower bounds on the periods of two stan-
dard pseudorandom number generators from number theory—the linear con-
gruential generator, first introduced by D. H. Lehmer, and the so called
power generator. For the former, given integers e, b, n (with e, n > 1) and a
seed u = u0, we compute the sequence

ui+1 = eui + b (mod n).

For the power generator, given integers e, n > 1 and a seed u = u0 > 1, we
compute the sequence

ui+1 = ue
i (mod n)

so that ui = uei
(mod n). The particular case e = 2 is known as the

Blum–Blum–Shub (BBS) generator [1]. This generator is not only simple
to compute, but it has certain attractive aspects from a cryptographic per-
spective, especially when n is the product of two large primes that are both
congruent to 3 modulo 4.

These two generators give rise to (ultimately) periodic sequences, and
it is of interest to compute the periods—a useful pseudorandom number
generator should have a long period. Further, to show that the sequence
satisfies various equidistribution properties, exponential sum techniques are
often applicable provided that the period is sufficiently large. Moreover, if
the period is very short when n is a product of two primes, certain cycling
attacks on the RSA public key system apply.

In this note1 we consider the problem of the period statistically as n varies,
either over all integers, or over certain subsets of the integers that are used
in practice, namely the set of primes and the set of “RSA moduli,” that is,
numbers which are the product of two primes of the same magnitude.
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If (e, n) = 1, then the sequence ei (mod n) is purely periodic and its
period is the least positive integer k with ek ≡ 1 (mod n). We denote this
order as `e(n). If (e, n) > 1, the sequence ei (mod n) is still (ultimately)
periodic, with the period given by `e(n(e)) where n(e) is the largest divisor
of n that is coprime to e. In what follows we shall denote `e(n(e)) by `∗e(n).
The periods of both the linear congruential and power generators may be
described in terms of this function. For the linear congruential generator we
have ui = ei(u+ b(e− 1)−1)− b(e− 1)−1 (mod n) when e− 1 is coprime to
n, so that if we additionally have u+ b(e− 1)−1 coprime to n, the period is
exactly `∗e(n). In general, the period is always a divisor of `∗e(n)(e− 1, n).

For the power generator, the period is exactly `∗e(`
∗
u(n)). For most of this

note we shall assume that u is chosen so that `∗u(n) is as large as possible for a
given modulus n. This maximum, following Carmichael, is denoted λ(n) and
equals the order of the largest cyclic subgroup of (Z/nZ)×. For the power
generator, we thus will study `∗e(λ(n)). Note that it is especially important
to use the function `∗e rather than `e when considering the modulus λ(n),
since for n > 2, λ(n) is always even, and in general, λ(n) is divisible by the
fixed number e for a set of numbers n of asymptotic density 1.

1.1. Previous work. For n = p and p a prime number, the order of e mod-
ulo p has been studied extensively. In [15] Pappalardi showed that there
exist α, δ > 0 such that `e(p) ≥ p1/2 exp((log p)δ) for all but O(x/ log1+α x)
primes p ≤ x. He also asserted, assuming the Generalized Riemann Hy-
pothesis2 (GRH), that if ψ(x) is any increasing function tending to infinity
as x tends to infinity (but not too quickly), then `e(p) > p/ψ(p) for all but
O(π(x) log(ψ(x))/ψ(

√
x)) primes p ≤ x, where as usual, π(x) is the total

number of all primes p ≤ x. A similar result is given by Erdős and Murty in
[2]. Also in [2], it is shown that if ε(x) is any decreasing function tending to
zero as x tends to infinity, then `e(p) ≥ p1/2+ε(p) for all but o(π(x)) primes
p ≤ x, and in [8] Indlekofer and Timofeev give a similar lower bound with an
explicit estimate on the number of exceptional primes. A further strength-
ening of this result has recently been shown by Ford [5]. Note that it follows
immediately from work of Goldfeld, Motohashi, Fouvry, and Baker–Harman
that there is a positive constant γ such that `e(p) > p1/2+γ for a positive
proportion of the primes p, with the current record being γ = 0.677.

A somewhat related new result is found in [9] where the authors show
that the geometric mean for `e(p) for primes p ≤ x is at least x0.58 for x
sufficiently large. This gives a small improvement on the essentially trivial
result with exponent 0.5.

2When we refer to the Generalized Riemann Hypothesis in this note we shall mean the
Riemann Hypothesis for zeta functions ζK , where K runs over the Kummer extensions
K = Q( q

√
e, exp(2πi/q)), e ≥ 2, q prime.
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The period of the power generator uei
(mod pl) was studied in Friedlander,

Pomerance and Shparlinski [6], where p, l are primes of the same magnitude.
One of the results there is that this period is > (pl)1−ε for most choices of
u, e, p, l. However, once the exponent e is fixed, say at 2, their results are
weaker.

As for `e(n) for n a positive integer, in [12] Kurlberg and Rudnick proved
that there exists δ > 0 such that `e(n) � n1/2 exp((log n)δ)) for all but o(x)
integers n ≤ x that are coprime to e. Further, in [10], Kurlberg showed
that the GRH implies that for each ε > 0, we have `e(n) � n1−ε for all but
o(x) integers n ≤ x that are coprime to n, and in [13] Li and Pomerance
improved the lower bound to `e(n) ≥ n(log n)−(1+o(1)) log log log n, a result that
is best possible.

Acknowledgement. P.K. supported in part by the Göran Gustafsson
Foundation, the Royal Swedish Academy of Sciences, and the Swedish Re-
search Council. C.P. supported in part by the National Science Foundation
(DMS-0401422). P.K. would also like to thank the organizers of ANT for
their kind invitation to speak.

2. The results

2.1. The linear congruential generator. By the previous remarks, the
period of the linear congruential generator, for e, b fixed and n taking values
among the integers, is essentially the same as `∗e(n), and thus the next
Theorem shows that the period is larger than n1/2+ε(n), respectively n1/2+γ1 ,
for all n in a full, respectively positive, density subset of the integers.

Theorem 1. Results on `∗e(n):

(1) Suppose ε(x) tends to zero arbitrarily slowly as x → ∞. Then
`∗e(n) ≥ n1/2+ε(n) for all but oε(x) integers n ≤ x.

(2) There is a positive constant γ1 such that `e(n) ≥ n1/2+γ1 for a positive
proportion of the integers n.

2.2. The power generator. As we have seen, the length of the period for
the sequence (ui) equals `∗e(λ(n)) if u is chosen apropriately. We thus begin
by considering `∗e(λ(n)) for 3 natural classes of moduli, namely primes, the
products of two primes of the same magnitude, and general integer moduli.
(Note that λ(p) = p− 1.)

Theorem 2. Results on `∗e(p− 1):

(1) Suppose ε(x) tends to zero arbitrarily slowly as x → ∞. Then
`∗e(p− 1) ≥ p1/2+ε(p) for all but oε(π(x)) primes p ≤ x.

(2) There is a positive constant γ2 such that `∗e(p− 1) ≥ p1/2+γ2 for a
positive proportion of the primes p.
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(3) (GRH) For each fixed ε > 0 we have `∗e(p− 1) > p1−ε for all but
oε(π(x)) primes p ≤ x.

Now consider RSA moduli, namely integers of the form pl where p, l are
primes with p, l ≤ Q (where Q is an arbitrary bound). Using our results on
`∗e(p− 1), we can prove the following theorem.

Theorem 3. Results on `∗e(λ(pl)):

(1) Suppose ε(x) tends to zero arbitrarily slowly as x → ∞. Then
`∗e(λ(pl)) ≥ (pl)1/2+ε(pl) for all but oε(π(Q)2) pairs of primes p, l ≤ Q.

(2) There is a positive constant γ3 such that for a positive proportion of
the pairs of primes p, l ≤ Q, we have `∗e(λ(pl)) ≥ (pl)1/2+γ3.

(3) (GRH) For each fixed ε > 0 we have `∗e(λ(pl)) > (pl)1−ε for all but
oε(π(Q)2) pairs of primes p, l ≤ Q.

Instead of considering specifically RSA moduli n = pl, one may consider
the general case where no restriction is made on the modulus n. In our next
theorem we establish similar results as above for this order.

Theorem 4. Results on `∗e(λ(n)):

(1) Suppose ε(x) tends to zero arbitrarily slowly as x → ∞. Then
`∗e(λ(n)) ≥ n1/2+ε(n) for all but oε(x) integers n ≤ x.

(2) There is a positive constant γ4 such that `∗e(λ(n)) ≥ n1/2+γ4 for a
positive proportion of the integers n.

(3) (GRH) For each fixed ε > 0 we have `∗e(λ(n)) > n1−ε for all but
oε(x) integers n ≤ x.

In fact, we can actually achieve a best possible result in part 3 of Theorem
4, namely:

Theorem 5. If the GRH is true, then for each fixed integer e ≥ 2,

`∗e(λ(n)) = n · exp(−(1 + o(1))(log log n)2 log log log n)

as n→∞ through a set of asymptotic density 1.

We may also handle the situation for a general modulus n and u fixed,
i.e., we do not need to make the assumption that u is chosen in an optimal
way.

Theorem 6. Assuming the GRH, for any fixed integers e, u ≥ 2, the period
of the sequence uei

(mod n) is equal to

n · exp(−(1 + o(1))(log log n)2 log log log n)

as n→∞ through a certain set of integers of asymptotic density 1.
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3. A brief outline of the arguments

We give a brief outline of the ideas used to prove the first cases of The-
orems 1 and 4, namely unconditional proofs of the periods of the two gen-
erators both being slightly larger than

√
n for full density subsets of the

integers. For full details and proofs of the other statements we refer the
reader to [11].

3.1. On the order of e modulo n. We begin by outlining the argument
that `∗e(n) > n1/2+ε(n) on a set of asymptotic density 1; that is, we prove the
first item in Theorem 1.

We begin with a Lemma that allows us to replace `∗e(n) by
∏

p|n `
∗
e(p), at

the price of losing a factor of at most λ(n)/n.

Lemma 7. For any natural number n we have

`∗e(n) ≥ λ(n)

n

∏
p|n

`∗e(p) =
λ(n)

n

∏
p|n, p-e

`e(p).

Now, although λ(n) can be as small as (log n)c1 log log log n for some c1 > 0,
as shown by Erdős, Pomerance, and Schmutz in [4], it readily follows from
Theorem 5 of [6] that λ(n) is quite large for most integers3.

Lemma 8. For x sufficiently large, the number of integers n ≤ x with
λ(n) ≤ n exp(−(log log n)3) is at most x/(log x)10.

As mentioned in the introduction, if ε(x) → 0 as x → ∞, then `∗e(p) >
p1/2+ε(p) for almost all prime p. In other words, `∗e(p) is fairly large for
“typical” primes p. Thus, if the product of the “typical” prime divisors of a
generic integer n is of size comparable with n, we find that `∗e(n) > n1/2+ε(n)

for most n. We can make this more precise as follows.
Suppose P is a subset of the prime numbers. We let πP(x) denote the

number of primes p ≤ x with p ∈ P . For a positive integer n we let nP
denote the largest divisor of n that is free of prime factors outside of P .

Assume ε(x) is an arbitrary monotonic function with

(1) ε(x) = o(1), ε(x) > 1/ log log x, ε(x1/ log log x) < 2ε(x),

where the last two conditions hold for x sufficiently large. We now partition
the primes into 3 sets:

L = {p prime : `∗e(p) ≤ p1/2/ log p}
M = {p prime : p1/2/ log p < `e(p) ≤ p1/2+2ε(p)}
H = {p prime : `e(p) > p1/2+2ε(p)},

3In fact, in [4] it was also shown that λ(n) = n/(log n)log log log n+A+o(1), where A '
0.227, for most integers.
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where we use the mnemonic low, medium, and high (order) for L,M,H.
Note that L contains the prime factors of e. Further, let ω(n) denote the
number of prime number divisors of n.

By an argument due to Hooley [7], we can show that the “low order”
primes are rare enough that the sum of their reciprocals converge.

Lemma 9. We have πL(x) = O(x/ log3 x) so that
∑

p∈L 1/p = O(1). In
addition, we have

(2)
∑
nL=n

1

n
=

∏
p∈L

(1− 1/p)−1 = O(1).

For a positive integer n, let γ(n) denote the largest squarefree divisor of n,
sometimes called the “core” or “radical” of n. Using Lemma 9, together with
the Erdős-Kac theorem (or the Hardy-Ramanujan theorem on the normal
number of prime divisors of integers), we can show that a generic integer n
has the following properties: the low order part nL of n is quite small, the
core of n is quite large, and n does not have too many prime divisors. More
precisely, we have:

Lemma 10. But for a set of natural numbers n of asymptotic density 0 we
have: nL < log n, n/γ(n) < log n, and ω(n) < 2 log log n.

Our next question of interest is how large can we expect nM to be for
most numbers n. Since most numbers do not have a divisor very near their
square root, there is hope that this ingredient can be used. In fact, Erdős
and Murty used this idea to show that πM(x) = o(π(x)), and Pappalardi
and Indlekofer–Timofeev got more quantitative versions of this result. We
state a consequence from the latter paper.

Lemma 11 ([8], Cor. 6). With ε(x) as specified in (1), we have πM(x) =
O(ε(x)1/12π(x)).

We now show that as a consequence of Lemma 11, not many integers
n have a large divisor composed of primes from M. Let Λ denote the
von Mangoldt function.

Lemma 12. With ε(x) as specified in (1), the number of integers n ≤ x
with nM > n1/3 is O(ε(x)1/12x).

Proof. We have∑
n≤x

log nM =
∑
n≤x

∑
d|n

dM=d

Λ(d) =
∑

dM=d
d≤x

Λ(d)
⌊x
d

⌋
≤ x

∑
p∈M
p≤x

log p

p
+O(x).
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Now, using Lemma 11 and (1),∑
p∈M, p≤x

log p

p
=

log x

x
πM(x) +

∫ x

2

log t− 1

t2
πM(t) dt

�
∫ x

2

ε(t)1/12

t
dt+ o(1)

=

∫ x1/ log log x

2

ε(t)1/12

t
dt+

∫ x

x1/ log log x

ε(t)1/12

t
dt+ o(1)

� log x

log log x
+ ε(x)1/12 log x � ε(x)1/12 log x.

Thus, ∑
n≤x

log nM � ε(x)1/12x log x,

and the result follows readily. �

We are now ready to prove the first part of Theorem 1.

Theorem 13. Suppose ε(n) satisfies (1). But for a set of integers n of
asymptotic density 0 we have

`∗e(n) > n1/2+ε(n).

Proof. By Lemma 8 we may assume that λ(n) > n exp(−(log log n)3). Thus,
from Lemma 7 and Lemma 10 we have

`∗e(n) > exp(−(log log n)3)
∏

p|n/nL

`e(n)

≥ exp(−(log log n)3)
∏

p|nM

(p1/2/ log p)
∏
p|nH

p1/2+2ε(p)

≥ exp(−(log log n)3 − ω(n) log log n)γ(nM)1/2γ(nH)1/2+2ε(n)

≥ exp(−2(log log n)3)n1/2n
2ε(n)
H .

By Lemmas 10 and 12 we may also assume that nH > n3/5. Thus, our result
follows from (1). �

3.2. On the order of e modulo λ(n). The proof in this case is fairly
similar. Using Lemma 7 we obtain the bound

`∗e(λ(n)) ≥ λ(λ(n))

λ(n)

∏
pλ(n)

`e(p)

Using the following result of Martin and Pomerance [14] on the normal order
of λ(λ(n)) we may control the ratio λ(λ(n))/λ(n).



8 PÄR KURLBERG AND CARL POMERANCE

Theorem 14 (Martin–Pomerance [14]). As n → ∞ through a certain set
of integers of asymptotic density 1, we have

λ(λ(n)) = n · exp(−(1 + o(1))(log log n)2 log log log n).

Thus, λ(λ(n)) > n/ exp((log log n)3) almost always.

Now, by using the fact (see [3]) that the normal order of ω(λ(n)) is equal
to (log log n)2/2, together with the fact (easily deduced from (6) and (7) in
[4]) that the estimate

log(λ(n)/γ(λ(n)))� log log n/ log log log n

holds for most n, it is possible to obtain the following analog of Lemma 10.

Lemma 15. We have

λ(n)L < exp((log log n)2)

λ(n)/γ(λ(n)) < log n

ω(λ(n)) < (log log n)2

almost always.

A similar, but more elaborate, argument to the one used to prove Lemma
12, then gives the following result.

Lemma 16. Let ε(x) satisfy (1). Almost all numbers n have the property
that λ(n)M < n2/5.

With these results at our disposal, the argument used in Theorem 13
easily gives that

`∗e(λ(n)) > n1/2+ε(n)

for most n.
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