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PÄR KURLBERG

Abstract. We show that arithmetic toral point scatterers in di-
mension three (“Šeba billiards on R3/Z3”) exhibit strong level re-
pulsion between the set of “new” eigenvalues. More precisely, let
Λ := {λ1 < λ2 < . . .} denote the unfolded set of new eigenvalues.
Then, given any γ > 0,

|{i ≤ N : λi+1 − λi ≤ ε}|
N

= Oγ(ε4−γ)

as N →∞ (and ε > 0 small.) To the best of our knowledge, this is
the first mathematically rigorous demonstration of a level repulsion
phenomena for the quantization of a deterministic system.

1. Introduction

1.1. Background. The statistics of gaps between energy levels in the
semiclassical limit is a central problem in the theory of spectral statis-
tics [15, 6]. The Berry-Tabor conjecture [3] asserts that (typical) inte-
gral systems have Poisson spacing statistics, and the Bohigas-Giannoni-
Schmit conjecture [7] asserts that (generic) chaotic systems should have
spacing statistics given by some ensemble of random matrix theory; in
particular small gaps are unlikely.

More precisely, with {λ1 ≤ λ2 ≤ . . .} denoting the energy levels,
suitably unfolded using the main term in Weyl’s law so that |{i : λi <
E}| ∼ E for E large, define consecutive gaps, or spacings, si := λi+1−
λi. The level spacing distribution P (s), if it exists, is defined by

lim
N→∞

|{i ≤ N : si < x}|
N

=

∫ x

0

P (s) ds

for all x ≥ 0. For Poisson spacing statistics, P (s) = e−s, whereas
(time reversible) chaotic systems should have Gaussian Orthogonal En-
semble (GOE) spacings, where P (s) ≈ πs/2 for s small, and P (s) ≈
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(πs/2) exp(−πs2/4) for s large; in particular, there is linear vanishing
at s = 0 (“level repulsion”).

1.1.1. Systems with intermediate statistics. There are also “pseudo in-
tegrable” systems that are neither integrable nor chaotic. Their spec-
tral statistics do not fall into the models described above and are be-
lieved to exhibit “intermediate statistics”, e.g. there is level repulsion
as for random matrix theory systems, whereas P (s) has exponential
tail decay similar to Poisson statistics (cf. [5]).

The point scatterer, or the Laplacian perturbed by a delta poten-
tial, for rectangular domains (i.e., in dimension d = 2, with Dirichlet
boundary conditions) was introduced by Šeba [18] as a model for in-
vestigating the transition between integrability and chaos in quantum
systems. For this model Šeba found evidence for level repulsion of
GOE type for small gaps as well as “wave chaos”, in particular Gauss-
ian value distribution of eigenfunctions.

Shigehara [19] later pointed out that level repulsion in dimension
two only occurs if “strength” of the coupling of the perturbation grows
logarithmically with the eigenvalue λ. (The perturbation is formally
defined using von Neumann’s theory of self adjoint extensions; in this
setting there is a one-parameter family of extensions, but any fixed
parameter choice turns out to result in a “weak coupling limit” with
no level repulsion, cf. [21, Section 3].) On the other hand, for dimension
d = 3, Cheon and Shigehara [20] found GOE type level repulsion for
fixed (nontrivial) self adjoint extensions for rectangular boxes, again
with Dirichlet boundary conditions and the scatterer placed at the
center of the box; placing the scatterer elsewhere appeared to weaken
the repulsion.

On the assumption that the unperturbed spectrum has Poisson sta-
tistics (which, after desymmetrization, is expected to hold for rectan-
gular billiards having Diophantine aspect ratio), GOE-type level repul-
sion and tails of Poisson type has been shown to hold by Bogomolny,
Gerland and Schmit [5, 4]. In particular, for Šeba billiards with pe-
riodic boundary conditions, P (s) ∼ (π

√
3/2)s (for s small), whereas

P (s) ∼ (1/8π3)s log4 s in case of Dirichlet boundary condition and
generic scatterer position.

1.1.2. Toral point scatterers. With T denoting a torus of dimension d =
2 or d = 3, a point scatterer on T is formally given by the Hamiltonian

H = Hx0,α = −∆ + αδx0

where ∆ is the Laplace operator acting on L2(T), x0 ∈ T is the location
of the point scatterer, and α 6= 0 can be viewed as the “strength” of
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the perturbation; in the physics literature α is known as the coupling
constant. For simpler notation we shall, without loss of generality, from
here on assume that x0 = 0. A mathematically rigorous definition of
H can be made via von Neumann’s theory of self adjoint extensions.
Below we will briefly summarize the most important properties and
refer the reader to [1, 16, 21] for detailed discussions.

The addition of a δ-potential is a rank-1 perturbation of the Lapla-
cian, and the spectrum of H consists of two kinds of eigenvalues: “old”
and “new” eigenvalues. Namely, an eigenvalue λ of the unperturbed
Laplacian is also an eigenvalue of H, but with multiplicity reduced by
one; the corresponding H-eigenspace is the linear subspace of Laplace
eigenfunctions vanishing at x0. The set of new eigenvalues all have mul-
tiplicity one, and strictly interlace with the set of unperturbed eigen-
values.

For generic tori, multiplicities of the unperturbed spectrum are easily
seen to be bounded, but for arithmetic tori such as T = R2/Z2 or
T = R3/Z3, multiplicities are unbounded and the set of new eigenvalues
consists of a zero density subset of the full spectrum of H. This implies
a singular level spacing distribution, namely P (s) = δ(s). To avoid
this degeneracy it is natural to focus on the spectral statistics of the
sequence formed by the new eigenvalues.

In dimensions two and three, Rudnick and Ueberschär [16] used
trace formula techniques to investigate the spacing distribution for toral
point scatterers. For d = 2, for a fixed self adjoint extension (resulting
in a weak coupling limit) they showed that the spectral statistics of the
new eigenvalues is the same as for the unperturbed spectrum after re-
moving multiplicities. We remark that in the Diophantine aspect ratio
case it is believed that the unperturbed spectrum, after removing some
systematic (and bounded) multiplicities, is of Poisson type; for partial
results in this direction cf. [17, 8]. Further, for the square torus R2/Z2,
Poisson statistics is known to hold [9] for the unperturbed spectrum,
again after removing (unbounded) multiplicities, and assuming certain
analogs of the Hardy-Littlewood prime k-tuple conjecture for sums of
two integer squares.

For d = 3, a fixed self adjoint extension results in a strong coupling
limit1, and here Rudnick-Ueberschär gave evidence for level repulsion:
the mean displacement between old and new eigenvalues was shown to
equal half the mean spacing between the old eigenvalues. However, the

1For d = 3 the displacement of (most) new eigenvalues are of order comparable
with the mean spacing, whereas this is not the case for d = 2.
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method does not rule out the level spacing distribution having (say)
positive mass at s = 0.

1.2. Results. The purpose of this paper is to show that there is strong
level repulsion between the set of new eigenvalues for point scatters on
arithmetic tori in dimension three. To state our main result we need
to describe some basic properties of the model.

1.2.1. Toral point scatterers for arithmetic tori. Let T := R3/(2πZ3)
denote the standard flat torus in dimension three. The spectrum of
the unperturbed Laplacian on T is arithmetic in nature, and given by
{m ∈ Z : r3(m) > 0}, where

r3(m) := |{v ∈ Z3 : |v|2 = m}|
denotes the number of ways m ∈ Z can be written as a sum of three
integer squares, and the multiplicity of each eigenvalue m is given by
r3(m). Associated to each old/unperturbed eigenvalue m there is a new
eigenvalue λm (of multiplicity one) of H, and the set of new eigenvalues
{λm : m ∈ N, r3(m) > 0} interlace between the old eigenvalues. More
precisely, the corresponding new eigenfunction ψλm(x) is given by the
Green’s function ∑

v∈Z3

eiv·x

|v|2 − λm
, x ∈ T,

(in L2 sense), with the new eigenvalue λm being a solution to the spec-
tral equation

(1) G(λ) =
1

ν
; G(λ) :=

∑
n

r3(n)

(
1

n− λ
− n

n2 + 1

)
,

where ν 6= 0 parametrizes the self adjoint extension; in the physics
literature it is known as the “formal strength” of the perturbation (cf.
[20, Eq. (4)]).

It is convenient to use the following labeling of the new spectrum:
given m ≥ 1 such that r3(m) > 0, let λm denote the largest solution
to G(λ) = 1/ν such that λ < m. (In particular, note that λm does
not denote the m-th new eigenvalue since r3(m) = 0 for a positive
proportion of integers.) For m such that r3(m) > 0, let m+ denote the
smallest integer n > m such that r3(n) > 0, and define the consecutive
spacing

sm := λm+ − λm.
Note that {sm}m:r3(m)>0 has mean 6/5 (rather than one), but as we are
concerned mainly with the frequency of very small spacings this shall
not concern us.
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1.2.2. Statement of the main result. We show that the cumulant of
the nearest-neighbor distribution essentially has fourth order vanishing
near the origin, and hence considerably stronger repulsion than the
quadratic order vanishing of the cumulant in the GOE-model.

Theorem 1. Given ε, γ ∈ (0, 1/2) there exists X = X(ε, γ) > 0 such
that for all x ≥ X,

|{m ≤ x : r3(m) > 0, sm < ε}|
|{m ≤ x : r3(m) > 0}|

= Oγ(ε
4−γ).

1.3. Discussion. As Figures 1 and 2 indicate, spectral gap statistics
for 3d arithmetic point scatterers is clearly non-generic since there is
no mass at all in the tail. The reason is the “old” spectrum being
very rigid — all positive integers n except the ones ruled out by simple
congruence conditions (i.e., n’s of the form n = 4k · m for m ≡ 7
mod 8) satisfy r3(n) > 0, hence the gaps between new eigenvalues is
easily seen to be bounded above by 4.

Figure 1. Histogram illustration of the distribution of
sm, for m ≤ 10000 (and r3(m) > 0.)

The main driving force of the occurrence of small gaps, say between
two new eigenvalues λm and λm+, are arithmetic in nature and mainly
due to fluctuations in r3(m). To see this, we note the following simple
consequence of the mean value theorem.

Lemma 2. Assume that A,B > 0. Let f(δ) be a smooth function on
[−1/2, 1/2] such that 0 < f ′(δ) ≤ B for |δ| ≤ 1/2. If the equation

f(δ) = A/δ

has two roots δ1 ∈ [−1/2, 0) and δ2 ∈ (0, 1/2], then

|δ2 − δ1| �
√
A/B.
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Now, λm and λm+ are consecutive roots, near λ = m, of the spectral
equation (cf. (1))∑

n

r3(n)

(
1

n− λ
− n

n2 + 1

)
= 1/ν

Writing λ = m+ δ we can apply Lemma 2 with A = r3(m) and

B = max
|δ|≤1/2

∑
n 6=m

r3(n)

(n−m− δ)2
�

∑
k∈Z,k 6=0

r3(m+ k)

k2

and deduce that sm �
√
r3(m)/B. One then (roughly) proceeds by

noting that B is very rarely �
√
m (cf. Lemma 7), and that r3(m) is

very rarely �
√
m/2l (cf. Propositions 3 and 4), with l denoting the

largest integer such that 4l|m.
In particular, the small gap repulsion is not due to lack of time

reversal symmetry, but rather due to r3(m)/
√
m being small extremely

rarely unless 4l|m for some high exponent l. In fact, as indicated by
the plots below (as well as by the proof of Theorem 1), small gap
occurrences are mainly due to integers m that are divisible by large
powers of 4.

Figure 2. Histogram illustration of the distribution of
sm (for m such that r3(m) > 0), along the progressions
{m = 410 · k : k ≤ 10000} (left) and for {m = 420 · k :
k ≤ 10000} (right).

Likely the true order of vanishing of the cumulant is higher —
a heuristic argument, on the assumption of the joint distribution of
(Gm(0), G′m(0)) being (weakly) independent as well as Gm(0) having a
smooth and nonvanishing probability density function, suggests sixth
order vanishing of the cumulant.

Determining the spacing statistics for the set of new eigenvalues asso-
ciated with toral point scatterers on the two dimensional torus R2/Z2
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would also be interesting. However, there are several obstacles that
must be overcome: at the rigorous level we know little about the spac-
ings between eigenvalues of the unperturbed Laplacian, and fluctua-
tions of r2(n) are quite wild, e.g. r2(n) = 0 for n in a full density
subset of the positive integers, and the normal order of r2(n) is much
smaller than the average order when conditioning on r2(n) > 0. Even
obtaining convincing numerics is challenging — exploring ranges where
the mean spacing is of size 50 involves factoring many integers having
hundreds of digits. (Finding r2(n), or even determining if r2(n) > 0,
seems very hard to do without being able to factor n for a reasonably
numerous set of “difficult” n’s.)

1.4. Acknowledgments. The author wishes to thank J. Keating, Z.
Rudnick, H. Ueberschär for many helpful discussions and comments.
Part of this work was done at a working session on periodic point scat-
terers during the program Periodic and Ergodic Spectral Problems at
the Newton Institute. I would like to thank J. Marklof for arrang-
ing the working session, and the Newton Institute for its hospitality
and excellent working conditions. Finally, I am very grateful for the
comments by the anonymous referee and the section editor.

2. Number theoretic background

The purpose of this section is to give bounds on how often r3(n)
is “unusually” small or large. We begin by recalling various useful
results for r3(n). A classical result of Legendre (cf. [11, Chapter 3.1])
asserts that r3(n) 6= 0 if and only if n is not of the form 4a(8k + 7) for
a, k ∈ Z≥0, and we also have

r3(4
an) = r3(n).

We also remark that Heath-Brown’s estimate (cf. [13])∑
n≤R2

r3(n) =
∑

v∈Z3:|v|2≤R2

1 =
4π

3
R3 +O(R21/16)

was very helpful for the numerics behind Figures 1 and 2,

2.1. Sums of three squares and values of L-functions. With
R3(n) denoting the number of primitive representations of n, i.e., the
number of ways to write n = x2 + y2 + z2 for x, y, z coprime, we have
the following basic identity:

r3(n) =
∑
d2|n

R3(n/d
2).
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The reason for introducing R3(n) is Gauss’ marvelous identity (cf. [11,
Ch. 4.8])

R3(n) = π−1µn
√
nL(1, χ−4n)

where µn = 0 for n ≡ 0, 4, 7 mod 8, µn = 16 for n ≡ 3 mod 8, and
µn = 24 for n ≡ 1, 2, 5, 6 mod 8; here the Dirichlet series

L(s, χ−4n) :=
∞∑
m=1

χ−4n(m)/ms

converges for Re(s) > 0, where χ−4n is a quadratic character on (Z/4nZ)×

defined via the Kronecker symbol

χ−4n(m) :=

(
−4n

m

)
(roughly, it can be viewed as an extension of the Jacobi symbol to even
moduli, for details cf. [14, Ch. 3.5].)

Now, −4n is not always a fundamental discriminant2, but if R3(n) >
0 and we write

n = c2d

where d is square free and 4 - c2d, then L(1, χ−4n) and L(1, χ−4d) have
the same Euler product factors3, except possibly at primes p dividing

2c2 (to see this, use that
(
−4c2d
p

)
=
(
−4d
p

)
·
(
c
p

)2
by multiplicativity of

the Kronecker symbol, together with
(
c
p

)
= ±1 for p - c.)

Moreover, −4d is a fundamental discriminant if n ≡ 1, 2, 5, 6 mod 8.
If n ≡ 3 mod 8 then −4d is not a fundamental discriminant but −d
is, and the Euler factors of L(1, χ−4d) and L(1, χ−d) are the same at
all odd primes. (Recall that n 6≡ 0, 4, 7 mod 8 since we assume that
R3(n) > 0.)

Thus, if 4 - n0 and we write n0 = c2d with d square free, we note
the following useful lower bound in terms of L-functions attached to
primitive characters (associated with fundamental discriminants)

(2) L(1, χ−4n0)�

{
(φ(c)/c)L(1, χ−4d) if n0 ≡ 1, 2, 5, 6 mod 8,

(φ(c)/c)L(1, χ−d) if n0 ≡ 3 mod 8,

where f(x)� g(x) means that f(x) > cg(x) for some absolute constant
c > 0, and φ denotes Euler’s totient function.

2A fundamental discriminant is an integer d ≡ 0, 1 mod 4 such that d is square-
free if d ≡ 1, and d = 4m for m ≡ 2, 3 square free if d ≡ 0 mod 4.

3The Dirichlet L-series L(s, χ−4n) =
∑∞
m=1 χ−4n(m)/ms can be written as the

“Euler product” L(s, χ−4n) =
∏
p(1− χ−4n(p)/ps)−1, where p ranges over primes.
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We next note a crucial estimate stating that L(1, χ−4n) is small very
rarely. With

FD := {d ∈ Z : d < 0 and d is a fundamental discriminant}.

the following Proposition is an easy consequence of [10, Proposition 1].

Proposition 3. There exists κ > 0 such that for T ≥ 1, we have4

|{d ≤ x : −d ∈ FD,L(1, χ−d) <
π2

6eγT
}| � x exp(−κ · eT/T )

as x→∞, where γ = 0.577 · · · denotes Euler’s constant.

For imprimitive quadratic characters we will use the following weaker
bound. (The loss can be controlled if we have a bound on the largest
odd square divisor of d.)

Proposition 4. The number of integers n ≤ x of the form n = 4ln0 =
4lc2d, where d is square free, c ≤ C, 4 - c2d, and

L(1, χ−4n0) ≤ 1/T

is

� x

4l
exp(−(T/ log logC)4)

for all integer l ≥ 0.

Proof. Using (2), together with the bound c/φ(c)� log log c ≤ log logC
(cf. [12, Theorem 328]) we find that for c, l fixed, we have (note that
either −d or −4d is a fundamental discriminant)

|{n ≤ x : n = 4ln0 = 4lc2d, L(1, χ−4n0) ≤ 1/T}|

� |{d ≤ 4x/(c24l) : −d ∈ FD,L(1, χ−d)�
log logC

T
}|

which, by Proposition 3 (with plenty of room to spare), is

� x/(c24l) exp(−(T/ log logC)4)

as x→∞. Summing over c ≤ C the proof is concluded. �

4We recall Vinogradov’s “� notation”: f � g is equivalent to f = O(g). When
allowing implicit constants to depend on a parameter (say γ), f �γ g is equivalent
to f = Oγ(g).
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2.2. Estimates on moments of r3(n). We recall the following bound
by Barban [2].

Theorem 5. For k ∈ N we have∑
1≤d≤x

L(1, χ−d)
k �k x.

We can now easily deduce bounds on the (normalized) moments of
r3(n).

Proposition 6. For k ∈ N we have∑
n≤x

(r3(n)/
√
n)k �k x

Proof. Writing n = 4ln0 so that 4 - n0 (later we will write 4l||n to
denote that 4l is the largest power of 4 that divides n) we have

r3(n) = r3(n0)

and we further recall the identities (cf. Section 2.1)

r3(n) =
∑
d2|n

R3(n/d
2)

and

R3(n) = µn
√
nL(1, χ−4n),

where µn = 0 if n ≡ 0, 4, 7 mod 8; otherwise 16 ≤ µn ≤ 24. Thus

∑
n≤x

(r3(n)/
√
n)k =

∑
n≤x

 ∑
d2|n,d≡1 mod 2

4l||n

R3(n/(4
ld2))√

n


k

�
∑
l:4l≤x

∑
d2≤x/4l
d odd

∑
d1,...,dk

[d1,...,dk]=d

∑
n≤x:d2|n

4l||n

k∏
i=1

R3(n/(4
ld2i ))√

n
�

∑
l:4l≤x

∑
d2≤x/4l
d odd

∑
d1,...,dk

[d1,...,dk]=d

∑
n0≤x/d24l

k∏
i=1

R3(n0d
2/d2i )√

d24ln0

�

∑
l:4l≤x

∑
d2≤x/4l
d odd

∑
d1,...,dk

[d1,...,dk]=d

∑
n0≤x/d24l

k∏
i=1

L(1, χ−4n0d2/d2i
)

di
�
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which, on noting5 that L(1, χ−4n0d2/d2i
)� L(1, χ−4n0)d/φ(d) is

(3) �
∑
l:4l≤x

∑
d2≤x/4l
d odd

∑
d1,...,dk|d

(d/φ(d))k

d1 · · · dk

∑
n0≤x/d24l

L(1, χ−4n0)
k.

By Theorem 5, the inner sum over n0 is �k x/(d
24l), and hence (3) is

�
∑
l:4l≤x

∑
d2≤x/4l
d odd

∑
d1,...,dk|d

(d/φ(d))k

d1 · · · dk
x

d24l
�
∑
l:4l≤x

∑
d2≤x/4l
d odd

(d/φ(d))2k
x

d24l
� x

using that
∑

di|d 1/di � d/φ(d)� do(1).
�

3. Proof of Theorem 1

Let N3 := {n ∈ N : r3(n) > 0} denote the unperturbed spectrum.
Given n ∈ N3, let n+ denote its nearest right neighbor in N3, and recall
our definition

sn := λn+ − λn
of the nearest neighbor spacing between the two new eigenvalues λn, λn+ .

The spectral equation (cf. (1)) is then given by∑
n

r3(n)

(
1

n− λ
− n

n2 + 1

)
= 1/ν

where ν is constant. We remark that the method of proof gives the
same result when 1/ν is allowed to change, sufficiently smoothly, with
λ (e.g., provided | d

dλ
(1/ν(λ))| � λ1/2−ε for some ε > 0; this ensures

a unique root in each interval (m,m+) since the derivative of the left
hand side of (4) is strictly positive, as well as suitably bounded from
above for δ small.)

Given m ∈ N3, set λ = m+ δ, and define

Gm(δ) :=
∑

n∈N:n 6=m

r3(n)

(
1

n−m− δ
− n

n2 + 1

)
;

we can then rewrite the spectral equation as

(4) Gm(δ)− 1/ν =
r3(m)

δ

5The Euler products for L(1, χ−4n0d2/d2i
) and L(1, χ−4n0) agree at all primes p

such that p - d.
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For |δ| ≤ 1/2, we find (note that all terms are positive)

0 < G′m(δ)�
∑

n∈N:n6=m

r3(n)

(n−m)2
=

∑
h∈Z,h6=0

r3(m+ h)

h2

To apply Lemma 2, we will need to bound G′m from above.

Lemma 7. Given k ∈ N, we have∑
n≤x

( ∑
h∈Z,h 6=0

r3(n+ h)

h2
√
n

)k

�k x

and consequently

|{n ≤ x :
∑

h∈Z,h6=0

r3(n+ h)

h2
√
n

> T}| �k x/T
k

Proof. We begin by deducing a bound on r3(n). Letting r2(n) denote
the number of representations n = x2 + y2 with x, y ∈ Z, we have
r3(n) ≤ 2

∑
0≤k≤

√
n r2(n− k2). Using that r2(n)�ε n

ε for all ε > 0 (cf.

[12, Theorem 338]) we find that r3(n)�ε n
1/2+ε for all ε > 0.

Since r3(n + h) �ε h
1/2+ε for h > n, and r3(n + h) �ε n

1/2+ε for
|h| ≤ n we easily see that∑

h∈Z,|h|≥n1/2

r3(n+ h)

h2
√
n
�ε n

−1/2+ε

Thus, using the inequality (A+B)k �k A
k +Bk, it suffices to show

that
∑

n≤x

(∑
h∈Z,0<|h|≤

√
n
r3(n+h)
h2
√
n

)k
�k x.

Expanding out the k-th power expression and using the inequality
1

h1/2n1/2 � 1√
n+h

it is enough to show that for 0 < |h1|, |h2|, . . . , |hk| ≤
x1/2 we have ∑

n≤x

r3(n+ h1) · · · r3(n+ hk)∏k
i=1(n+ hi)1/2

�k x

and this follows from Hölder’s inequality and the bound on the sum∑
n≤x(r3(n)/

√
n)k given by Proposition 6.

�

In particular, for k ∈ N, we have

(5) |{m ≤ x : G′m(δ)/
√
m > T for |δ| ≤ 1/2}| �k x/T

k

Now, if sm = λm+−λm denotes the distances between two consecutive
new eigenvalues near m ∈ N3, we have one of the following: either one
or both new eigenvalues lies outside [m − 1/2,m + 1/2] in which case
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sm ≥ 1/2. In case both eigenvalues lie in [m− 1/2,m+ 1/2], Lemma 2
gives that

(6) sm �
√
r3(m)/G′m(0) =

√
A(m)/B(m).

where we define

A = A(m) := r3(m)/
√
m, B = B(m) := G′m(0)/

√
m

Proposition 8. For any γ > 0 we have, as x→∞,

|{n ≤ x : 0 < r3(n)/G′n(0) ≤ ε2}| �γ ε
4−γ · x

Proof. Given n such that r3(n) > 0, write n = 4ln0 = 4lc2d, where
4 - n0 and d is squarefree. Recalling that G′n(0) =

√
nB(n) and

r3(n) ≥ R3(n0)�
√
n

2l
L(1, χ−4n0)

it is enough to estimate the number of n = 4ln0 ≤ x, for which

(7) ε2 ≥ r3(n)/G′n(0)� L(1, χ−4n0)

2lB(4ln0)

We start by noting that integers n that have a large odd square
factors are quite rare. More precisely, the number of n ≤ x such that
n = 4lc2d for c ≥ ε−6 is � x/ε−6 = ε6x. We may thus assume that
c ≤ ε−6 in any such decomposition.

Now, given n, ε, define real numbers a = a(n), b = b(n) andm = m(ε)
such that

L(1, χ−4n0) = 2−a B(n) = 2b, ε = 2−m.

Moreover, (7) is equivalent to 2−2m � 2−a

2l2b
i.e.,

a+ b+ l ≥ 2m+O(1).

First case: a >
√
m. Noting that c ≤ 1/ε6 = 26m implies that

log log c ≤ log 6m, Proposition 4 gives that the number of n ≤ x such
that L(1, χ−4n0

) = 2−a ≤ 2−
√
m is

� x exp(−(2
√
m/(log 4m))4) � x exp(−1000m) = o(ε10x),

and thus “small” values of L(1, χ−4n0
) are very rare.

Second case: a ≤
√
m. We next treat the case of L(1, χ−4n0

) not
being “small”. Given a large positive integer k � 8/γ, we first consider
l such that l < 2m(1−γ)−

√
m. Here we have some control of the size

of powers of 4 dividing n, and this will force B(n) to be quite large.
Namely, the upper bound on l implies that

b ≥ 2m+O(1)−a−l ≥ 2m+O(1)−
√
m−2m(1−γ)+

√
m ≥ 2mγ+O(1)
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for all sufficiently large m. Using the bound in (5) (recall that k � 8/γ
and that B(n) = G′n(0)/

√
n), such numbers are quite rare in the sense

that the number of n ≤ x such that B(n) ≥ 2γm is

�γ x/(2
γm)8/γ �γ x/(2

8m) = Oγ(ε
8x)

The remaining case — giving the main contribution to the set of
small gaps — are integers n being divisible by a large power of 4, and
these are easily bounded. Namely, the number of n ≤ x such that 4l|n
for some l ≥ 2m(1− γ)−

√
m is

� x/22(2m(1−γ)−
√
m) � xε4(1−γ)+o(1)

as m → ∞ (or equivalently, that ε = 2−m → 0), thereby concluding
the proof. �
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