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ABSTRACT. The number F(h) of imaginary quadratic fields with class number h is of classical interest:
Gauss’ class number problem asks for a determination of those fields counted by F(h). The unconditional
computation of F(h) for h < 100 was completed by Watkins, using ideas of Goldfeld and Gross-Zagier;
Soundararajan has more recently made conjectures about the order of magnitude of F(h) as h — oo and
determined its average order. In the present paper, we refine Soundararajan’s conjecture to a conjectural
asymptotic formula for odd h by amalgamating the Cohen-Lenstra heuristic with an archimedean factor,
and obtain an adelic, or global, refinement of the Cohen-Lenstra heuristic.

We also consider the problem of determining the number F(G) of imaginary quadratic fields with class
group isomorphic to a given finite abelian group G. Using Watkins’ tables, one can show that some abelian
groups do not occur as the class group of any imaginary quadratic field (for instance (Z/3Z)3 does not).
This observation is explained in part by the Cohen-Lenstra heuristics, which have often been used to study
the distribution of the p-part of an imaginary quadratic class group. We combine heuristics of Cohen-
Lenstra together with our prediction for the asymptotic behavior of F(h) to make precise predictions about
the asymptotic nature of the entire imaginary quadratic class group, in particular addressing the above-
mentioned phenomenon of “missing” class groups, for the case of p-groups as p tends to infinity. Furthermore,
conditionally on the Generalized Riemann Hypothesis, we extend Watkins’ data, tabulating F(h) for odd
h < 10% and F(G) for G a p-group of odd order with |G| < 108. (In order to do this, we need to examine
the class numbers of all negative prime fundamental discriminants —gq, for ¢ < 1.1881-10'%.) The numerical
evidence matches quite well with our conjectures, though there appears to be a small “bias” for class number
divisible by powers of 3.

1. INTRODUCTION

Given a fundamental discriminant d < 0, let H(d) denote the ideal class group of the imaginary quadratic
field Q(v/d), and let h(d) := |H(d)| denote the class number. A basic question is:

Question 1.1. Which finite abelian groups G occur as H(d) for some negative fundamental discriminant
d?

Equivalently, which finite abelian groups G do not occur as H(d)? The case where G ~ (Z/27)" has
classical connections via genus theory to Euler’s “idoneal numbers,” and it follows from work of Chowla
[8] that for every r > 1, the group (Z/2Z)" does not occur as the class group of any imaginary quadratic
field. Later work of various authors ([6], [49], [18]) has shown that (Z/nZ)" does not occur as an imaginary
quadratic class group for r > 1 and 2 < n < 6 (in fact, Heath-Brown showed that groups with exponent 2°
or 3-2% occur only finitely many times.) Moreover, (Z/nZ)" does not occur for n > 6 and r >, 1 assuming
the Generalized Riemann Hypothesis (cf. [6, 49]); in fact they show that the exponent of H(d) tends to
infinity as d — —oo.

Due to the possible existence of Siegel zeroes, the unconditional results mentioned above are ineffective.
To find explicit examples of missing class groups, one can undertake a brute-force search using tables of
M. Watkins [48], who used the ideas of Goldfeld and Gross-Zagier to give an unconditional resolution of
Gauss’ class number problem for class numbers &1 < 100. Such a search reveals that none of the groups
(Z/3Z)* | Z)9Z % (Z/3Z)? ,(Z/3Z)" occur as the class group of an imaginary quadratic field.

It is also natural to ask how common the groups that do occur are:

Question 1.2. Given a finite abelian group G, for how many fundamental discriminants d < 0 is H(d) ~ G?
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In order to address this question, we are led to investigate a closely related issue:
Question 1.3. Given an integer h > 0, for how many fundamental discriminants d < 0 is |H(d)| = h?

Questions 1.1, 1.2, and 1.3 appear to be beyond the realm of what one can provably answer in full
with current technology. In this paper, we combine the heuristics of Cohen-Lenstra with results on the
distribution of special values of Dirichlet L-functions to give a conjectural asymptotic answer to Question
1.3, for h odd. (For this we only use the Cohen-Lenstra heuristic to predict divisibility properties of class
numbers.) Further, using this conjectured asymptotic answer, we use the Cohen-Lenstra heuristic to predict
the p-group decomposition of H(d) and obtain a conjectured asymptotic answer to Question 1.2 in the case
where G is a p-group for an odd prime p. (We believe that similar results hold for composite class number,
though here one must be careful in how limits are taken; for instance with some groups of order pi*p5?, p;
fixed and po tending to infinity is very different from p; and ps both tending to infinity.)

In particular, regarding Question 1.1, we establish a precise condition on the shape of an abelian p-group
which governs whether or not it should occur as an imaginary quadratic class group for infinitely many
primes p. For instance, our conjecture predicts that the group (Z/pZ)3 should appear as a class group for
only finitely many primes p (in fact, quite likely for no primes p at all; cf. Conjecture 1.10 in Section 1.3),
whereas the two groups Z/p3Z and Z/p*Z x Z/pZ should occur as a class group for infinitely many primes
.

Given a positive integer h we set

F(h) := |{fundamental discriminants d < 0 : h(d) = h}|. (1.1)

Thus for instance F(1) = 9, which is the statement of the Baker-Stark-Heegner theorem on Gauss’ class
number 1 problem for imaginary quadratic fields. Given a fixed finite abelian group G, we consider the
refined counting function

F(G) := |{fundamental discriminants d < 0 : H(d) ~ G}/,

so that F(h) = E‘ cl=nF (G), where the sum runs over isomorphism classes of finite abelian groups of order
h. The Cohen-Lenstra heuristics suggest that, for any finite abelian group G of odd order h, the expected
number of imaginary quadratic fields with class group G is given by

F(G) = P(G) - F(h), (1.2)

where

1 1
P (G)::(|Aut<a>|)/ 2 TRwe | (13)

abel. groups G’
s.t. |G/ |=|G|

The first factor P(G) may be evaluated explicitly, whereas the second factor F(h) is more delicate. K.
Soundararajan has conjectured (see [44, p. 2]) that

F(h) < h

log h
We refine Soundararajan’s heuristic, sharpening (1.4) to a conjectural asymptotic formula, which involves
certain constants associated to a random Euler product. Let Y = {Y(p) : p prime} denote a collection of
independent identically distributed random variables satisfying

Y(p) = 1 with probability 1/2
pr= —1  with probability 1/2

(h 0dd) . (1.4)

and let
L(LY) =[] (1 - Y?) -

denote the corresponding random Euler product, which converges with probability one. Define the constant

o0 o0 1
c:=15 ] [] <1 - €> ~ 11.317, (1.5)

=3 =2
£ prime
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as well as the factor (defined for odd h)

prllhi=1
Conjecture 1.4. We have
¢ 1 h
~— . -h-E ~C- . 1.
Fh) ~ 5 e(h) - b (L(1,Y)2log(wh/L(1,y))> € eh) e (1.6)

as h — oo through odd values. (Here E denotes expected value. )

Remark 1.5. The second asymptotic in (1.6) may be seen as the first term in an asymptotic expansion,
and in fact our analysis (cf. Section 6) yields the more accurate approximation

¢

1
F(h) ~ 5 c(h)-h-E <L(1,Y)2 1Og(ﬂh/L(1,Y))>
h c1 C2 c3 1 o
=) gy <1 T Tog(@h) T log(nh) | Tog?(xh) | ° (10g3<7fh>>) ’
where
- <logL (1,Y) 0578
15 ’
o log L(l Y)

o= B (i )”0604 "

1 log?® L(1,Y) N

Without this higher order expansion we have a relative error of size O(1/+/logh); since we only have data
for odd h < 109, the higher order expansion is essential to get a convincing fit to the observed data.

Conjecture 1.4 is developed from the Cohen-Lenstra heuristics together with large-scale distributional
considerations of the special value L(1, x4). The former can be viewed as a product over non-archimedean
primes; the latter as an archimedean factor — in a sense our prediction is a “global” (or adelic) generalization
of the Cohen-Lenstra heuristic, somewhat similar to the Siegel mass formula.

More precisely, motivated by the Cohen-Lenstra heuristic we introduce a correction factor that considers
divisibility of A by a random odd positive integer (for instance a random class number is divisible by 3 with

conjectural probability
(oo}
1
1—H(1—3i) ~ 43%,

i=1
and this suggests a correction factor of (1 —[]:2; (1 — 37)) /(1/3) whenever 3 divides h). We remark that the
Cohen-Lenstra heuristics have often been applied to give a probabilistic model governing the p-part of a class
group, for a fized prime p (see for instance [11, Section 9]). By contrast, the precise asymptotic predicted by
Conjecture 1.4 involves applying these considerations for all primes p (including the archimedean prime).

The relevant information about the distribution of L(1,xq4) is implicit in the following theorem, which
gives the analogue of [44, Theorem 1] averaged over odd values of h.

Theorem 1.6. Assume the Generalized Riemann Hypothesis for Dirichlet L-functions. Then for any e > 0,
we have
H2
SN Fh)y == 40 (H2(1og H)~ 3/2+6) :
e logH
h odd

as H — oo.

We remark that Theorem 1.6 has been improved by Lamzouri. Without hypothesis he shows that the error
term is O(H?(loglog H)?/(log H)?/?) (cf. [27]); on GRH he obtains the error term O(H?(loglog H)?/(log H)?)
(cf. [26]).
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1.1. Numerical evidence for Conjecture 1.4. With the aid of a supercomputer and assuming GRH,
we have computed F(h) and F(G) for all odd h < 10° and all p-groups G of odd size at most 10° (for
more details, see Section 9.) In particular, we conditionally extend the class number computation [24],
where Jacobson, Ramachandran, and Williams unconditionally determine h(—d) for d < 10!, and —d a
fundamental discriminant; recently Mosunov and Jacobson further extended [32] this range to d < 2%°. The
numerics give us quite convincing evidence in support of Conjecture 1.4. Below we give some samples’
of computed values F(h) (conditional on the GRH) compared to the values predicted by Conjecture 1.4,
rounded to the nearest integer. We also list the relative error (F(h) —pred(h))/ pred(h) given as a percentage,
where

. ) h ) (&) Co C3
pred(h) := € c(h) - s (ng(wh)ﬂog?(wh)+1og3(wh))' (1.9)

h 10001 10003 10005 10007 10009 10011 10013 10015

F(h) 10641 12154 20661 10536 10329 15966 12221 12975
pred(h) 10598 12116 21074 10383 10385 16144 12038 12993
Relative error | +0.41% +0.31% —1.96% +1.48% —0.54% —1.10% +1.52% —0.14%
h 100001 100003 100005 100007 100009 100011 100013 100015

F(h) 94623 85792 164289 86770 111948 142512 87138 108993
pred(h) 94213 85641 164806 86620 111210 142989 86577 108820
Relative error | 4+0.43% +0.18% —0.31% +0.17% +0.66% —0.33% +0.65% +0.16%
h 999985 999987 999989 999991 999993 999995 999997 999999

F(h) 1064529 1095135 771805 791007 1093645 914482 733397 1815672
pred(h) 1063376 1098842 769673 788871 1093732 911447 730673 1825811
Relative error | 4+0.11% —0.34% +0.28% +0.27% —0.01% +0.33% +0.37% —0.56%

For large h the prediction seems fairly good as the relative error very often is smaller than 1%. To gain
further insight, we study the fluctuations in the difference between the observed data and the predictions,
normalized by dividing by the square root of the prediction (it is perhaps not a priori obvious, but with this
normalization the resulting standard deviation is close to one in many circumstances). More precisely, we
make a histogram of the values of

F(h) — pred(h)

r(h) = pred(h)

for various subsets of the (odd) integers. For notational convenience, we shall let 1 and o denote the mean
and standard deviation, respectively, of the observed data in each plot.

IThe complete list of computed values of F(h) is given in [21].
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FIGURE 1. Histogram for r(h), as h ranges over odd integers in [500000, 1000000]. (u,0) =
(0.291561, 2.685280).

Interestingly, the probability distribution appears to be bimodal. A closer inspection of the table above
indicates a small positive bias for h that are divisible by three. Separating out (odd) h according to divisibility
by three, or not, results in the following two histograms:

0.4+

of

0.2

FIGURE 2. Histogram for r(h), as h # 0 mod 3 ranges over odd integers in
[500000, 1000000]. (u,0) = (1.987995, 1.006428).
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FIGURE 3. Histogram for r(h), as h = 0 mod 3 ranges over odd integers in
[500000, 1000000]. (i, 0) = (—3.101265, 1.529449).
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The curve (red in color printouts and online) in the first plot is a Gaussian probability density function with
mean and standard deviation fitted to the data — the first plot appears to be Gaussian, whereas the second
clearly is not. We note that (after our normalization), the effect of three divisibility is quite pronounced
— the shift in the mean value is of order of magnitude a standard deviation. We believe that this “three
divisibily bias” is related to a certain lower order correction in the Davenport-Heilbronn asymptotic; for
more details on this together with further numerics, see Section 2.

1.2. Groups occuring as class groups. We now return to our discussion of the quantity F(G). To make
precise what we mean by the shape of an abelian p-group, recall the bijection

{partitions of n} <« {abelian groups of order p"}
T
A= (7’1,1,7’1,2, v ,’fl,-) — G)\(p) = @Z/pn’z
i=1

Using (1.2) in conjunction with Conjecture 1.4, and evaluating each factor asymptotically, we are led to the
following conjecture. Given a partition

/\:(nlanQa-~-vnT)7 n>>n>--->2n>1 ni+ns+---+n.=n
of n, define the cyclicity index of \ by
c(\) = (3—2i)n; =n1 — Y (2 —3)n;. (1.10)
i=1 i=2

Note that ¢(\) € [1 — (n — 1)%,n] and G (p) is cyclic if and only if c¢(\) = n; thus c()\) provides a measure
of how much G, (p) deviates from being cyclic.

Conjecture 1.7. Fizn € N and a partition A of n. Then F(Gx(p)) > 0 for infinitely many primes p if and
only if ¢(\) > 0. More precisely, if ¢(\) > 0 then as p — oo we have

¢ p

n logp’

where € is as in (1.5). If ¢(\) = 0 then as x — oo we have

> FEm)~

p<z
p prime

F(Gx(p)) ~

(logz)?"
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If ¢(X) <O then
p>x1 = F(Galp) =0.
Definition 1.8. We say that a partition A of n is attainable if ¢(A\) > 0.

Thus, Conjecture 1.7 implies that G (p) occurs as a class group for infinitely many primes p if and only
if A is attainable. Our next theorem shows that rather few types of groups are attainable — the relative
proportion of attainable partitions among all partitions tends to zero as n grows.

Theorem 1.9. For a positive integer n, we have

#{attainable. ]?artitions of n} < n¥ieC—/EnvA
#{partitions of n}

In particular,
. #{attainable partitions of n} 0
im =0.
n—0o0 #{partitions of n}
1.3. Numerical investigations of attainable groups. For families of p-groups with ¢(\) > 0, we expect
that many (if not all) groups should occur; in fact F(Gx(p)) should grow with p. On the other hand, there
should be very few (if any at all) in case c(A) < 0 — we call these groups “sporadic”. The case of ¢(\) = 0 is
intermediate in the sense that infinitely many groups in the family should occur, and infinitely many should
not.
Below we plot, for p ranging over odd primes, observed values F(G,(p)) (black dots) versus predicted
values P(Gx(p)) - pred(|Gx(p)|) (red dashed lines) for various partitions A with cyclicity index c¢(A) > 0.
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For more details regarding the numerical data, especially when c(A) < 0, see Section 3, but we remark
that none of the groups G (p) of odd size < 10 with ¢(\) > 0 are missing. Further, based on a combination
of heuristics and numerics, it seems reasonable to conjecture that (Z/pZ)™ does not occur for any odd prime
p and any n > 3.

Conjecture 1.10. For p odd, there are no elementary abelian p-groups of rank at least 3 which occur as the
class group of an imaginary quadratic field.

Indeed, by (1.2) and Conjecture 1.4, together with the observed (GRH-conditional) fact that no (Z/pZ)"
occurs as an imaginary quadratic class group for p" < 10%, we may bound the expected number of coun-

terexamples by
0o —1
1 1
¢y - < H(l—) )P
n2 2n — i n2—2n
pn>3 Ing i=1 2 p,n>3 np IOgP

p">108 p">108
Since the right-hand sum can then be bounded by 10~#, Conjecture 1.10 is heuristically justified.

1.4. Related work. Certain classes of finite abelian groups are already known not to occur as imaginary
quadratic class groups. For instance, letting H (d)[n] denote the n-torsion subgroup of H(d), it is known that

|H (d)[2]] < |H(d)]°™)

(this is essentially genus theory together with Siegel’s lower bound on the class number; if H(d) has two rank
r, then d has exactly r + 1 distinct prime factors). In particular, for any fixed ¢ > 0 there are only finitely
many imaginary quadratic class groups H(d) satisfying |H (d)[2]| > |H(d)|*. Weaker bounds are known for
the size of the three torsion part; in [14] Venkatesh and Ellenberg (improving on Helfgott and Venkatesh [19]
and Pierce [37]) show that
|H(d)[3]] < |d|'/**.

From this and the (GRH-conditional) lower bound |d|'/?/loglog |d| < |H(d)|, one sees that, for any e > 0
there are only finitely many imaginary quadratic class groups H(d) satisfying |H (d)[3]| > |H(d)[*/3*¢.

The problem of realizing a given abelian group as an imaginary quadratic class group may be viewed in
the context of the following broader questions.

Question 1.11. Given a finite abelian group G, does there exist a number field K for which the ideal class
group of K is isomorphic to G?

The answer to this problem is believed to be yes (one ought to be able to take K to be a real quadratic
extension of Q) but the problem is open in general, in spite of various partial results. G. Cornell [12] proved
that every finite abelian group occurs as a subgroup of the ideal class group of some cyclotomic field, and Y.
Yamamoto [51] proved that, for any n > 1, there are infinitely many imaginary quadratic fields whose class
group contains (Z/nZ)? as a subgroup. We note that Ozaki [34] has shown that any (possibly non-abelian)
p-group occurs as the maximal unramified p-extension of some number field F'.

Further broadening our perspective, we may also ask:

Question 1.12. Given an abelian group G, does there exist a Dedekind domain D for which the ideal class
group of D is isomorphic to G?

In [9], Claborn answered this question in the affirmative; Leedham-Green subsequently showed that the
Dedekind domain D can be taken to be a quadratic extension of a principal ideal ring.

Finally, we remark that the Cohen-Lenstra heuristics apply to a broader class of situations where finite
abelian groups arise as co-kernels of random sub-lattices of Z". For instance, [13] contains average results on
the group of Z/pZ-rational points of an elliptic curve which are consistent with the Cohen-Lenstra heuristics
(of course the rank can be at most two in this setting), and (in a similar spirit to our present consideration
of missing class groups) [2] considers the question of which finite rank 2 abelian groups occur as the group
of Z/pZ-rational points of some elliptic curve E over Z/pZ.

We conclude with some remarks regarding the numerical computations. Removing the assumption of
GRH and making the computational results unconditional would be interesting, but probably very difficult
since effective unconditional lower bounds on class numbers are quite weak (the best know bound, due to
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Oesterlé [33], is that h(—¢q) > loggq for —q a negative prime fundamental discriminant.) In particular, it
would involve a major advance on Watkin’s solution [48] to Gauss’ class number problem for h < 100. (Of
course, considering only odd Ak should be quite helpful.)

Determining h(—d) for d € (0,D) and —d ranging over fundamental discriminants is somewhat easier
to do unconditionally, either by enumerating the primitive reduced quadratic forms in time O(D3/ 2) (cf.
[7]), or using GRH-conditional algorithms which, as suggested by A. Booker, can then be verified using the
Eichler-Selberg trace formula. The latter algorithm, due to Jacobson, Ramachandran, and Williams [24],
leads to a total running time of O(D°/*), and allowed them to take D = 10''. However, the verification
step relies on knowing h(—d) for all d in the relevant range, and seems difficult to adapt to a setting where
only h(—q) is known for 0 < ¢ < D and —q ranging over negative prime fundamental discriminants. On
the other hand, Booker’s algorithm [5] gives the correct value of h(—d) in time O(d'/*) if GRH is true (in
time O(d'/?) otherwise), and his algorithm can easily be restricted to prime discriminants. It would also be
interesting to investigate the potential speedup from using Sutherland’s primorial-steps algorithm (cf. [45,
Ch. 4 and 11] — it exploits the smooth part of the class number, and results in better than O(d'/") median
time to find h(—d).

1.5. Outline of the paper. The organization is as follows: Section 2 discusses the 3-divisibility bias visible
in Figures 1, 2 and 3 above, while Section 3 presents further numerical evidence in support of Conjecture
1.7. Section 4 covers the preliminary material on Cohen-Lenstra heuristics and the distribution of L(1, x4)-
In Section 5, we prove Theorem 1.6. In Section 6, we develop heuristics which lead to Conjectures 1.4 and
1.7. In Section 8, we discuss partition generating functions and give a proof of Theorem 1.9. In Section 9,
we sketch the techniques used to obtain the numerical evidence.

2. FINE SCALE FLUCTATIONS AND THE 3-DIVISIBILITY BIAS

By further separating h = 0 mod 3 into subsets according to the exact power of three that divides h, we
obtain distributions that appear Gaussian; for comparison, we again plot a (red) curve giving the probability
density function for a Gaussian random variable with the same mean and standard deviation as the observed
data. (Note that there is a significant shift in the mean, whereas the standard deviation is close to one.)

A

FIGURE 4. Histogram for r(h), for odd A in (500000,1000000), 3||h. (u,0) = (—2.326289,1.027387).
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FIGURE 5. Histogram for r(h), for odd h in (500000,1000000), 32||h. (u,0) = (—4.372185,1.062480).
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FIGURE 6. Histogram for r(h), for odd h in (500000,1000000), 33||h. (u,0) = (—5.110585, 1.087463).

The exact nature of this “three divisibility bias” is unclear, but inspired by the slow convergence in the
Davenport-Heilbronn asymptotic?
Y H@B|~C-X (2.1)

—X<d<0
d fund. disc.

(here H(d)[3] denotes the 3-torsion subgroup of H(d)) we can slightly adjust ¢(h) to remove most of this bias
and obtain a more accurate prediction pred’(h). (Essentially we examine the exact power of three divisibility

2In fact, a negative second order correction to (2.1) of size X5/6 was recently obtained by T. Taniguchi and F. Thorne [46],
and by M. Bhargava, A. Shankar and J. Tsimmerman [4].
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of h and adjust to the data, see Section 6.1 for more details.) With this adjustment, the fluctuations for

F(h) — pred’(h)

(k) = pred’(h)

(for the full set of odd h) is quite close to a Gaussian.

0.4+

,111\_‘2‘ |,

FIGURE 7. Histogram for »/(h), for all odd h in (500000,1000000). (i, o) = (0.013214,1.065277).

However, compared to the fitted Gaussian, the histogram is slightly more peaked, and has less mass in
the tails. If we remove integers being divisible by 3% this effect is reduced and we get an improved fit to a
Gaussian.

0.4+

| |

FIGURE 8. Histogram for v/(h), for all odd h in (500000,1000000) and h not divisible by 81.
(1, ) = (0.016292, 1.016726).
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3. FURTHER NUMERICAL EVIDENCE FOR CONJECTURE 1.7

In this section, we present numerical evidence supporting Conjecture 1.7 based on our numerical compu-
tation of F(G), conditional on GRH, for all p-groups G of odd size at most 10%. (See Section 9 for details
regarding the computation.)

3.0.1. Numerics on F(Gx(p)). We give in the tables below® the value of F(G(p)) (conditional on GRH)
for each odd prime p and each partition A of some n > 3, such that |Gx(p)| < 105. To be precise: The
second column in each table contains all partitions of n for some fixed n, ordered by decreasing cyclicity
index ¢(\), which itself is given in the leftmost column. The top row contains a list of all primes p such that
p™ < 108, and under each p we list the values of F(G(p)) corresponding to the partition A in the same row.
Whenever a partition is omitted from a table, then it is implied that all omitted values of F(G(p)) are zero.
Groups occuring in rows corresponding to negative cyclicity index (“sporadic groups”) are star/bold-marked
for emphasis (also see Section 3.0.2.)

)X p=3 5 7 11 13 17 19 23 29 31 37 4l
3[(3) 88 279 607 1856 2004 5797 7963 12058 24407 29201 46981 62327
1](2,1) 5. 11 13 19 17 25 2 29 3 26 39 37
3(1,1,1) 0 0 0 0 0 0 0 0 0 0 0 0

)X p—43 47 53 59 61 67 7L 73 79 83 8 07
3[(3) 71617 91690 127190 170444 186988 242464 283998 306567 382770 438976 533751 678610
1[(2,1) 30 29 46 48 57 55 60 66 51 73 66 69
3(1,1,1) 0o 0 0 0 0 0 0 0 0 0 0 0

M)A p=3 5 7 1113 17 19 23 29 31
4] (@) 206 1093 3404 16290 20496 77693 116710 233027 548392 701408
2] (3,1) 19 47 71 146 197 244 343 480 644 779
0](2,2) 3 0 0 0 2 1 2 1 0 1
—2/(2,1,1) o 0 0 0 0 0 0 0 0 0
-8 (1,1,1,1) 0 0 0 0 0 0 0 0 0 0
O x p=3 5 7
6[(6) 1512 19469 116278

ZeIR) p=3 5 7 11 13 1{(5,1 177 1024 2887
51(5) 549 4610 19430 147009 314328 2 (4,2 18 37 58
3| (4,1 56 218 444 1347 1894 0 (4,1,1) 0o 3 0
1[(3,2 8 5 8 13 9 0/(3,3) 2 2 3

—1/ (3,11 0 1x 0 0 0 ~2(3,2,1) 0 0 0

-3/(2,2,1 0 0 0 0 0 —6(3,1,1,1) 0 0 0

—7/(2,1,1,1) 0o 0 0 0 0 —6/(2,2,2) 0 0 0

—15[(1,1,1,1,1) 0 0 0 0 0 —8(2,2,1,1) 0 0 0

—14[(21,1,1,1) 0 0 0
—24 | (L1, 1,1,1,1) 00 0

eIR p=3 5 7

L) 3881 86038 711865
5((6,1 571 4259 17057 c(A) [ p=3 5
3 5’23 53 177 379 8[(3) 10712 379751
1511 7 7 6 6[(7,1 1585 18956
1|43 8 11 7 4 (6,2 180 719
—1](4,2,1 0 0 21(6,1,1) 18 30
-3[(3,3,1 1x 0 0 21(5,3) 15 24
—5|(4,1,1,1) 0 0 0 01(5,2,1) 4 L
—5((3,2,2) 0 0 0 01(4,4) 2 0
—7((3,2,1,1 0 0 0 —2|(4,3,1) 1« 0
—11(2,2,2,1 0 0 0 —4|(51,11) 0 0
~13 3,1,1,1,1; 0 0 0 | ; :
-15((2,2,1,1,1 0 0 0 —48|(1,1,1,1,1,1,1,1 ) )
—23((2,1,1,1,1,1) 0 0 0 §LLLLLLLYL) 0 0

—35[(1,1,1,1,1,1,1) 00 0

3The complete list of all F(G,(p)) is given in [22], and a complete list of all corresponding discriminants d and groups H (d)
is given in [23].
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c) A p=3 cA) A p=3
91(9) 28308 101 (10) 78657
71(8,1 4516 81(9,1 12433
510(7,2 454 6(8,2 1446
3((7,1,1) 42 4(8,1,1) 160
31(6,3) 54 4((7,3) 167
1/(6,2,1) 10 2((7,2,1) 16
1|(5,4) 4 21(6,4) 14

—11(5,3,1) 1% 01(6,3,1) 1

-3((6,1,1,1) 0 01(5,5) 0

—63](1,1,1,1,1,1,1,1,1) 0 —80](1,1,1,1,1,1,1,1,1,1) 0

cN A p=3
c) X p=3 12[(12) 603525

T1[(11) 216520 10| (11,1 98421

91(10,1) 35544 81(10,2 10988

71(9,2) 3880 61(10,1,1) 1291

5((9,1,1) 437 61(9,3) 1265

51(8,3) 460 41(9,2,1) 220

31(8,2,1) 58 41(8,4) 133

31(7,4) 49 21(8,3,1) 26

1(7,3,1) 10 21(7,5) 17

1/(6,5) 9 01](9,1,1,1) 2

—1((8,1,1,1) 0 0 8,2,2% 1
-11(7,2,2) 1% 0(7,4,1 1
—1(6,4,1) 1% 01(6,6) 2
-31(7,2,1,1) 0 —21(8,2,1,1) 1%
. ) —21(7,3,2) 0
-99](1,1,1,1,1,1,1,1,1,1,1) 0 e :
—120](1,1,1,1,1,1,1,1,1,1,1,1) 0

We remark that each vanishing entry in the tables above corresponds to a family of “missing” groups. In
particular we see that the group (Z/pZ)® does not appear as the class group of a quadratic imaginary field
for any prime 2 < p < 100.

3.0.2. Sporadic groups in negative cyclicity index case. As just indicated with bold/star-marks in the tables,
each of the groups

Z 7z 7 Z 7 Z Z 7 \?
31z “ 337 7370 37 " 37 " 3% ?FZX<32Z)’
yA 7z 7 Z Z Z\?
367 317 " 37 382x322x<3z)

occurs exactly once as an imaginary quadratic class group, even though c¢()\) < 0 for each corresponding
partition A\. From the point of view of Conjecture 1.7, these examples may be regarded as “sporadic,” since
conjecturally they do not belong to an infinite family.

3.0.3. Zero cyclicity index — the family F((Z/pZ)?). The case of c¢(A) = 0 is intermediate in the sense that
infinitely many groups in the family should occur, and infinitely many should not. Here the data is quite
limited, and we restrict ourselves to the family G = (Z/pZ)?. The following table contains all odd primes p
such that p? < 10°, grouped according to the value of F((Z/pZ)?), assuming GRH.
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[ n [ All primes p < 1000 such that F((Z/pZ)?) = n

0

11, 19, 37, 79, 89, 97, 103, 139, 151, 167, 181, 101, 193, 227, 229, 233, 241, 251, 271,
281, 283, 311, 313, 317, 349, 353, 359, 383, 401, 409, 433, 443, 463, 467, 479, 491,
499, 523, 563, 571, 587, 601, 619, 631, 643, 673, 701, 709, 733, 757, 769, 787, 809,

829, 877, 887, 907, 919, 929, 947, 953, 977, 983

3,17, 23, 41, 43, 47, 61, 67, 73, 107, 109, 113, 127, 131, 137, 157, 163, 173, 179, 199,
239, 257, 263, 269, 277, 293, 307, 331, 337, 347, 367, 373, 379, 397, 419, 439, 457, 487,
503, 509, 521, 547, 557, 577, 599, 613, 617, 641, 653, 659, 677, 683, 691, 719, 727, 739,
743, 761, 797, 811, 821, 823, 839, 853, 857, 859, 863, 881, 937, 941, 971, 991, 997

5,7, 29, 31, 53, 59, 71, 83, 101, 197, 211, 223, 389, 431, 449, 461, 569, 593, 607, 647
661, 827, 883, 911

3

149, 421, 541, 751, 967

4

e

5

13

The limited data seems to support intermediate behaviour.

One may ask how well our prediction of F(G), using equation (1.2), holds up. The following graph

compares the cumulants of the predictions with the observations.

FIGURE 9. Cumulative observed values >
lative predicted values 3, P(G(1,1)(p)) pred(p?) (red dashed line), for each z < 1000.
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4. PRELIMINARIES

In this section, we briefly review relevant background material.

4.1. Cohen-Lenstra heuristics. When a finite abelian p-group G occurs in nature, its likelihood of oc-
currence is often found to be proportional to 1/| Aut(G)|. This suggests constructing a discrete probability

measure [ on

by setting u({G}) =

C

| Aut(G)]

®,, := {isomorphism classes of abelian p-groups}

for an appropriate positive constant ¢, if possible. The following lemma

shows that this indeed the case, and is also useful for evaluating c.

14

F(G,1y(p)) (black dots) compared to cumu-



Lemma 4.1. We have that

S e~ 11 (5)

GeGyp =1
\G\:p"
1 n < 1 > —1
_— = 1-—= .
G;p | Aut(G)] 1;[1 P’
IGl<pn
Proof. The first equation is [11, Cor 3.8, p. 40]; the second follows from the first by induction on n. ]

Let us set
Moo (P) = f[l (1 - 1-) : (4.1)

By taking n — oo in Lemma 4.1, we see that one must take ¢ = 75 (p) in order for p(®,) = 1. In the
Cohen-Lenstra model, the probability of G occurring as the p-part of a class group is thus given by

N (P)
n({G}) = ‘Aut( T (4.2)

Lemma 4.1 also has the following useful corollary. Here and later in the paper, we will also make use of the
notation
D := {negative fundamental discriminants},
D(x):={de®D: —d <z},
D' :={qeD: —qis prime},
D'(z):={qeD : —q<z}.
Recall that by genus theory, we have
h(d) is odd <= —d is prime
for d € ® with d < —8. This observation explains the following notation, wherein P denotes any property

of positive odd integers.

D'(x): h tisfies P
Prob(h satisfies P : h is an odd class number) := li_>m AUAS (I)#Q’EZ)) pAMSTes }
T—>00

(4.3)

Corollary 4.2. Assuming the Cohen-Lenstra heuristics, for any n > 0 we have

N 1
Prob(p™ th: h is an odd class number) = H (1 - )

I o 1
Prob(p" || h: h is an odd class number) = — - — .
o s 1 (5)

Proof. The Cohen-Lenstra heuristics specify that
Prob(p™ { h: h is an odd class number) = u({G € &, : |G| <p"~'}).

Together with Lemma 4.1, this gives the first equation, and the second equation follows from the first since
Prob(p™ || h : h is an odd class number) is equal to

Prob(p™ | h : h is an odd class number) — Prob(p"*! | h : h is an odd class number). O

15



4.2. The class number formula and special values of L-functions. Recall the class number formula,
which in our context reads

wh(d)
VIdl
where L(s,xa) = Yoo Xa(n)n~* is the L-function attached to the Kronecker symbol x4 := (4). This
formula connects the statistical study of class numbers to that of the special values L(1, x4). Building upon
ideas that go back to P.D.T.A. Elliot, A. Granville and K. Soundararajan [16] proved that, on average over
d €D, L(1,xq) behaves like a random Euler product. More precisely, if X(p) denotes the random variable
defined by

L(LXd) =

(deD,d< —8), (4.4)

1 with probability ﬁ
X(p) =<0 with probability ﬁ
—1  with probability
and L(1,X) denotes the random Euler product

L(1,X) =[] (1 - X(p)>_1,

P p

D
2+

then [16, Theorem 2] (see also [44, p. 4]) implies that, for |z| < logz/(500(loglogx)?) and Re(z) > —1, we
have

) LUwX@Z—QQN-EUXLXY)+C>O®CwRXp<1qu>>7 (45)

5loglogx
deD(z)
where E denotes the expected value. This leads to the average result
2
> F(h) = 32 24 g (H2(log H)*l/”E) , (4.6)
= ¢(3)

for any € > 0 (see [44, Theorem 1]). In the interest of establishing the appropriate constant in Conjecture
1.4, we will next prove Theorem 1.6, which is an analogue of (4.6) averaged over odd values of h.

5. THE AVERAGE OF F(h) OVER ODD VALUES OF h

In this section we prove Theorem 1.6, that is we develop an asymptotic formula for Z F(h). By genus

h<H
h odd
theory, the restriction for A > 3 to be odd is equivalent to the condition that the associated discriminant d

be prime. As an auxiliary result, we begin by proving the analogue of (4.5) over prime discriminants.

5.1. The distribution of L(1,y) over prime discriminants. We now prove an asymptotic formula for
the general moment of L(1, x,) averaged over ¢ € ®’(x). Our proof generally follows the methods used in [16,
Theorem 2], but the restriction to prime discriminants demands that we use a different probabilistic model
than the model X introduced earlier. Indeed, Prob(X(p) = 0) = 1/(p + 1) corresponds to the probability
that a random fundamental discriminant d € © is divisible by the prime p, and one computes

PLIYT - {0} _ 1
ZPT—{0)  p+l

On the other hand, the event p | ¢ can happen at most once for ¢ € ®’, and so we replace X with Y, where
we recall that

Prob(p\d:de©)=|

1 with probability 1/2
wm:{ probebility 1/ (5.1)

—1  with probability 1/2.
The corresponding random Euler product is then
Y(p) ) -
L(1,Y) := I I 1-—
( ) » ( p

We will also make use of the following estimate for the remainder term in the Chebotarev density theorem
for quadratic fields.
16



Proposition 5.1. Assume the Generalized Riemann Hypothesis for Dedekind Zeta functions of quadratic
number fields. Then for d € N and any real non-principal Dirichlet character x modulo d, we have

Z 1_7L1 )+ O(x/? log da),

p<z
x(p)=1

with an absolute implied constant.

Proof. This is a special case of a theorem of Lagarias-Odlyzko on the error term in the Chebotarev density
theorem for general number fields; see [25, Theorem 1.3] and [43, Théoréme 2]. O

As an immediate corollary, one deduces the following analogue of the Polya-Vinogradov Theorem, which
gives square-root cancellation of characters sums over prime values.

Corollary 5.2. Assume the Generalized Riemann Hypothesis for Dedekind Zeta functions of quadratic
number fields. Then for n € N which is not a square, we have

S xo(n)| < 22 log(na),
qeD’(2)

with an absolute implied constant.

The next theorem follows from Corollary 5.2, together with some technical lemmas from [16]. In particular,
its proof will utilize several properties of the z-th divisor function d,(n) for z € C, which is characterized by
the equation

(s =Y d';(f) (Re(s) > 1).

Further note that d,(n) is a multiplicative function, and for prime powers n = p® we have that
MNz+a) zE+D(z+2)...(24+a-1)

d.(p*) = o) o (5.2)

Theorem 5.3. Assume the Generalized Riemann Hypothesis and let € > 0. Then, uniformly for |z| <
log x/(500(log log x)?), we have

D> L(1,xg)* = |9'(2)] - E(L(1,Y)?) + O, (1-1/2+6> .

qeD’(z)

Proof. By Lemma 2.3 of [16], for any Z € R with Z > exp ((1og q)'%)) we have

L(1, xq)* ZXq n/Z“‘O(q)

(Note that, since we are assuming GRH, we may ignore any possible exceptional discriminants.) Thus we

have
Z (1,xq)" e "? Z Xq(n) + O(loglog z). (5.3)
qED/ () n=1 qED/ ()

o0

The main term in our asymptotic comes from the subsequence n = m?; the other values of n contribute to
the remainder term. Indeed, for n = m?2, we have

Y Xg(m®) = |9'(2)] + O(w(m)),

gD/ ()

and the contribution of these terms to (5.3) is thus

D' (2)] i dz<m2)e_m2/z +0 (10g10g3j—|— i dZ(mQ)w(Wme—mQ/Z> .

2
m
m=1
17



Using w(m) < d(m) together with the bounds

=~ d.(m?)d
Z (mm)2 (m) e—m2/Z < 10g(|2| _’_2)4|z\+4 <. 1€

= 20 oz (m) (m2\YY O ¢(3/2)0+DT 1
—m2/Z (lz]4+1) e _ _
Z ( - ) <D e ( Z ) I VR

m=1 m=1

and

(see [16, p. 1014]), one finds that the contribution of the n = m? terms to (5.3) is thus

oo [ee] dz(pgj)
/ x)|H Z o=t + 0. (z)
m=1 p \Jj=0
/ =2\ 1
I (o)) <o
p j=0
—z 1 —z g
|H ((1+ ) +<1p> >+Oe(x)
=D ()IE((1 Y)?) + O (%),
. . . . . 1\~ 1\~
where we have used (5.2) together with the binomial series expansions of (1 + - and (1—— . In

p p
order to handle the terms n # O, we begin by inserting the result of Corollary 5.2 into the right-hand side
of (5.3), obtaining

d.(
Tl)efn/z Z Xq(n < 21/2 logxz | )‘ e "2 log n
960" (=) (5.4)

o0 d .
< z'/? log x Z ZH=NA g(n) e % log n,

n=1

NE
=

3

3
LS
O~

where we have used |d.(n)| < d|;|(n) and di, (n) < di,(n) for t1,t2 € Ryg and t; < to. In [16, (2.4), p. 1001]
it is observed that Y 7, d’“T(")e*”/Z < (log3Z)¥ for any positive integer k and real number Z > 2. One

o d’“T(n)e_"/ Zlogn by introducing the function

— 2 if t < e?
log (1) :={ L

logt if t > €2

may adapt that argument to obtain a similar bound for )

Note that, for any a1, as,...,ar € N we have

log(ay -ag -+ ax) <log(aj -ag-----ag) <log(ay) -log(asz) - - - - log(ag).
Furthermore, by estimating a discrete sum by a continuous integral we may see that, for Z large enough,

0 —a/Z

> -

a=1

log(a) < (log(e? - Z))*.

Using these facts together with the inequality dy(n)e™ /% < */% Z e~ (artaxtFar)/Z we find that

ai1az...a=—n

2. di(n) e 7 — *
>~ e—"/Zlogns<e”ZZ . log<a>> < (log(e? - 2))™,
n=1 a=1

18



for Z large enough. Inserting this into (5.4) and taking Z = exp ((log x)lo), we obtain

= d.(n) _ V) Z 1/2 2 30
E AN E 1 1 AL
e Xq(n)| < z7/%log x(log(e ) ,

i 1€/ (x)
<. x1/2+€.
This completes the proof of Theorem 5.3. O

5.2. The proof of Theorem 1.6. We will largely follow the proof of [44, Theorem 1] with critical mod-
ifications in appropriate places; we include the details here for completeness. We make use of the smooth

cut-off function »
1o ((146)5t -1
c, — </ 1\ d i
fes(@) = 2mi /C,» s ( d(s+1) y

100
where the parameters ¢,d > 0 will be specified soon. For any c¢,d > 0 we have

1 ifx>1
Des(@)=C(A+5—1/z)/5 f(1+§)t<ax<1 (5.5)
0 ifz<(1+0)7!

Just as in [44], by using [16, Theorem 4] , one obtains that

SN FMh)= > 1404 (aogH)A) (5.6)

h<H q€ED’(X)
h odd hq<H

for any A > 0, where X := H?loglog H. By the class number formula, (5.6) and (5.5), it follows that

S Fm< Y ﬁca(f&?xq)>+oA(£;m>g S Fh)

S e S
We will now work with the main term in the middle above, which is
1 et THY ((1+6) -1
1 ) (”) H <(+>) ds. (5.7)
2mi c—100 q€D’(X) \/55(17 Xq) S 5(5 + 1)

We will put ¢ := 1/log H and § := 1/(log H)"/?. We furthermore set S := log X/(10%(loglog X)?) and
The second term is easily seen to be

(]eC()IIl[)()Se (]le ab()\/e l'lllel \/al 1‘11[()
/,5 S /s ’
: (‘C)

—|ds| €« ———m————.
5 /|s>s 5G] < Gogmpr—=

For the integral over |s| < S, we will use Theorem 5.3 to re-write the integrand in terms of the appropriate
moment of L(1,Y) and then reinterpret .5 as a smooth cut-off function as in (5.5). First note that the
following equation follows immediately from Theorem 5.3 by partial summation:

X
Z (\/&L(l, Xq))_s = E(L(l,Y)_s)/ t_s/2d©/(t) + OE(X1/2+E).
qeD’(X) 1
Thus, (5.7) is equal to

1 oy [ e (TH)® ((148)F — 1 B
omi |s|<sE(L(1’Y) [ o (S ) a0 ()

=E (/1 omi /|<s (\[L 1 Y))si (%) dscm,(t)) O (@I{;‘"‘/“)

19
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Extending the integral to f > and managing the error, we find that

c—100

7 /|sgs <\/iz(il Y)>S . <(1 ;(?ji)_ 1) ds = 105 (%) + 0. (M) .

Inserting this into (5.8), we find that (5.7) is equal to

IIlll’lLIY X 2
5[/ (&% )d@'<t>+o€(W(HL(LW”)

o (25)) - )

Now using [16, Proposition 1], we find that min (L(l Y;,X) = 7E sz + Oy (W) for any A > 0, and

22 (1 (drep)) + O ()

x
together with the calculation
x

(5.9)

so we find that (5.9) becomes

Finally, using the asymptotic Li(z) ~

log
B(L(1,Y)"?) = [[® <<1 _ Y(p))2> 1] (1 (1 - 1>2 L1 (1 N 1)2
, p . 2 p 2 P
() (1_1>‘1:<<2>:15
. Pl P2 ) 7
the proof of Theorem 1.6 is concluded.

Remark 5.4. Our proof shows that in fact

> #0032 (14 (frs)) 0 (i)

h odd
We find that the main term in the above expression fits the numerical data much better than the asymptot-
ically equivalent formula given in Theorem 1.6, though it must be stressed that the corrections are of lower
order than the error term. In the tables presented in Sections 1 and 9, the number listed under “predicted”

1 . .
(wh/L(l,Y))) given in (1.7).

6. HEURISTICAL MOTIVATION FOR CONJECTURE 1.4

refers to the higher order expansion of 1—¢5 -c(h)-h-E <L(1,Y)2 Tog

Recall from Remark 5.4 that we have

1 2g?
S 7 = o (1 (1))
2 L(1,Y)?
h<H
h odd
Denote the right-hand side by G(H). An average order of F is given by

G —Gh-2) ~ 2%y =5 (L (-2
— — ~ 92— — 1 —
dh dh "\ L(1,Y)2
1 m2h 1 1
2m*hE = E
wh (L(1,Y)210g (7r2h2/L(1,Y)2)> log(nh) ~ \ L(LY)? 1 - g0
og(m
With a high probability, we have |log L(1,Y)/log(wh)| < 1 for large h, so the above can be approximated
with
n2h 1 log L(1,Y) = log? L(1,Y) ))
E 1+ =+ ) ). 6.1
log(h) (L(LW ( log(wh) ' log?(wh) (6.1)

20



We will approximate this by keeping the first few terms in the innermost parentheses. In this regard, define

. 2 3
co :=E (ﬁ), € = %]E (lof(i%z{)), Co 1= %E (%)7 and cg = éE (%). Recall from
(5.10) that ¢g = 15/71'2. The constants c1,ce and c¢3 may be calculated to arbitrary precision as follows.

Write Ly, := 1 — X2 Then L(1,Y) =[], L, ! and log L(1,Y) = — 3 log L,. Now

E(W) ( S log L HL2>: ZE (L2105 L) [ £ (22) :_COZ

r#p

L logL) (6.2)

where E (L3) =1+ o5 and E (Ljlog L,) = 3 (( —2)?log(1 — 2) + (1 + )*log(1 + %)). Next
log® L( 2\
E (L(1Y> (ZlogL loquHL )
> LiLlogLylog Ly [ L2+ Li(ogL,)* [ L3 | =

P#q T#D,q P T#p
> E(LZlogL,)E(L2log Ly) [] E (L?) +ZE 2(log Ly)?) [[ E (L2) =
p#q r#p,q r#p

E (L3 logL )E (L2log Ly) L2 logL )%)

S ET DV 1 T

0y "

p#q
2
E (L2 log Lp)> (IE (L21log L,,)) E (Lg(log L,)?%)
co - — | - — | + e (6.3)
((E55E) - (M) =
where E (Lg(long)g) =1 ((1 — %)2 log?(1 — %) +(1+ %)2 log?(1 + l)) One may similarly show that

1 (g L(LY)\ E ((log L,)L2) E ((log Ly)L?) E ((log L, L?)
CO]E( L(1,Y)? >_ 2 E (L3) E(L3) B2

P,q,T
distinct

logL 2L2) ((1ogL )L2)

3 Z + Z IOgL ))SLQ) . (6.4)
pFT P
Calculating the expressions (6.2), (6.3) and (6.4) with 10° prime terms yields*
~ —0.578071, co =~ 40.604049, c3 ~ —0.526259. (6.5)
Thus, taking the first four terms of (6.1), an approximation of F(h) for odd h is

2]7, CoC1 CoC2 CpC3 ) 15h ( C1 C2 C3 )
- C _|_ = + —|— + . 6.6
log(mh) ( 0 log(mh) = log?(wh) = log®(wh) log(mh) log(mh) ~ log?(wh)  log®(mh) 60
However, this assumes that each number h occurs as h(d) with equal frequency, which is inconsistent with
Corollary 4.2. We thus introduce the correction factor

—n 00 1
i(h) = H Prob(p™ || A" : A’ is an odd class number) H T2 | P (1 - ﬁ)
. p>3 prime Prob(p" ” W : R is an odd integer) p>3 prime p*(nJrl)(p o 1)
n>0 n>0
p" |k p" [k (6.7)
1 -1 o 1
S NCE
>3 pri p — P
p>3 prime i=n+1
n>0
p" A

AFor techniques to quickly compute these constant with very high precision, see [10, Section 2].
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In the above, in addition to using (4.3), we are also using

he€N: hisodd, h <z, h satisfies P
Prob(h satisfies P : h is an odd integer) := Ilggo # 6#{h GISNO: h, . gdz: - sga;s} es P}

We emphasize that n = 0 is allowed in (6.7), and so the expression defining ¢(h) is an infinite product. Note
that, heuristically at least, we have

> Eh) ~ g (H — o). (6.8)

- H
Indeed, if Z ¢(h) ~B- 5 then B has expected value

h<H
h odd

Prob(p™ || h: h is an odd class number)
Prob(p™ || h: his an odd integer)

B= H Z Prob(p" || h: h is an odd integer) -
p odd n=0

= H Z Prob(p" || h: h is an odd class number)
p odd n=0
=1

Noting that

(= I ﬁ(l—;) () = 32 - <lh),

(=3 =2
¢ prime

we get Conjecture 1.4 by multiplying the average order (6.6) with the local correction factor (6.7).

6.1. Dampening the three divisibility bias. Given an odd natural number h, let £ <11 and n < k— 3
be such that h € [3¥,3%+1) and 3" || h. We define the adjustment pred’(h) by replacing in pred(h) the factor

- 1
Prob(3™ || A’ : B is an odd class number) = 37" H (1 — 31)
i=n—+1

in ¢(h) coming from the Cohen-Lenstra heuristic, by the observed value

Prob(3" || A" : h'is an odd class number € [3%,35T1)) = Y~ F(I) > Fw) (6.9
h,€[3k,3k+1) h/€[3k,3k+l)
h' odd h’ odd
37||h

using our computed values of F(h) (see Section 9).

As mentioned earlier, this three divisibility bias is connected to other recent work: Belabas [3] noted rather
slow convergence in the Davenport-Heilbronn asymptotic average of H(d)[3]; Roberts [39] later conjectured
that this was due to a negative second order term of size X°/6 (here the main term is of order X). Robert’s
conjecture was indepently proved by Bhargava, Shankar and Tsimerman [4], and by Taniguchi and Thorne
[46].

7. HEURISTICAL MOTIVATION FOR CONJECTURE 1.7

We now give heuristics supporting Conjecture 1.7. Let A = (ny,ns,...,n,) be a partition of n, so that

nyg>ng > >ny > 1 (7.1)

and ny + ng + -+ n, = n, and let Gy(p) := @Z/p”"Z be the corresponding abelian group. By the
i=1
assumption (1.2), the expected value of F(Gx(p)) is
F(Gx(p)) = P(Ga(p)) - F(p")- (7.2)
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The following proposition evaluates P(G(p)) explicitly. Let k be the number of distinct parts of A, and let
my,Ma, ..., Mg be the multiplicity of each distinct part. Thus, (7.1) reads

ML= = Ny > Moy 41 = = gy > > skl g = = sk
Proposition 7.1. With the notation just given, we have
k m; -1 n 1
PG =p M- TTT1 ( ) I1 (1 - ) , (7.3)
1=17=1 =1 p
where ¢(X) is given by (1.10). In particular, as p — oo, we have that
P(Gx(p)) ~ p"N ™. (7.4)

Proof. The statement follows immediately by combining Lemma 4.1 with the formula

| Aut(Gx(p))| = p*" W) H ﬁ (1 - ) :

i=1j5=1
This formula is classical, having appeared in a 1907 paper of A. Ranum [38]. For a more modern exposition,
see [20] or [30]. O

Inserting (7.4) together with Conjecture 1.4 into the right-hand side of (7.2), and observing that ¢(p™) —
1 as p — oo, we see that Conjecture 1.7 follows. In the case c¢(\) = 0 we write

S FGap) ~ 3 P(GAp) - Fp") ~ Y€ o

p<z p<z p<z log(p")

and use partial summation.

8. ATTAINABLE PARTITIONS ARE VERY RARE

We now prove Theorem 1.9. To this end, let ¢, , denote the number of attainable partitions of n into
r parts. Work of Sellers ([41],[42]) leads to a generating function for the number of partitions of n which
satisfy a certain type of linear inequality amongst their parts:

Theorem 8.1 ([41],[42]). The number of partitions A = (ny1,na,...,n,) of n into r non-negative parts
satisfying the inequality nqw > Y.._,bin;, for some non-negative mtegers b; with by > 0, has generating

function
1

(1 _ {E)(]. _ xb2+1)(]_ _ (Eb2+b3+2)(1 _ xb2+b3+b4+3) - (]_ _ $b2+b3+“'+br+T*1) ’

Applying this result to our context requires a slight modification, and leads to the following generating
function for the attainable partitions.

Corollary 8.2. The generating function C,(x) for the sequence ¢, , of length-r attainable partitions of n is
given by

T2—T

) . .
= Cprl = T 2N
nzzo (I-x) Hj:Q(]' — /")

Proof. First, observe that by definition we require our partitions to be comprised of positive (rather than
non-negative) parts. To accommodate this change, we use the easily-verified bijection between partitions of
n into r non-negative parts satisfying the inequality by > Y _._, bin; and partitions of n+ Y, _,b; + (r — 1)
into r positive parts satisfying the same inequality, given by

T
(n1,...,n.) = (M1 —I—Zbi,ng +1,.,n.+1)
i=2
Thus the analogous generating function to Seller’s above for partitions into positive parts is simply a shift
of indices away, given by
b2 +batFbetr—1

(1 _ ,CC)(l _ xbz"rl)(l _ mb2+b3+2)(1 _ xb2+b3+b4+3) - (1 _ I‘b2+b3+"‘+b7‘+r_1) :
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Finally, we apply this to attainable partitions, which by definition satisfy an inequality in the form of the
theorem, with coefficients b; = 2i — 3. The corollary then follows from the observation

J J
o1+ bi=j—14) (2i-3)=42—]
1=2 =2

for any 2 < j <r.
O

Basic results about growth rates about coefficients of rational generating functions leads to an asymptotic
count of attainable partitions:

Corollary 8.3. For fixed r, the proportion of length-r partitions of n which are attainable is asymptotically
1

(r—1)!"

Proof. We rewrite our expression for C,.(z) to isolate its singularity on the unit circle with the highest
multiplicity (z = 1 with multiplicity r) and apply the techniques of singularity analysis. Namely, we write

o0 7’277‘
ZC e 1 . z i = fr(x)
= (1—a2) [l +a+a? 4 a7t " (1—a)”

where here f,.(x) is analytic at = 1. A partial fraction decomposition shows that the asymptotics for the

coefficients are governed by this singularity (see, e.g., [15, p. 256]), and we obtain
fr(l)nrfl B nrfl B nrfl

B (T I V1) | A () R s D IEA

Similarly, by the well-known generating function

> r 1 r
Z Pn 'r-rn = i = : i
s T : T 1\
— [[o,(1—27) (Q-2)" [[[o,Q+z+a?+ - +a2/71)
for p,, -, the total number of length-r partitions of n, we conclude that
nr—l
Pnr ri(r — I
Taking the ratio of these gives
nrfl
. Cn,r . ri(r—1)12 1
lim = lim — = T
n—=00 P p n—o0 h (’r‘ —_ 1)
proving the result. (]

Moving from the fixed rank to the fixed order case, we set

n
Cn = § Cn,r,
r=1

the total number of partitions of n which are attainable.

Lemma 8.4. For fized n, the numbers c, , satisfy the recurrence relation

n—2r
252

Cnr+1 = § Cn—2r—i(r24r),r-
=0

Proof. From Corollary 8.2 we easily deduce the recurrence relation between the successive generating func-
tions:

I2T 2 2
Crar(@) = Ty Crlw) = (L4277 4220740 1) @2 C, (),
from which the lemma follows by equating coefficients. O
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We prove by induction that for fixed n > 1 we have ¢, , < ﬁ for all r. This is trivial for » = 1 since
cn,1 = 1. For the inductive step, the recurrence relation in Lemma 8.4 gives

L2532 ) . L2727
2 -1
Cnrtl = Z Cr—2r—i(r24r)r < (CES)E (n—2r—i(r~+r))" .

i=0 =0

The terms in this sum are positive and decreasing as a function of 4, and so we can compare to the integral:

252 .
! =
> (n—2r—i(rP+r) 7 < (nf2r)’“*1+/ * (n72r—i(r2+r))“1 di
i=0 0
r—1 n" (n—2r — [ %22 (r + 7))
=n + —
r(r2+r) r(r2 4 7)

Since the latter term is positive and r? +r < n, we can continue

|22
1 ™’ +n" n”
—2r —i(r? =l < - =
gt (n=2r —i(r 4 )" < (r=12r@r2+r) r12’

1
Cn,r+1 < m

completing the induction. Now, summing over r gives

T-f

where Iy(x) denotes the 0-th modified Bessel function of the first kind. By the asymptotic Io( ) ~

we can compare the formula for ¢, with the famous asymptotic of Hardy-Ramanujan [17], p,, ~ f}/B,

the number of partitions of n. Taking the ratio of the two gives
. « p3l4eC—VEMVE
Pn

proving Theorem 1.9.

Remark 8.5. Since ¢,; = 1 for all n > 1 (and ¢p; = 0), Lemma 8.4 provides explicit formulas for the
number of attainable partitions of n into a small number of parts. For example,

Ln72
2 n—1
Cn2 = E Cpn—2-2i1 = 9 s
i=0

agreeing with the easily-checked fact that the partition [a,b] of n is attainable if and only if @ > b. Less
trivially, if we temporarily adopt the simplifying convention that |z] = 0 for z < 0, we have

252 L1252

Cn,3 = Z Cn—4-6i,2 = Z {TLZGZJ

1=0 =0

This leads to Rademacher-type formulas for computing the exact value of c,,.

9. DESCRIPTION OF THE COMPUTATION

With the aid of a supercomputer and assuming GRH, we have computed F(h) and F(G) for all odd
h < 10% and all p-groups G of odd size at most 105. We have made the computed values available online,
see the references [21], [22], [23]. In this section we will describe how this computation was accomplished.
For the correctness of the computation, and to obtain some important speedups, we use GRH in three
ways. First, we use a recent result by Lamzouri, Li, and Soundararajan [28] in order to give an upper bound
on the negative prime fundamental discrimants d < 0 for which h(d) < 10°. More precisely, as already noted,
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by genus theory, if —g < —8 is a fundamental discriminant, then h(—gq) is odd precisely when ¢ is prime.
Corollary 1.3 in [28] states that under GRH,

T 1 1 14 loglog g -t
h(—q) > 567 NG, (loglogq —log2+ - + ) (9.1)

2 logloggq log q
if —¢ is a fundamental discriminant such that ¢ > 10'°. It is easy to verify that the right-hand side above
is monotonic for ¢ > 10'°. This implies that if ¢ > 1.1881 - 10'® then h(—q) > 105. Thus it suffices to
consider only discriminants in @’(1.1881 - 10'5) (recall that ®’(z) denotes the set of negative fundamental
discriminants —¢q such that ¢ < x is prime.)

Secondly, in order to avoid the costly full computation of the class number (especially for —d > 10%),
we use the Dirichlet class number formula h(d) = L(1,xq4) - 1/|d|/7 in order to compute a lower bound on
h(d) by approximating L(1,x4). Assuming GRH, L(1, x4) is well approximated by a short truncated Euler
product; to choose parameters we use some explicit GRH-conditional bounds due to Bach [1] together with
a simple, but in practise quite important, improvement (cf. Proposition 9.1.)

Finally, for class groups that are far from cyclic (these are quite rare), we compute the full class group
using the procedure quadclassunitO in the computer package PARI 2.7.3, an implementation of Buchmann-
McCurley’s sub-exponential, and GRH-conditional, algorithm (cf. [35, Section 3.4.70].)

9.1. A brief description of the algorithm. Our computer program iterates over all d € ©’(1.1881-10%?)
and records for each odd h < 10% and each noncyclic p-group G, how many times a group of order h or a
group isomorphic to G is found, avoiding to compute h(d) or H(d) whenever not necessary (note that if G
is a cyclic p-group, then the value of F(G) can be calculated from the data that we are keeping).

Given a fundamental discriminant d € ©’(1.1881-10'%), we begin by calculating an approximation Rapprox

of h(d) together with an explicit error factor E, by setting happrox := @e”(“’d) and E = e@1r2,d) for
suitable x1,zo using Proposition 9.1 below (e.g., towards the end of the discriminant range, it suffices to
only consider 7 terms in the truncated Euler product.) If we already at this stage can prove that h(d) > 10°
(that is, if happrox/FE > 106), then we discard d. This cuts down our search space by roughly a factor of 100,
as the lower bound (9.1) is overestimated by roughly this factor in our case.

Otherwise, we compute a candidate h* for h(d) using Shank’s baby-step/giant-step algorithm® (specifically,
we find an integer h* near in value to happrox such that g"" is the identity element for up to three different
group elements g € H(d)). (The most time consuming part of the computation consists of discriminants d
for which h(d) < 10; in order to quickly get reasonably good approximations of h(d), we use Proposition 9.1
and take 1 = 7919 and x2 = 100000.) We only compute one such candidate, but in practice, this candidate
agrees with the true value of h(d) (assuming GRH) with a failure rate of about 1.5- 1077 for d in our range.

Next, we try to find the exponent of the group by determining the smallest divisor e* of h* such that ¢
is the identity element for up to 12 different group elements g € H(d). We have that e* divides the order
of the group, and if moreover the error factor E is small enough such that h* is the unique multiple of e*
in the interval happrox - [, E] then we have proven that h(d) = h*. In practice, this step in our program
only catches cyclic groups and groups of the form Z/mZ x Z/3Z and Z/mZ x Z/5Z (m > 3), but since the
majority of the groups H(d) should be of this form®, our program stops at this step in 99.7% of all cases it
is reached.

If any of the above fails (that is, if g"  was not the identity element for some g or if E was not small
enough) or if h(d) was determined to be an odd prime power, then we proceed to compute the structure of
the entire class group H(d) using PARI.

Proposition 9.1. Assume GRH. Let d < —8 be a fundamental discriminant and let x1 < x4 be two integers
such that z1 > 1 and x5 > 10°. Then
1 < h(d)
(z1,22,d) —
emrL,r2 \/meu(zl,d)

T

< eN(@1,22,d) (9.2)

5Using that h is odd, a well known refinement of Shanks’ algorithm gives us a speedup factor of v/2.
Bwe expect the class group to be cyclic more than 97.7% of the time, and class groups containing Z/qZ x Z/qZ for prime
g > 5 are very rare (cf. [11, p. 56].)
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where

— )
v(zy,d) = Z —log (1 — p) ,

p<z1

1.562log |d| + 0.655log =
n(x1,w2,d) := g |dl 82 L loglogas + B+ 22812 T2
Vo

3logxo +4
8T, Z

p<I1

1
and B := lim E — —loglogx | =~ 0.2614972128... is the prime reciprocal constant.
xr—r 00
p<z

Proof. Let x be the real-valued character (¢) of modulus |d| > 1. Theorem 9.1 combined with Table 4 in [1]
states that under GRH,

1 562 log |d| + 0.6551
log L(1, x) — log H og || + o8 T2 (9.3)
p<is 1 VT
for any x5 > 10°. By Taylor expansion, we have
_ x(p)
logH X(p)210g<1 » >
:D<$2 p<zx2
(9.4)

>

S m(i0), xS (w)”

p<z1 p z1<p<z2 m=1 p

We can bound the terms with m > 2 by

> Z ( ) < > ié/ggfglel. (9.5)

p

1 <p<zT2 M= 2 1 <p<xT2
: oo g 2 1 _
since |) 5" & ) < z* for any |z| < 5. For m = 1 we have
x\p) (p)
> <Y <Y -% o (9.6)
1 <p<x2 m1<p<m2 p<z2 p<x1

where the first term on the right-hand side can be bounded using inequality (6.21) in [40], which states that
under RH,

3logxs +4

1
Z = < loglogxs + B + (9.7
p<x2 87T\/§2
for any zo > 13.5.
Combining the inequalities (9.3), (9.4), (9.5), (9.6), (9.7) we obtain
‘IOgL(l,X)—V(.CL']_,d” 377(1’1’952765)’ (98)

and the inequality (9.2) follows from taking exponentials and applying the class number formula h(d) =
@L(l, x) for d < —8. |

9.2. Computer resources. Our program comprises 1500 lines of C++ code. The total time for the compu-
tation was 4.5 CPU years, requiring 1 TB of temporary memory storage.
We used the computer package PARI (cf. [35]) to compute the groups H(d) and we used the computer
package primesieve [47] to iterate through primes.
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