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1. INTRODUCTION

In [3], Bump and Ng made the remarkable discovery that the zeroes of
the Mellin transform of Hermite functions of even level lie on the critical
line Re(s) = 1/2. Hermite functions are eigenfunctions of the Hamiltonian
H =22 - ﬁ;‘% of the quantum mechanical harmonic oscillator. H may
be given a group theoretical interpretation via the Weil representation of
ng\(T{), the two fold metaplectic cover of SLy(R), as follows: Let SOa C
SLs be the subgroup of transformations preserving the form z2 + y2. The
cover splits over SO, and thus we may consider the Weil representation
restricted to SOy. By differentiation at identity it can be shown (Bump,

Choi, Kurlberg and Vaaler [2]) that H(f) = Ay f is equivalent to f lying in

a one dimensional SOs-invariant subspace of L(R).
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Differential operators does not make sense p-adically, but the Weil repre-
sentation exists for all Q,. We may thus define the p-adic Hermite functions
as the set of functions lying in one dimensional SOs-invariant subspaces.
(We need to be careful in how to define SO over Q,, since the stabilizer of
the quadratic form 2 4+ 32 is not compact for all p, see the text for details.)

We may relate this to the study of classical zeta functions as follows: Let
A, A* denote the adeles respectively ideles over QQ, and let v be an idele class
character (assumed to be even for simplicity of notation.) Let f: A* — C

be defined as the product

f(.%') = foo(xoo) X pr(xp)7

™23 and fp is the characteristic function on the p-adic

where fo(7s0) = €7
integers at the unramified places. For the ramified places we take f, to be

the characteristic function of the local conductor of v. As in Tate [6] we

have

C(s,v, f) = /AX f@(@)[a*d*z = L(s,v)T(s/2)m "y (s,v) = Als,v),

where L(s,v) is a Dirichlet L-series, y(s,v) is a product of local ramified
factors, and A(s,v) is the “completed” L-function that satisfies a functional
equation. (In classical language the integral representation amounts to ex-
pressing A(s,v) as the Mellin transform of a theta function.)

Now, at all the unramified places v, the f,’s are examples of Hermite

functions. It is thus natural to ask what happens when we replace a finite
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number of factors f, by arbitrary Hermite functions. Since we are modifying
the Euler product at a finite number of places, the question can be settled

by local calculations. Bump conjectured that the “new” local factors,

<<37Vv7fv) = /@X ’aj‘syv(;];)fv(x) d*z

v

should satisfy a local Riemann hypothesis, i.e. that their zeroes lie on the
critical line Re(s) = 1/2. The case Q, = R is of course Bump and Ng’s
discovery, a proof for Q, = Q,, p = 3(4), and v = 1 is due to Bump and
Hoffstein (unpublished.) For more details on this conjecture, along with a
generalization to the m-dimensional harmonic oscillator, see Bump, Choi,
Kurlberg and Vaaler [2].

In this paper we prove the conjecture for local fields of odd residue char-
acteristic and we also show why it does not hold for /' = C. (Theorems 4

and 5.)

2. PRELIMINARIES

Let F' be a nonarchimedean local field of odd characteristic. © = Op will
denote the ring of integers in F', 8 = (7) will be the unique maximal ideal
in O, and finally ¢ = [O/P|. We will use Weil’s “module normalization” of
the absolute value, i.e., |7| = 1/q.

Let v be an additive character on F' with conductor B”. Let v be a

unitary multiplicative character on F* such that v(m) = 1 (see lemma 2.)
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We let the level of v be the smallest integer m such that v|;yqpm = 1. If
v|ox = 1, then we say the level of v is zero.

It will be convenient to normalize the additive and multiplicative Haar
measures on F' and F'* so that the Fourier transform with respect to v is

self dual, and p*(9*) = 1. Since the Fourier transforms maps
Lgn — p(PB") 1o — p(P")pu(O) 1y

we have pu(9) = ¢*/2. With d*z = C'% we sce that 1 = Jox d*x implies

||

1-n/2

q
C:
g—1"

since [qy d¥x = C [o. “i—ﬁ =Cp(O*) = C,u(D)q;ql.

S(F) will be the Schwartz space of F, i.e., the space of compactly sup-
ported locally constant complex valued functions on F. For any function
or character ¢ on F, let ¢q(z) = ¢(ax), and let the “dilation operator”
T, : S(F) — S(F) be defined by T,(¢) = ¢,. If X is a union of cosets of ¥,

then S(X, ) will be the space of functions supported on X and constant

on cosets of PBF.

2.1. The local Tate integrals. The zeta functions that we are interested

in are:
Definition 1. Let

Conf) = [ laPvla)f@)ia.



Remark: Sometimes we will write ((s, f) for ((s,1, f).
For the reader’s convenience we recall Tate’s local functional equation

(see Tate [6] for details).

Theorem 1. Let f € S(F), and let v, v be characters on F, F* respec-
tively. Then there exists a meromorphic function c(s), depending only on

and v, such that
C(s,vs ) = els)C(L = 8,071, f),

f being the 1-Fourier transform of f.

Remark: An easy calculation with f = 14 .q» shows that c(s) is a function
of exponential type (and hence nowhere vanishing) when v # 1.

The following lemmas show that the real parts of the zeroes of ((s, v, f) are
unchanged when f is replaced by f,, or when v is twisted by an unramified

character. (Thus we may make the assumption that v(7) = 1 without loss

of generality.)
Lemma 1.
((s,v, fa) = v(a™a|~*¢(s, v, f).
Proof: Change of variables. O

Lemma 2. The real parts of the zeroes of ((s,v, f) depend only on v|ox.

Proof:

Sonf) = [ Fap@lelda



= qu’s/ f(r*z)v(nFe)d*z = Z(q*‘gl/(ﬂ))k (mh2)v(z)d*x.
k %
Since |v(m)| = 1, we are done. O

2.2. The Weil representation. In this section we develop properties of
the Weil representation that we will need. For notational convenience we

make the following

Definition 2. Let

Remark: These elements generate SLo(F').
Let G be the two fold metaplectic cover of G = SLo(F), defined by

Kubota’s cocycle o : G x G — {£1}. o is given in terms of the Hilbert

symbol by
X(g1) X(g2) )
o\g1,92) = ) ’
( ) (X(9192) X(9192)
a b .
where X = cif ¢ # 0, d otherwise. Finally, let s : G — G be the
c d

standard section such that s(g1)s(g2) = o (g1, 92)s(g9192)-
Definition 3. Let y(t) = [t|"/? limp—oo [y ¥(t27)de.
Theorem 2. (Weil [8]) There exists a representation

w:G — GL(S(F)),



defined by

and

wi(s(s = al/QLl)
(s(sa))f = lal P* 5 fo-

Remarks: The representation is also known as the oscillator, or metaplec-
tic representation. Using the Stone-von Neumann theorem one can define
w in a more natural way, for instance see chapter 4 in Bump [1]. Note that
the usual L?(F) inner product is G-invariant when restricted to S(F).

Let SOy(F) correspond to the quadratic form x? + y?. We are interested

in w restricted to the unique maximal compact subgroup of SOy (F').

Definition 4. Let

H = SLy(D) NSOy (F),

Remark: If i ¢ F (where i> = —1), then SO(F) is contained in the
maximal compact subgroup SLs(9) C SLo(F'). However, if i € F, then we
need to intersect with SLo(9) in order for nontrivial H-eigenfunctions to
exist. We will call (rightfully so) the first case anisotropic, and the second
“split”.

The restriction of w to H is a true representation (the cover splits over
SLy(9O) when the residue characteristic is odd, see Kubota [5]), and is given

by:



b a
_ _ 1
) = a0 [ i + o = 200) ) do
where £(a,b) = —1 if we are in the anisotropic case, ordy(b) is odd, and

a = —1 mod *B. Otherwise x(a,b) = 1.

Since H is a compact abelian group, we know that

S(F) = @VXa

xeﬁ

where H is the unitary dual of H, and
Vi ={f €S(F)|w(h)f=x(h)f Vhe H}.

Lemma 3. All Vs are invariant under complex conjugation.

-1
a —b a b
Proof: Recalling that = and y(=b) = y(b)~! =
b a b a

v(b), we see that w(h) = w(h™!). (We define w(h) by w(h)f = w(h)f.)

Hence

wh)f =w(h)f =wh™)f=x(h"1)f=x(h)f D

Corollary 1. There exists a C-basis of real eigenfunctions for S(F).

Proof: By lemma 3 we know that both the real and the imaginary part

of any eigenfunction f is in the same eigenspace as f. O
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2.3. The Kloosterman decomposition. In what follows, f will always
denote an H-eigenfunction, i.e., w(h)f = x(h)f for some character y € H.
We first note that any such f will be similar to its Fourier transform since

w € H. We will let X\ be such that

(2) () = f(z) = /F () f(y)dy.

The following will show that it is enough to study the action of H on the
finite dimensional subspaces S(O,B") for n > 0.

First note that 7;, intertwines the wy and wy, , -actions of H on S(F).
Moreover, ((s,v, f,) = 0 < ((s,v, f) = 0, so by replacing f by f.- for k
large enough, we can assume that the conductor of 1 is P for n > 0, and
that the support of f is contained in 9. Recalling that supp(f) C O implies
that f is constant on cosets of ", we see that f € S(O,PB") since f =\t

It is easily checked that S(O,9") is SLo(O)-invariant, and hence H-
invariant. Moreover, S(O, ") breaks up into an H-direct sum that will en-
able us to induct on n. The splitting identifies S(O,P"2) with S(B, P 1) C

S(O,P") via the intertwining map
Tr1: (wy, oy SO, B"72)) — (wy, S(O,B™)).
This motivates the following:

Definition 5. An H-eigenfunction f is called a lift if f € L = S(B, P 1).

If f € L+ C S(D,P"), it is said to be primitive.
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3. THE RANGE OF f — ((s,v, f)

In this section we show that the map f — ((s,v, f) has at most one-

dimensional range when restricted to S(O,B"™) N V,.

3.1. The anisotropic case.

Lemma 4. w|y is multiplicity free when H is anisotropic.

Proof: Apply Howe duality to the reductive dual pair U(1) x U(1). O
Remark: Howe duality is a theorem for any reductive dual pair if the

residue characteristic is odd, see Waldspurger [7].

3.2. The “split” case. If i € F, then w|y has multiplicities; but on the
other hand we can conjugate H into into a diagonal “torus”. This provides
enough information about eigenfunctions to prove that the range is at most

one-dimensional.

12 i
Let M = € SLy(9). Then M~'HM = H', where

i/2 1

H ={ | ue O*}.

(M can be thought of as a “Cayley transform”.) Moreover, the identity
WM™ hM) ow(M™) = w(M™) ow(h)
can be interpreted as meaning that

(h— M~'hM,w(M™1) : (H, (D, %) — (H',S(9,F"))
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is an intertwining operator. (Note that S(O,B") is SLo(O)-invariant!)
In order to translate the above decomposition back to the H-model, we
write
1 —i| o 1|1 d/2| |=i/2 o0
0 1]]|-1 00 1 0 -2/

Thus, if f = w(M)g, then

(3) £(x) = pie?) /D ()b 26?9 2 (v)dy.

The following lemma makes it easy to understand w|g:

Lemma 5.
n—1
SO, 3" = (P S(x"0*, ™) & S(P", B
k=0

as H'-modules. Moreover, each summand is isomorphic to the reqular rep-

resentation of O /1 +P"*. (Abusing notation, we let 1 +P° = O*.)
Proof: Clear since

(4) w(sa)g = |a|1/27§39a. 0

Corollary 2. If g is an H'-eigenfunction, then so is g X 1ox and g x 1.
Corollary 3. We can identify H' with O, and if B" is the conductor of

¥, then w factors as H — H/(1+ ") — GL(S(O,P")). In particular, any

character of H' associated with lifts must be trivial on 1 4 P72,
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For notational convenience we define a “zeta operator” Z, by

(Zu())(s) = C(s, v, f)-

Lemma 6. If f = w(M)g is primitive, 0 < m < n, and supp(g) C B, then

Z,(f) = 0.

Proof: Lemma 23 in the appendix. U

Lemma 7. If f € V, N L+, 0 < m < n, and the level of x is smaller than

n, then Z,(f) = 0.

Proof: Lemma 24 in the appendix. U

3.3. Conclusion. Putting the previous results together we have:

Theorem 3. The range of Z, restricted to V,, N S(O,P") is at most one-

dimensional.

Proof: The anisotropic case follows immediately from lemma 4. In the
“split” case we argue as follows: If m > n, it is easy to see that ((s,v, f)
is constant; assume that m < n. Write f as f = fiix + fprim, Where each
term belongs to L, L+ respectively. If the level of y is smaller than n, then
Zy(forim) = 0 by lemma 7. We can thus induct on n; the only thing to
check is the case when the level of x is n. In this case we must have fyz = 0
(corollary 3), and we can assume that g corresponding to f via equation 3

is supported on O* by corollary 2 and lemma 23. Now, the H'-action on
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S(O*,P") is just the regular representation (lemma 5), hence each character

occurs with multiplicity one, so done. O

Lemma 8. There exists C-basis for V, NS(O,P"), consisting of real-valued

functions, such that at most one basis element has nonzero image under Z,,.
Proof: Use theorem 3 together with corollary 1. O

4. PROPERTIES OF PRIMITIVES

Remark: The case when v is trivial has a different flavor from the non-
trivial case; in the former the zeta function will be a rational function of

q— %, whereas in the latter it will be a polynomial.

4.1. The case v =1.
Lemma 9. If f is primitive, then (s, f) satisfies the LRH.

Proof: See lemma 21 in the appendix.

4.2. The case v # 1. It is easy to see that m > n (m being the level of v)
implies that the zeta function is constant, so we will make the assumption

that m < n.
Lemma 10. If f € L', then all the zeroes of ((s,v, f) lie on a vertical line.

Proof: By lemma 22 in the appendix we know that (s, v, f) is of the form
A+ Bg~("=™)s for some constants A, B. O
Remark: In view of lemma 22 it is worth mentioning that |A/B| is known,

so it possible to prove lemma 10 by a direct calculation as an alternative.
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Lemma 11. If f € L, then ((s,v, f) satisfies LRH.

Proof: By lemma 8 we can assume that f ~ f, hence

C(l—s,f,f):C(l—g,lj,f)NC(l—g,I/,f).

By the functional equation we have

C(S7U7 f) = C(S)Q(l -5 V_la f) = )\C(S)C(l -5,V f) ~ AC(S)C(l — 5,V f)
Since c¢(s) is nowhere vanishing, we are done by lemma 10. O

4.3. Conclusion.

Theorem 4. The local Riemann hypothesis is true for nonarchimedean local

fields of odd residue characteristic.

Proof: Write f = fiigg + fprim- If fiige is nonzero, then the level of x is
smaller than n, hence Z,(f) = Z,(fu) by lemma 7, so done by induction.

If f is a primitive, then we are done by lemma 11. O

5. THE COMPLEX CASE

Let ¢(z) = e2™f¢(2) be an additive character on C. As in section 3.2 we
will conjugate H into a diagonal “torus” H', where the w-action is easier to
understand. We will show that the LRH does not hold over C by proving
that the dimension of the range of Zi|y; is more than one-dimensional.
(Linear combinations of two independent functions can be made to have

zeroes anywhere.)
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Definition 6. Let
Se(R) = {h € S(R) | h(z) = h(—x)},
i.e., the space of even Schwartz functions.

Definition 7. With q(z,w) a quadratic form, let
2w 2w ) )
kq(r, R) = / / w(q(re%ze, R62”Z¢))d9d¢.
o Jo
Furthermore, let K, : S(RT) — S(R™) be defined by
(5) (K,(h)(r) = /0 ky(r, R) RI(R) dR.

Definition 8. Let (Zr(h))(s) = [~ 2° *h(x)dz, i.e., the real Mellin trans-

form of h.
Lemma 12.
{91 f=wM)geW } ={g|g(z) =h(|z]), where h € Sc(R) }.
Proof: Use equation 4 and the fact that - is constant on C*. U

Lemma 13.

Zl(Vl) = ZR (Kq(Se(R)))7

where q(z,w) = —iz? + 22w + i /2w?.
Proof: Let f = w(M)g, g(z) = v2h(|22|), and h € S¢(R). We have

0 2T )
{(s,f):/cf(z)|z|8dxz:/0 ( ; f(re%”g)de)rsdr.
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The last factor in the Bruhat decomposition of M acts by sending g —

1/2/2g, /3, hence

00 2 )
1) = /C (g(z ) (] = /0 /0 (g(= Re*))dp h(R)RdR.

Hence it is enough to show that

21 [e%e) o
/o /0 /0 ¥ (q(re*™, Re*™))dg h(R)R dR df

oo 2T 2w
= /0 /0 /0 w(q(re2”9,ReQ’”¢))d¢d9 h(R)RdR7

but A is of rapid decay, so changing order of integration is justified. O

Corollary 4. The dimensions of the range of Z1 and the range of K, are

the same.

Proof: The real Mellin transform restricted to Se(R) is invertible.

2

Lemma 14. Let q(z,w) = az* + bzw + cw®. Then K, has one-dimensional

range only if b = 0.

We can assume that a = ¢ = 1 since a diagonal change of variables does
not change the dimension of the range. (We might perturb b, but we will
not change whether b = 0 or not.)

It is an easy consequence of the Riesz representation theorem that an in-
tegral operator of the form (5) has one-dimensional range only if k,(r, R) =
kq1(r)kg2(R). (We need to be a little bit careful since kq(r, R)R is un-

bounded; consider truncations h — fg kq(r, R) R h(R) dR to get the product
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representation for r € [0,¢]. Then let ¢ — oo, and note that the product
representation on any interval is unique if it exists. Also, S.(R) is L'-dense
in C([0,t]) Vt, so we do not have to worry about the “flatness” of h at zero.)

Anyhow, by lemma 15 we know that k, is not a product. O

Lemma 15. Let q(z,w) = az? + bzw + cw?, with a,b,c # 0. Then ky(r, R)

can not be written as a product of two functions.

Proof: Again we may assume that a = ¢ = 1. If ky(r, R) = ki(r)k2(R),
then we must have

(6)

0 = kqy(r, R)kq(0,0) — kq(0, R)ky(r,0)

27 27
_ (271‘)2 / / eir2 cos(26)+iR? cos(2¢) (ei\b\chos(Q—i-qb—&—arg(b)) _ 1) dedo.
0 0

However, when r, R are both small, the first factor is very close to 1, and
the second factor has negative real part if b # 0, integrating it we see that
(6) has negative real part for small r, R. (The argument can be made formal
by considering Taylor expansions of e*, cos(x), and sin(x).) O

Putting it all together we have:
Theorem 5. If v, x are trivial, then the LRH does not hold for F = C.

6. APPENDIX

Here we show that primitives satisfy the local Riemann hypothesis. We
will assume that 0 < m < n, m being the level of v, and that v(7) = 1. (See

lemma 2.)
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6.1. Gauss sums.

Definition 9. Let
Go) = [ vy s

be the integral form of a Gauss sum.
Lemma 16. G(¢,,v) = v(u"YG(,v) for u € O*.
Proof: Change of variables. O

Lemma 17. Let B* be the conductor of an additive character p. Let m > 0

be the level of v, where v is a character on O*. Then |G(p,v)| = qlqiklm if

k =m, and zero otherwise.

Proof: If k > m,

/ ) v(z)p(z)d*z = Z v(a) /(1+q37n) plx)d*xz =0

acOx/(1+P™)
since fa+‘43k p(x)dx =0, and d*z = Cdx on O*. The case k < m is handled

similarly. If m = k, then
G = [ [ ey o - pd<ady
=[] vt - vyiryare

—c [ vt [ patayate-c [ /m V(®)p(y(t — 1))dy d*t.
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Now, in the first integral, only ¢t € 1+ ¥ contributes and hence its absolute

value equals

qlfn/Q 1
g—1 (q— Dgr 11

Cp* (1 + PFu(©O) = n/2,

The second integral can be rewritten as

Jow [ vmodeay

and the inner integral vanishes by the first part of the lemma. Taking square

roots we get

1-k/2
g 0

Glo.v) =L

Lemma 18. Ifa € O and 0 < k < n, theanrm@ZJ x?)dx = 0.

Proof:
[ vtate = /
a+p* a a+q3k )/qpn—1 Y et 1
But

/ W) =d@d) [ Caz+ ) =@ [ v(am) =0,
a;+pn-1 pn—1 pn—1

since 194, has conductor ", and x € P! = 22 € P as n > 2. O
Remark: This lemma does not hold for the even residue characteristic

case.
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6.2. Properties of primitives. Remarks: The lemmas of this section
holds for both the “split” and the anisotropic case. It should also be noted
that the crucial property of the primitives is that they are determined by

their values on O (see next lemma).

Lemma 19. If f is primitive and y € P, then

M(y) = Y(2xy) f(v)dx.

Ox

Proof: First we note that

felts f(z)dz =0 VYaeP.
(Z+P"71

Now,

[ veas@ds= [ fepemdr > [ vem)fad.
o o agp/pn—17atP""

Since g, is constant on cosets of P"~1, we can use f € L+ to conclude that

all but the first terms in the sum vanish. O
Corollary 5. A\f(0) = [y« f(x)dz for primitive f.

Lemma 20. If f is primitive, then

—ns

(s ) = CHOYA = /2710 ot

).

Proof:

n—1
= z)|z|°d*x = ks x)d*x x| d*x.
o) = [ fa)lala > Lo f@des o) [ et

k_pk—1 n
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Since f € L+, all terms except k = 0,n — 1 and the last one vanishes. The
first term is equal to CAf(0). The second term equals —C' f(0)g"/2~1=(n=1)s

since pu(P") = ¢~™/? and

/ flx)d*x =Cg" ! / f(z)dx
pn—1_pn pn—1_pn

—cq ([~ [ =0—cot [ pwis = —rocs )

—ns

Finally, the third term equals f(0) [p, |z]°d*z = f(0) lq_q,s.

Lemma 21. If f is primitive, then ((s, f) satisfies LRH.

qlfn/Q

Proof: Put = ¢~% and y = ¢*/?z. Since C = -,

we see that ((s, f)
vanishes only if f(0) =0 or

q

1=\ =|C"! n/2—1—(n—1)s
=l |

—4q

‘(q _ 1)qn/2—1q—ns _ qn/2—1—(n—1)s(1 _ q—s)
1—q*

qn/2xn _ qn/2—1xn _ (xn—lqn/Q—l _ ann/2—1)

1—=x

qn/2xn _ xn—lqn/2—1‘ _ ‘yn—l(y _ q—1/2)
1—yq1/2

1—2z
—1/2

Now, both y — % and y — y"~! preserve the interior, boundary and

exterior of the unit disc, and so does their product. Therefore |y| = 1, which

implies that Re(s) = 1/2. O

Lemma 22. Let f be primitive, and let n > m > 0 be the level of v. Then

;v )= |  fl@v(z)d z+ f(x)u(a:*l)dxqu—(mm)s'
O 0% AC
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Proof:

C(s,y,f):/xy x+qus/ f(xFz)w

k>0
Since f is constant on P™ and v # 1, we see that the terms for which k& > n

vanish. Furthermore,

A f(rha) x_// V(2rhzy) f(y)dy d*z

Ox

- j/ G (Wpmiys 7) f (y)dy = /f v(y™)G (W ) f ().
OX OX

Lemma 17 gives that the only non-vanishing term is when n — k = m, i.e.,

k=n—m. Thus
§ q—(n—m)s .
o h= [ v@f@ds + T [ v )6 vy
= fx)v(x)d*x + f(a;)l/(afl)dxa:—G(w%nfm’V)qf(”fm)s. O
OX Ox
Corollary 6. If f is primitive, v # 1, and
f@p(@)d*z = [  flx)v@h)d s =0,
Ox Ox
then Z,(f) = 0.
6.3. Properties of primitives, “split” case.

Lemma 23. Let f = w(M)g be primitive. If g is supported on P and

0 <m <mn, then Z,(f) =0.
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Proof:
f(@) = ya(a®) / Yy —i(y*)g—ija(y)dy
P

and therefore

o T x‘/ / Viya(@®) b (2xy)b—i(y®)g s/ (y)v(z)dy da.

Now,

[ vt yiais = [ vyl 20/ - @ufi))ds

and

/ V($)¢i/2((:£ + 2y/i)2)d$ - Z v(a) / wi/2($2)dl“
- a€D*/(1+Pn1) a+2y/i+pPn-1

But fa+2y/i+P"71 ¥ /2(2%)dx = 0 by lemma 18 (2y/i € P). The same holds

for 7, so we are done by corollary 6. ([

Lemma 24. If f € V, N LY, 0 < m < n, and the level of x is smaller than

n, then Z,(f) = 0.

Proof: By lemma 23 and corollary 2 we can assume that supp(g) C O*.
As in the previous lemma, it is enough to show that [, f(z)v(z)d*z = 0.
We have g_;5(z) = y(z)x(z) by equation 3. Now, v(a®b) = y(b) and hence
~y is constant of cosets of squares, i.e., it is constant on (1 + P)-cosets. Thus

g—is2 will be constant on cosets of 1+ P71, Hence

@) = tala) [ dConi-i(s-ija(0)dy
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== G2) S el [ (i

a€O* /14Pn—1

By lemma 18, we see that the only non-vanishing integrals come from a €

(—iz + P)/(14 P"1), and will be of the form

/ boil(y + i)?)dy = / i)z,
b—ixz+Pn—1 b+pn—1

where b € P/P"~!, the point being that those terms do not depend on .

Thus f will be a linear combination of terms of the form
bia(2)g_ija(b — ix)p_s(a?),
where b € P/P"~ L. Therefore it is enough to show that
. P((i/2 = i)a*)g_ijo(b — ix)v(x)d "z =0V be P/P" .

Again, we break up the integral into cosets of 14+P"~!, since g—ij2(b—iz)v(z)
is constant on 1+ P !-cosets. We can now apply lemma 18 since i/2 —i =

—i/2 € O,
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