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1. Introduction

In [3], Bump and Ng made the remarkable discovery that the zeroes of

the Mellin transform of Hermite functions of even level lie on the critical

line Re(s) = 1/2. Hermite functions are eigenfunctions of the Hamiltonian

H = x2 − 1
4π2

d2

dx2 of the quantum mechanical harmonic oscillator. H may

be given a group theoretical interpretation via the Weil representation of

˜SL2(R), the two fold metaplectic cover of SL2(R), as follows: Let SO2 ⊂

SL2 be the subgroup of transformations preserving the form x2 + y2. The

cover splits over SO2 and thus we may consider the Weil representation

restricted to SO2. By differentiation at identity it can be shown (Bump,

Choi, Kurlberg and Vaaler [2]) that H(f) = λff is equivalent to f lying in

a one dimensional SO2-invariant subspace of L2(R).
1
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Differential operators does not make sense p-adically, but the Weil repre-

sentation exists for all Qp. We may thus define the p-adic Hermite functions

as the set of functions lying in one dimensional SO2-invariant subspaces.

(We need to be careful in how to define SO2 over Qp since the stabilizer of

the quadratic form x2 + y2 is not compact for all p, see the text for details.)

We may relate this to the study of classical zeta functions as follows: Let

A,A× denote the adeles respectively ideles over Q, and let ν be an idele class

character (assumed to be even for simplicity of notation.) Let f : A× → C

be defined as the product

f(x) = f∞(x∞)×
∏
p

fp(xp),

where f∞(x∞) = e−πx
2
∞ and fp is the characteristic function on the p-adic

integers at the unramified places. For the ramified places we take fp to be

the characteristic function of the local conductor of ν. As in Tate [6] we

have

ζ(s, ν, f) =
∫
A×

f(x)ν(x)|x|sd×x = L(s, ν)Γ(s/2)π−s/2γ(s, ν) = Λ(s, ν),

where L(s, ν) is a Dirichlet L-series, γ(s, ν) is a product of local ramified

factors, and Λ(s, ν) is the “completed” L-function that satisfies a functional

equation. (In classical language the integral representation amounts to ex-

pressing Λ(s, ν) as the Mellin transform of a theta function.)

Now, at all the unramified places v, the fv’s are examples of Hermite

functions. It is thus natural to ask what happens when we replace a finite
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number of factors fv by arbitrary Hermite functions. Since we are modifying

the Euler product at a finite number of places, the question can be settled

by local calculations. Bump conjectured that the “new” local factors,

ζ(s, νv, fv) =
∫

Q×v
|x|sνv(x)fv(x) d×x

should satisfy a local Riemann hypothesis, i.e. that their zeroes lie on the

critical line Re(s) = 1/2. The case Qv = R is of course Bump and Ng’s

discovery, a proof for Qv = Qp, p = 3(4), and ν = 1 is due to Bump and

Hoffstein (unpublished.) For more details on this conjecture, along with a

generalization to the n-dimensional harmonic oscillator, see Bump, Choi,

Kurlberg and Vaaler [2].

In this paper we prove the conjecture for local fields of odd residue char-

acteristic and we also show why it does not hold for F = C. (Theorems 4

and 5.)

2. Preliminaries

Let F be a nonarchimedean local field of odd characteristic. O = OF will

denote the ring of integers in F , P = (π) will be the unique maximal ideal

in O, and finally q = |O/P |. We will use Weil’s “module normalization” of

the absolute value, i.e., |π| = 1/q.

Let ψ be an additive character on F with conductor Pn. Let ν be a

unitary multiplicative character on F× such that ν(π) = 1 (see lemma 2.)
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We let the level of ν be the smallest integer m such that ν|1+Pm = 1. If

ν|O× = 1, then we say the level of ν is zero.

It will be convenient to normalize the additive and multiplicative Haar

measures on F and F× so that the Fourier transform with respect to ψ is

self dual, and µ×(O×) = 1. Since the Fourier transforms maps

1Pn → µ(Pn)1O → µ(Pn)µ(O)1Pn

we have µ(O) = qn/2. With d×x = C dx
|x| we see that 1 =

∫
O× d

×x implies

C =
q1−n/2

q − 1
,

since
∫
O× d

×x = C
∫
O×

dx
|x| = Cµ(O×) = Cµ(O) q−1

q .

S(F ) will be the Schwartz space of F , i.e., the space of compactly sup-

ported locally constant complex valued functions on F . For any function

or character φ on F , let φa(x) = φ(ax), and let the “dilation operator”

Ta : S(F ) → S(F ) be defined by Ta(φ) = φa. If X is a union of cosets of Pk,

then S(X,Pk) will be the space of functions supported on X and constant

on cosets of Pk.

2.1. The local Tate integrals. The zeta functions that we are interested

in are:

Definition 1. Let

ζ(s, ν, f) =
∫
F×
|x|sν(x)f(x)d×x.
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Remark: Sometimes we will write ζ(s, f) for ζ(s, 1, f).

For the reader’s convenience we recall Tate’s local functional equation

(see Tate [6] for details).

Theorem 1. Let f ∈ S(F ), and let ψ, ν be characters on F , F× respec-

tively. Then there exists a meromorphic function c(s), depending only on ψ

and ν, such that

ζ(s, ν, f) = c(s)ζ(1− s, ν−1, f̂),

f̂ being the ψ-Fourier transform of f .

Remark: An easy calculation with f = 11+Pn shows that c(s) is a function

of exponential type (and hence nowhere vanishing) when ν 6= 1.

The following lemmas show that the real parts of the zeroes of ζ(s, ν, f) are

unchanged when f is replaced by fa, or when ν is twisted by an unramified

character. (Thus we may make the assumption that ν(π) = 1 without loss

of generality.)

Lemma 1.

ζ(s, ν, fa) = ν(a−1)|a|−sζ(s, ν, f).

Proof: Change of variables. �

Lemma 2. The real parts of the zeroes of ζ(s, ν, f) depend only on ν|O×.

Proof:

ζ(s, ν, f) =
∫
F×

f(x)ν(x)|x|sd×x
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=
∑
k

q−ks
∫

O×
f(πkx)ν(πkx)d×x =

∑
k

(q−sν(π))k
∫

O×
f(πkx)ν(x)d×x.

Since |ν(π)| = 1, we are done. �

2.2. The Weil representation. In this section we develop properties of

the Weil representation that we will need. For notational convenience we

make the following

Definition 2. Let

sa =

a 0

0 a−1

 , ut =

1 t

0 1

 , w =

 0 1

−1 0

 .
Remark: These elements generate SL2(F ).

Let G̃ be the two fold metaplectic cover of G = SL2(F ), defined by

Kubota’s cocycle σ : G × G → {±1}. σ is given in terms of the Hilbert

symbol by

σ(g1, g2) =
(
X(g1)
X(g1g2)

,
X(g2)
X(g1g2)

)
,

where X


a b

c d


 = c if c 6= 0, d otherwise. Finally, let s : G→ G̃ be the

standard section such that s(g1)s(g2) = σ(g1, g2)s(g1g2).

Definition 3. Let γ(t) = |t|1/2 limn→∞
∫
P−n ψ(tx2)dx.

Theorem 2. (Weil [8]) There exists a representation

ω : G̃→ GL
(
S(F )

)
,
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defined by (
ω
(
s(ut)

)
f
)
(x) = ψ(tx2)f(x),

ω
(
s(w)

)
f = γ(1)f̂ ,

and

ω
(
s(sa)

)
f = |a|1/2 γ(1)

γ(a)
fa.

Remarks: The representation is also known as the oscillator, or metaplec-

tic representation. Using the Stone-von Neumann theorem one can define

ω in a more natural way, for instance see chapter 4 in Bump [1]. Note that

the usual L2(F ) inner product is G̃-invariant when restricted to S(F ).

Let SO2(F ) correspond to the quadratic form x2 + y2. We are interested

in ω restricted to the unique maximal compact subgroup of SO2(F ).

Definition 4. Let

H = SL2(O) ∩ SO2(F ),

Remark: If i 6∈ F (where i2 = −1), then SO2(F ) is contained in the

maximal compact subgroup SL2(O) ⊂ SL2(F ). However, if i ∈ F , then we

need to intersect with SL2(O) in order for nontrivial H-eigenfunctions to

exist. We will call (rightfully so) the first case anisotropic, and the second

“split”.

The restriction of ω to H is a true representation (the cover splits over

SL2(O) when the residue characteristic is odd, see Kubota [5]), and is given

by:
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(ω(

a −b

b a

)f)(x)

(1) = κ(a, b)|b|−1/2γ(b)−1

∫
F
ψ(

1
b
(ax2 + ay2 − 2xy))f(y) dy,

where κ(a, b) = −1 if we are in the anisotropic case, ordP(b) is odd, and

a ≡ −1 mod P. Otherwise κ(a, b) = 1.

Since H is a compact abelian group, we know that

S(F ) =
⊕
χ∈Ĥ

Vχ,

where Ĥ is the unitary dual of H, and

Vχ = {f ∈ S(F ) | ω(h)f = χ(h)f ∀h ∈ H}.

Lemma 3. All Vχ’s are invariant under complex conjugation.

Proof: Recalling that

a −b

b a


−1

=

 a b

−b a

 and γ(−b) = γ(b)−1 =

γ(b), we see that ω(h) = ω(h−1). (We define ω(h) by ω(h)f = ω(h)f .)

Hence

ω(h)f = ω(h)f = ω(h−1)f = χ(h−1)f = χ(h)f. �

Corollary 1. There exists a C-basis of real eigenfunctions for S(F ).

Proof: By lemma 3 we know that both the real and the imaginary part

of any eigenfunction f is in the same eigenspace as f . �
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2.3. The Kloosterman decomposition. In what follows, f will always

denote an H-eigenfunction, i.e., ω(h)f = χ(h)f for some character χ ∈ Ĥ.

We first note that any such f will be similar to its Fourier transform since

w ∈ H. We will let λ be such that

(2) λf(x) = f̂(x) =
∫
F
ψ(2xy)f(y)dy.

The following will show that it is enough to study the action of H on the

finite dimensional subspaces S(O,Pn) for n ≥ 0.

First note that Ta intertwines the ωψ and ωψa2 -actions of H on S(F ).

Moreover, ζ(s, ν, fa) = 0 ⇔ ζ(s, ν, f) = 0, so by replacing f by fπ−k for k

large enough, we can assume that the conductor of ψ is Pn for n ≥ 0, and

that the support of f is contained in O. Recalling that supp(f) ⊂ O implies

that f̂ is constant on cosets of Pn, we see that f ∈ S(O,Pn) since f̂ = λf .

It is easily checked that S(O,Pn) is SL2(O)-invariant, and hence H-

invariant. Moreover, S(O,Pn) breaks up into an H-direct sum that will en-

able us to induct on n. The splitting identifies S(O,Pn−2) with S(P,Pn−1) ⊂

S(O,Pn) via the intertwining map

Tπ−1 :
(
ωψπ−2 , S(O,Pn−2)

)
→

(
ωψ, S(O,Pn)

)
.

This motivates the following:

Definition 5. An H-eigenfunction f is called a lift if f ∈ L = S(P,Pn−1).

If f ∈ L⊥ ⊂ S(O,Pn), it is said to be primitive.
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3. The range of f → ζ(s, v, f)

In this section we show that the map f → ζ(s, ν, f) has at most one-

dimensional range when restricted to S(O,Pn) ∩ Vχ.

3.1. The anisotropic case.

Lemma 4. ω|H is multiplicity free when H is anisotropic.

Proof: Apply Howe duality to the reductive dual pair U(1)× U(1). �

Remark: Howe duality is a theorem for any reductive dual pair if the

residue characteristic is odd, see Waldspurger [7].

3.2. The “split” case. If i ∈ F , then ω|H has multiplicities; but on the

other hand we can conjugate H into into a diagonal “torus”. This provides

enough information about eigenfunctions to prove that the range is at most

one-dimensional.

Let M =

1/2 i

i/2 1

 ∈ SL2(O). Then M−1HM = H ′, where

H ′ = {

u 0

0 u−1

 | u ∈ O×}.

(M can be thought of as a “Cayley transform”.) Moreover, the identity

ω(M−1hM) ◦ ω(M−1) = ω(M−1) ◦ ω(h)

can be interpreted as meaning that

(h→M−1hM,ω(M−1)) : (H,S(O,Pn)) → (H ′, S(O,Pn))
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is an intertwining operator. (Note that S(O,Pn) is SL2(O)-invariant!)

In order to translate the above decomposition back to the H-model, we

write

M =

1 −i

0 1


 0 1

−1 0


1 i/2

0 1


−i/2 0

0 −2/i

 .
Thus, if f = ω(M)g, then

(3) f(x) = ψ−i(x2)
∫

O
ψ(2xy)ψi/2(y

2)g−i/2(y)dy.

The following lemma makes it easy to understand ω|H′ :

Lemma 5.

S(O,Pn) ∼= (
n−1⊕
k=0

S(πkO×,Pn))⊕ S(Pn,Pn)

as H ′-modules. Moreover, each summand is isomorphic to the regular rep-

resentation of O×/1 + Pn−k. (Abusing notation, we let 1 + P0 = O×.)

Proof: Clear since

(4) ω(sa)g = |a|1/2 γ(1)
γ(a)

ga. �

Corollary 2. If g is an H ′-eigenfunction, then so is g × 1O× and g × 1P.

Corollary 3. We can identify H ′ with O×, and if Pn is the conductor of

ψ, then ω factors as H → H/(1+Pn) → GL
(
S(O,Pn)

)
. In particular, any

character of H ′ associated with lifts must be trivial on 1 + Pn−2.
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For notational convenience we define a “zeta operator” Zν by

(Zν(f))(s) = ζ(s, ν, f).

Lemma 6. If f = ω(M)g is primitive, 0 < m < n, and supp(g) ⊂ P, then

Zν(f) = 0.

Proof: Lemma 23 in the appendix. �

Lemma 7. If f ∈ Vχ ∩ L⊥, 0 < m < n, and the level of χ is smaller than

n, then Zν(f) = 0.

Proof: Lemma 24 in the appendix. �

3.3. Conclusion. Putting the previous results together we have:

Theorem 3. The range of Zν restricted to Vχ ∩ S(O,Pn) is at most one-

dimensional.

Proof: The anisotropic case follows immediately from lemma 4. In the

“split” case we argue as follows: If m ≥ n, it is easy to see that ζ(s, ν, f)

is constant; assume that m < n. Write f as f = flift + fprim, where each

term belongs to L,L⊥ respectively. If the level of χ is smaller than n, then

Zν(fprim) = 0 by lemma 7. We can thus induct on n; the only thing to

check is the case when the level of χ is n. In this case we must have flift = 0

(corollary 3), and we can assume that g corresponding to f via equation 3

is supported on O× by corollary 2 and lemma 23. Now, the H ′-action on
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S(O×,Pn) is just the regular representation (lemma 5), hence each character

occurs with multiplicity one, so done. �

Lemma 8. There exists C-basis for Vχ∩S(O,Pn), consisting of real-valued

functions, such that at most one basis element has nonzero image under Zν .

Proof: Use theorem 3 together with corollary 1. �

4. Properties of primitives

Remark: The case when ν is trivial has a different flavor from the non-

trivial case; in the former the zeta function will be a rational function of

q−s, whereas in the latter it will be a polynomial.

4.1. The case ν = 1.

Lemma 9. If f is primitive, then ζ(s, f) satisfies the LRH.

Proof: See lemma 21 in the appendix.

4.2. The case ν 6= 1. It is easy to see that m ≥ n (m being the level of ν)

implies that the zeta function is constant, so we will make the assumption

that m < n.

Lemma 10. If f ∈ L⊥, then all the zeroes of ζ(s, ν, f) lie on a vertical line.

Proof: By lemma 22 in the appendix we know that ζ(s, ν, f) is of the form

A+Bq−(n−m)s for some constants A,B. �

Remark: In view of lemma 22 it is worth mentioning that |A/B| is known,

so it possible to prove lemma 10 by a direct calculation as an alternative.
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Lemma 11. If f ∈ L⊥, then ζ(s, ν, f) satisfies LRH.

Proof: By lemma 8 we can assume that f ∼ f , hence

ζ(1− s, ν, f) = ζ(1− s, ν, f) ∼ ζ(1− s, ν, f).

By the functional equation we have

ζ(s, v, f) = c(s)ζ(1− s, ν−1, f̂) = λc(s)ζ(1− s, ν, f) ∼ λc(s)ζ(1− s, ν, f).

Since c(s) is nowhere vanishing, we are done by lemma 10. �

4.3. Conclusion.

Theorem 4. The local Riemann hypothesis is true for nonarchimedean local

fields of odd residue characteristic.

Proof: Write f = flift + fprim. If flift is nonzero, then the level of χ is

smaller than n, hence Zν(f) = Zν(flift) by lemma 7, so done by induction.

If f is a primitive, then we are done by lemma 11. �

5. The complex case

Let ψ(z) = e2πiRe(z) be an additive character on C. As in section 3.2 we

will conjugate H into a diagonal “torus” H ′, where the ω-action is easier to

understand. We will show that the LRH does not hold over C by proving

that the dimension of the range of Z1|V1 is more than one-dimensional.

(Linear combinations of two independent functions can be made to have

zeroes anywhere.)
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Definition 6. Let

Se(R) = {h ∈ S(R) | h(x) = h(−x)},

i.e., the space of even Schwartz functions.

Definition 7. With q(z, w) a quadratic form, let

kq(r,R) =
∫ 2π

0

∫ 2π

0
ψ

(
q(re2πiθ, Re2πiφ)

)
dθdφ.

Furthermore, let Kq : S(R+) → S(R+) be defined by

(5)
(
Kq(h)

)
(r) =

∫ ∞

0
kq(r,R)Rh(R) dR.

Definition 8. Let
(
ZR(h)

)
(s) =

∫∞
0 xs−1h(x)dx, i.e., the real Mellin trans-

form of h.

Lemma 12.

{g | f = ω(M)g ∈ V1 } = {g | g(z) = h(|z|), where h ∈ Se(R) }.

Proof: Use equation 4 and the fact that γ is constant on C×. �

Lemma 13.

Z1(V1) = ZR
(
Kq(Se(R))

)
,

where q(z, w) = −iz2 + 2zw + i/2w2.

Proof: Let f = ω(M)g, g(z) =
√

2h(|2z|), and h ∈ Se(R). We have

ζ(s, f) =
∫

C
f(z)|z|sd×z =

∫ ∞

0

( ∫ 2π

0
f(re2πiθ)dθ

)
rs dr.
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The last factor in the Bruhat decomposition of M acts by sending g →

|i/2|1/2gi/2, hence

f(z) =
∫

C
ψ

(
q(z, w)

)
h(|w|)dw =

∫ ∞

0

∫ 2π

0
ψ

(
q(z,Re2πiφ)

)
dφh(R)RdR.

Hence it is enough to show that

∫ 2π

0

∫ ∞

0

∫ 2π

0
ψ

(
q(re2πiθ, Re2πiφ)

)
dφh(R)RdRdθ

=
∫ ∞

0

∫ 2π

0

∫ 2π

0
ψ

(
q(re2πiθ, Re2πiφ)

)
dφ dθ h(R)RdR,

but h is of rapid decay, so changing order of integration is justified. �

Corollary 4. The dimensions of the range of Z1 and the range of Kq are

the same.

Proof: The real Mellin transform restricted to Se(R) is invertible.

Lemma 14. Let q(z, w) = az2 + bzw+ cw2. Then Kq has one-dimensional

range only if b = 0.

We can assume that a = c = 1 since a diagonal change of variables does

not change the dimension of the range. (We might perturb b, but we will

not change whether b = 0 or not.)

It is an easy consequence of the Riesz representation theorem that an in-

tegral operator of the form (5) has one-dimensional range only if kq(r,R) =

kq,1(r)kq,2(R). (We need to be a little bit careful since kq(r,R)R is un-

bounded; consider truncations h→
∫ t
0 kq(r,R)Rh(R) dR to get the product
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representation for r ∈ [0, t]. Then let t → ∞, and note that the product

representation on any interval is unique if it exists. Also, Se(R) is L1-dense

in C([0, t]) ∀t, so we do not have to worry about the “flatness” of h at zero.)

Anyhow, by lemma 15 we know that kq is not a product. �

Lemma 15. Let q(z, w) = az2 + bzw + cw2, with a, b, c 6= 0. Then kq(r,R)

can not be written as a product of two functions.

Proof: Again we may assume that a = c = 1. If kq(r,R) = k1(r)k2(R),

then we must have

0 = kq(r,R)kq(0, 0)− kq(0, R)kq(r, 0)

= (2π)2
∫ 2π

0

∫ 2π

0
eir

2 cos(2θ)+iR2 cos(2φ)
(
ei|b|rR cos(θ+φ+arg(b)) − 1

)
dφdθ.

(6)

However, when r,R are both small, the first factor is very close to 1, and

the second factor has negative real part if b 6= 0, integrating it we see that

(6) has negative real part for small r,R. (The argument can be made formal

by considering Taylor expansions of ex, cos(x), and sin(x).) �

Putting it all together we have:

Theorem 5. If ν, χ are trivial, then the LRH does not hold for F = C.

6. Appendix

Here we show that primitives satisfy the local Riemann hypothesis. We

will assume that 0 < m < n, m being the level of ν, and that ν(π) = 1. (See

lemma 2.)
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6.1. Gauss sums.

Definition 9. Let

G(ψ, ν) =
∫

O×
ν(x)ψ(x)d×x

be the integral form of a Gauss sum.

Lemma 16. G(ψu, ν) = ν(u−1)G(ψ, ν) for u ∈ O×.

Proof: Change of variables. �

Lemma 17. Let Pk be the conductor of an additive character ρ. Let m > 0

be the level of ν, where ν is a character on O×. Then |G(ρ, ν)| = q1−k/2

q−1 if

k = m, and zero otherwise.

Proof: If k > m,

∫
O×

ν(x)ρ(x)d×x =
∑

a∈O×/(1+Pm)

ν(a)
∫
a(1+Pm)

ρ(x)d×x = 0

since
∫
a+Pk ρ(x)dx = 0, and d×x = Cdx on O×. The case k < m is handled

similarly. If m = k, then

|G(ν, ρ)|2 =
∫

O×

∫
O×

ν(xy−1)ρ(x− y)d×xd×y

=
∫

O×

∫
O×

ν(t)ρ(y(t− 1))d×yd×t

= C

∫
O×

ν(t)
∫

O
ρt−1(y)dy d×t− C

∫
O×

∫
P
ν(t)ρ(y(t− 1))dy d×t.
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Now, in the first integral, only t ∈ 1+Pk contributes and hence its absolute

value equals

Cµ×(1 + Pk)µ(O) =
q1−n/2

q − 1
1

(q − 1)qk−1
qn/2.

The second integral can be rewritten as

∫
P
ρ(−y)

∫
O×

v(t)ρy(t)d×t dy,

and the inner integral vanishes by the first part of the lemma. Taking square

roots we get

|G(ρ, ν)| = q1−k/2

q − 1
. �

Lemma 18. If a ∈ O× and 0 < k < n, then
∫
a+Pk ψ(x2)dx = 0.

Proof:

∫
a+Pk

ψ(x2)dx =
∑

ai∈(a+Pk)/Pn−1

∫
ai+Pn−1

ψ(x2).

But

∫
ai+Pn−1

ψ(x2) = ψ(a2
i )

∫
Pn−1

ψ(2aix+ x2) = ψ(a2
i )

∫
Pn−1

ψ(2aix) = 0,

since ψ2ai has conductor Pn, and x ∈ Pn−1 ⇒ x2 ∈ Pn as n ≥ 2. �

Remark: This lemma does not hold for the even residue characteristic

case.
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6.2. Properties of primitives. Remarks: The lemmas of this section

holds for both the “split” and the anisotropic case. It should also be noted

that the crucial property of the primitives is that they are determined by

their values on O× (see next lemma).

Lemma 19. If f is primitive and y ∈ P , then

λf(y) =
∫

O×
ψ(2xy)f(x)dx.

Proof: First we note that

f ∈ L⊥ ⇔
∫
a+Pn−1

f(x)dx = 0 ∀a ∈ P.

Now,

∫
O
ψ(2xy)f(x)dx =

∫
O×

f(x)ψ(2xy)dx+
∑

a∈P/Pn−1

∫
a+Pn−1

ψ(2xy)f(x)dx.

Since ψ2y is constant on cosets of Pn−1, we can use f ∈ L⊥ to conclude that

all but the first terms in the sum vanish. �

Corollary 5. λf(0) =
∫
O× f(x)dx for primitive f .

Lemma 20. If f is primitive, then

ζ(s, f) = Cf(0)(λ− qn/2−1−(n−1)s + C−1 q−ns

1− q−s
).

Proof:

ζ(s, f) =
∫

O
f(x)|x|sd×x =

n−1∑
k=0

q−ks
∫
Pk−Pk−1

f(x)d×x+ f(0)
∫
Pn

|x|sd×x.
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Since f ∈ L⊥, all terms except k = 0, n− 1 and the last one vanishes. The

first term is equal to Cλf(0). The second term equals −Cf(0)qn/2−1−(n−1)s,

since µ(Pn) = q−n/2 and

∫
Pn−1−Pn

f(x)d×x = Cqn−1

∫
Pn−1−Pn

f(x)dx

= Cqn−1(
∫
Pn−1

−
∫
Pn

) = 0− Cqn−1

∫
Pn

f(x)dx = −f(0)Cqn−1µ(Pn).

Finally, the third term equals f(0)
∫
Pn |x|sd×x = f(0) q−ns

1−q−s . �

Lemma 21. If f is primitive, then ζ(s, f) satisfies LRH.

Proof: Put x = q−s and y = q1/2x. Since C = q1−n/2

q−1 , we see that ζ(s, f)

vanishes only if f(0) = 0 or

1 = |λ| = |C−1 q−ns

1− q−s
− qn/2−1−(n−1)s|

= |(q − 1)qn/2−1q−ns − qn/2−1−(n−1)s(1− q−s)
1− q−s

|

= |q
n/2xn − qn/2−1xn − (xn−1qn/2−1 − xnqn/2−1)

1− x
|

= |q
n/2xn − xn−1qn/2−1

1− x
| = |y

n−1(y − q−1/2)
1− yq−1/2

|.

Now, both y → y−q−1/2

1−yq−1/2 and y → yn−1 preserve the interior, boundary and

exterior of the unit disc, and so does their product. Therefore |y| = 1, which

implies that Re(s) = 1/2. �

Lemma 22. Let f be primitive, and let n > m > 0 be the level of ν. Then

ζ(s, ν, f) =
∫

O×
f(x)ν(x)d×x+

∫
O×

f(x)ν(x−1)d×x
G(ψ2πn−m , ν)

λC
q−(n−m)s.
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Proof:

ζ(s, ν, f) =
∫

O×
ν(x)f(x)d×x+

∑
k>0

q−ks
∫

O×
f(πkx)ν(x)d×x.

Since f is constant on Pn and ν 6= 1, we see that the terms for which k ≥ n

vanish. Furthermore,

λ

∫
O×

f(πkx)ν(x)d×x =
∫

O×

∫
O×

ν(x)ψ(2πkxy)f(y)dy d×x

=
∫

O×
G(ψ2πky, ν)f(y)dy =

∫
O×

ν(y−1)G(ψ2πk , ν)f(y)dy.

Lemma 17 gives that the only non-vanishing term is when n − k = m, i.e.,

k = n−m. Thus

ζ(s, ν, f) =
∫

O×
ν(x)f(x)d×x +

q−(n−m)s

λ

∫
O×

ν(y−1)f(y)G(ψ2πn−m , ν)dy

=
∫

O×
f(x)ν(x)d×x+

∫
O×

f(x)ν(x−1)d×x
G(ψ2πn−m , ν)

λC
q−(n−m)s. �

Corollary 6. If f is primitive, ν 6= 1, and

∫
O×

f(x)ν(x)d×x =
∫

O×
f(x)ν(x−1)d×x = 0,

then Zν(f) = 0.

6.3. Properties of primitives, “split” case.

Lemma 23. Let f = ω(M)g be primitive. If g is supported on P and

0 < m < n, then Zν(f) = 0.
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Proof:

f(x) = ψi/2(x
2)

∫
P
ψ(2xy)ψ−i(y2)g−i/2(y)dy

and therefore

∫
O×

f(x)ν(x)d×x =
∫

O×

∫
P
ψi/2(x

2)ψ(2xy)ψ−i(y2)g−i/2(y)ν(x)dy dx.

Now,

∫
O×

ν(x)ψi/2(x
2)ψ(2xy)dx =

∫
O×

ν(x)ψi/2
(
(x+ 2y/i)2 − (2y/i)2

)
dx,

and

∫
O×

ν(x)ψi/2
(
(x+ 2y/i)2

)
dx =

∑
a∈O×/(1+Pn−1)

ν(a)
∫
a+2y/i+Pn−1

ψi/2(x
2)dx.

But
∫
a+2y/i+Pn−1 ψi/2(x2)dx = 0 by lemma 18 (2y/i ∈ P ). The same holds

for ν, so we are done by corollary 6. �

Lemma 24. If f ∈ Vχ ∩ L⊥, 0 < m < n, and the level of χ is smaller than

n, then Zν(f) = 0.

Proof: By lemma 23 and corollary 2 we can assume that supp(g) ⊂ O×.

As in the previous lemma, it is enough to show that
∫
O× f(x)ν(x)d×x = 0.

We have g−i/2(x) = γ(x)χ(x) by equation 3. Now, γ(a2b) = γ(b) and hence

γ is constant of cosets of squares, i.e., it is constant on (1+P )-cosets. Thus

g−i/2 will be constant on cosets of 1 + Pn−1. Hence

f(x) = ψi/2(x
2)

∫
O×

ψ(2xy)ψ−i(y2)g−i/2(y)dy
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= ψi/2(x
2)ψ−i

(
− (ix)2

) ∑
a∈O×/1+Pn−1

g−i/2(a)
∫
a+Pn−1

ψ−i((y + ix)2)dy.

By lemma 18, we see that the only non-vanishing integrals come from a ∈

(−ix+ P )/(1 + Pn−1), and will be of the form

∫
b−ix+Pn−1

ψ−i((y + ix)2)dy =
∫
b+Pn−1

ψ−i(z2)dz,

where b ∈ P/Pn−1, the point being that those terms do not depend on x.

Thus f will be a linear combination of terms of the form

ψi/2(x
2)g−i/2(b− ix)ψ−i(x2),

where b ∈ P/Pn−1. Therefore it is enough to show that

∫
O×

ψ((i/2− i)x2)g−i/2(b− ix)ν(x)d×x = 0 ∀ b ∈ P/Pn−1.

Again, we break up the integral into cosets of 1+Pn−1, since g−i/2(b−ix)ν(x)

is constant on 1+Pn−1-cosets. We can now apply lemma 18 since i/2− i =

−i/2 ∈ O×.
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