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PRELIMINARY VERSION

In Tate’s thesis [30], Hecke L-functions are studied by means of the local integrals

ζ(s, ν, f) =

∫

F

f(x) ν(x) |x|s d×x,

where f is an element of the Schwartz space S(F ) on a local field F , and ν is a character

of F×. Weil [35] defined a representation ω = ωψ of the metaplectic group S̃L(2, F )
on S(F ). We consider the restriction of ω to the special orthogonal group SO(2) of

S̃L(2, F ), corresponding to the quadratic form x2 + y2. If −1 is not a square in F ,
this representation is multiplicity free, and S(F ) decomposes into a direct sum of one-
dimensional invariant subspaces. The Local Riemann Hypothesis is the assertion that
if f lies in one of these spaces, then the zeros of the local integral ζ(s, ν, f) lie on the
line re(s) = 1

2 . (We refer to the text for the correct statement if −1 is a square.) This
is proved in a substantial number of cases, in this paper and its companion piece by
Kurlberg [19].

If F = R, we will prove an extension of this result to the harmonic oscillator in n-
dimensions. This result may be formulated in a way that makes sense over a p-adic field,
though we have not investigated this yet. In this connection, we also have a reciprocity
law for the values at negative integers of the Laguerre polynomials, and a geometrical
interpretation of these values.

We will also state a certain conjecture, that if the spherical Whittaker function of
a spherical representation of GL(n,R) which is a functorial lift from GL(2,R) vanishes
anywhere on the group, then the representation is tempered. This generalizes a theorem
of Pólya on the zeros of Bessel functions.

Up-to-date information on this topic may be found on the world-wide-web at:

http://match.stanford.edu/rh/ .

We would like to thank Antonia Bluher, David Cardon, Paul Cohen, Steve Kudla,
Dipendra Prasad, Steve Rallis, Karl Rumelhart, Tonghai Yang and Steve Zelditch for
useful conversations or communications. We particularly thank Jeffrey Hoffstein and
Eugene Ng for helping to investigate this problem. This work was supported by grants
from the NSF.
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1. The zeros of the Mellin transforms of Hermite polynomials. For the quantum
mechanical harmonic oscillator see Weyl [36], and Cartier [7].

We recall the result of Bump and Ng [5], showing that the Mellin transforms of
the Hermite functions have their zeros on the line re(s) = 1

2 . (At first Bump and Ng
considered the case of Hn with n even, and Vaaler pointed out that the case n odd could
be added.)

Our normalizations will be different than in [5]. Let

fn(x) = 2−n/2Hn(
√

2π x) e−πx
2

,

where the Hermite polynomials are defined by

Hn(x) = (−1)n ex
2 dn

dxn
e−x

2

.

The fn are the eigenfunctions of the Hamiltonian x2− 1
4π2

d2

dx2 of the quantum mechanical
harmonic oscillator. That is, they satisfy the Schrödinger equation

(
x2 − 1

4π2

d2

dx2

)
fn =

2n+ 1

2π
fn.

Define polynomials pn by

Mn(s) =

{
π−s/2 Γ

(
s
2

)
pn(s) if n is even;

π−(s+1)/2 Γ
(
s+1
2

) √
2π pn(s) if n is odd.

where the Mellin transform

Mn(s) =

∞∫

0

fn(x) x
s dx

x
.

We have

fn+1(x) =

(√
2π x− 1√

2π

d

dx

)
fn(x),

and consequently, integrating by parts, we have

Mn+1(s) =
√

2πMn(s+ 1) +
s− 1√

2π
Mn(s− 1).

This implies that

pn+1(s) =

{
pn(s+ 1) + pn(s− 1) if n is even;

s pn(s+ 1) + (s− 1) pn(s− 1) if n is odd.
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The polynomials pn have certain properties in common with the Riemann zeta function.
We have the functional equation

pn(1 − s) =

{
pn(s) if n ≡ 0, 1 mod 4;

−pn(s) if n ≡ 2, 3 mod 4.

Moreover

Theorem 1. The zeros of pn lie on the line re(s) = 1
2 .

We give two proofs of this. Another proof may be found in Bump and Ng [5].

First Proof. We recall a familiar classical fact, that orthogonal polymomials have real
zeros. More precisely, let µ be a positive Borel measure on R, and assume that µ is
not supported on any finite set. We may apply Gram-Schmidt process to the sequence
{1, x, x2, · · · } and obtain a sequence of polynomials P0, P1, P2, · · · such that the degree
of Pn is n, which are orthogonal with respect to µ. The zeros of these are real and
simple. Indeed, after multiplying the polynomials Pn by suitable constants, they’ll have
real coefficients. If r1, · · · , rk are the zeros of Pn which have odd multiplicity, if k < n
we could expand Q(x) =

∏
i(x− ri) in terms of Pi with i < n, so Q would be orthogonal

to Pn; but patently QPn ≥ 0, so this is a contradiction.
Let us show that the polynomials p2n

(
1
2 + it

)
form an orthogonal family with respect

to a suitable measure. Indeed, the even Hermite functions f2n are eigenfunctions of a
self-adjoint differential operator (the oscillator Hamiltonian), so they form an orthogonal
family on the half-line R+, which we parametrize exponentially. Thus, consider the
functions φn(x) = f2n(e

2πx) eπx. These are orthogonal with respect to Lebesgue measure
on R. The Fourier transform of φn is 2πM2n

(
1
2 + it

)
, so by the Plancherel theorem these

are orthogonal: ∫ ∞

−∞

M2n

(
1
2 + it

)
M2m

(
1
2 + it

)
dt = 0

if m 6= n. Thus the polynomials p2n

(
1
2 + it

)
form an orthonomral family, with respect to

the measure |Γ
(

1
4 + it

2

)
|2 dt.

Similarly, the polynomials p2n+1 are orthogonal with respect to |Γ
(

3
4

+ it
2

)
|2 dt. They

must therefore all have real zeros.

Second Proof. Let f be an eigenfunction of the oscillator Hamiltonian. Thus, f
satisfies the Schrödinger equation

(
x2 − 1

4π2

d2

dx2

)
f =

λ

2π
f

for some value of λ. Define the Mellin transform

M(s) =

∞∫

0

f(x) xs
dx

x
.
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Integrating the above Schrödinger equation by parts gives

M(s+ 2) − 1

4π2
(s− 1) (s− 2)M(s− 2) =

λ

2π
M(s).

We have either

M(s) =

{
π−s/2 Γ

(
s
2

)
p(s) or

π−(s+1)/2 Γ
(
s+1
2

) √
2π p(s),

with p(s) a polynomial, according as f̂ = ±f or f̂ = ±if (i.e., according as f = fn with
n even or n odd.) We have therefore either

λ p(s) = s p(s+ 2) − (s− 1) p(s− 2),

or

λ p(s) = (s+ 1) p(s+ 2) − (s− 2) p(s− 2).

The situation will be more symmetrical if we make the substitution q(s) = p
(
s + 1

2

)
.

Thus, we wish to show the zeros of q are purely imaginary, and we have

λ q(s) = (s+ a) q(s+ 2) − (s− a) q(s− 2),

with a = 1
2

or a = 3
2
. The theorem now follows from the following

Lemma. Let q(s) be a polynomial, and assume that the zeros of q(s) lie in the closed
strip {re(s) ∈ [−c, c]} with c > 0. Then if a > 0, the zeros of

r(s) = (s+ a) q(s+ 2) − (s− a) q(s− 2)

lie in the open strip {re(s) ∈ (−c, c)}.

To prove this, suppose that re(s) ≥ c, yet r(s) = 0. We will obtain a contradiction. (The
case re(s) ≤ −c may be handled similarly.) Let q(s) = c

∏
i=1(s− ri). If r(s) = 0, then

|(s+ a) q(s+ 2)| = |(s− a) q(s− 2)|,

so

|s+ a|
∏

|s+ 2 − ri| = |s− a|
∏

|s− 2 − ri|.

Now since re(s) > 0, a > 0, we have |s + a| > |s − a|; moreover, since |re(ri)| ≤ c,
re(s) > c, we have re(s − ri) ≥ 0, and so |s + 2 − ri| > |s − 2 − ri|. Multiplying these
inequalities together, we obtain a contradiction.
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The preceeding proof is similar to the original proof of Pólya of an interesting property
of the K-Bessel functions, namely, his theorem that if y > 0 and Kν(y) = 0, then ν is
purely imaginary. Pólya’s proof [23] depends on the recurrence identity (Watson [34],
3.71)

2ν Kv(x) = x
(
Kν+1(x) −Kν−1(x)

)
.

The operator which takes an even function q(ν) and replaces it by ν−1
(
q(ν+1)−q(ν−1)

)

has the property (like the operator q 7→ r in the Lemma) of moving the zeros of a function
closer to the imaginary axis, and so an eigenfunction of this operator should have its
zeros on the imaginary axis. Since ν 7→ Kν(x) is not a polynomial function, making this
argument rigorous requires care. An easier (but arguably less insightful) proof may be
found in Titchmarsh [31], Section 10.23.

Pólya connects his result with the Riemann hypothesis by arguing that

π2
(
K 9

4
+ it

2

(2π) +K 9

4
−

it

2

(2π)
)

has analytic properties similar to 1
2s(s − 1) π−s/2 Γ

(
s
2

)
ζ(s), with s = 1

2 + it. (Actually
this value, taken from Titchmarsh [31], seems to us to be off by a constant, but this is
unimportant.) This function also has its zeros on the line re(s) = 1

2 .
It is worth pointing out that there is another more “philosophical” way of connecting

Pólya’s result on the Bessel functions with the Riemann hypothesis. We begin by noting
that it implies a Riemann hypothesis for the Fourier coefficients of Eisenstein series.
Consider the classical SL(2,Z) Eisenstein series

E(z, s) = 1
2
π−s Γ(s)

∑ ys

|cz + d|2s ,

where the summation is over nonzero pairs of integers (c, d). It is well known that if
n 6= 0, then the n-th Fourier coefficient

∫ 1

0

E(x+ iy) e2πinx dx = 2 |n|s−1/2 σ1−2s(|n|)
√
y Ks−1/2(2π|n|y).

(See Bump [2] Section I.6.) Both the divisor function σ1−2s(|n|) and the K-Bessel func-
tion Ks−1/2 have their zeros on the line re(s) = 1

2
. Now if, on the other hand, we consider

the Eisenstein series of half-integral weight (see Maass [20], Shimura [28] and Goldfeld
and Hoffstein [13]), the Fourier coefficients are quadratic L-functions. So the analo-
gous assertion—that the Fourier coefficients of the Eisenstein series satisfy a Riemann
hypothesis—in the case of the Eisenstein series of half-integral weight, should reduce to
the classical Riemann hypothesis.

One may be a bit more careful here. Actually the Fourier coefficients of these Eisen-
stein series are the products of quadratic L-functions with certain finite Dirichlet poly-
nomials, and one would like to assert that these polynomials themselves have their zeros
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on the line re(s) = 1/2. David Cardon has looked at the case of Eisenstein series on
the double cover of GL(2) over a rational function field, and his work suggests that the
correct formulation is that the Whittaker coefficients in the modified sense of Gelbart,
Howe and Piatetski-Shapiro [11] should satisfy the Riemann hypothesis.

We propose here a conjectural generalization of Pólya’s result on the zeros of the Bessel
function Kν . Let π be a spherical principal series representation of PGL(2,R), and let W
be the SO(2)-fixed vector (determined up to constant multiple) in its Whittaker model
with respect to the additive character ψ(x) = e2πix of R. Then

W

((
y1/2 xy−1/2

y−1/2

)
k

)
=

√
y Kν(2πy) e

2πix,

when k ∈ SO(2), for some complex number ν. So Pólya’s result may be formulated as
saying that if the SO(2)-fixed Whittaker vector in a spherical principal series represen-
tation vanishes anywhere on PGL(2,R), then the representation is tempered.

More generally, let π be a spherical principal series representation of PGL(n,R),
and assume that π is a symmetric n − 1-st power lifting of a spherical principal series
representation of PGL(2,R). This means that there is a quasicharacter χ of R×/{±1}
such that π is obtained by normalized parabolic induction from the character




y1 ∗ · · · ∗
y2 · · · ∗

. . .
...
yn


 7→ χ(y1)

n−1 χ(y2)
n−3 · · ·χ(yn)

1−n.

Let W be the SO(n)-fixed vector in the Whittaker model of π, determined up to constant
multiple.

Conjecture. In this setting, if W vanishes anywhere on GL(n,R), then π is tempered
(i.e. χ is unitary).

We will offer three pieces of evidence for this statement.
Firstly, it is true when n = 2 by Pólya’s result.
Secondly, for one particular nontempered spherical Whittaker function (which is a

symmetric square lift from GL(2)) on GL(3,R) we can verify this claim—we recall that
the spherical Whittaker functions on GL(3,R) and GL(3,C) are the same, and that for
one particular principal series representation, corresponding to the cubic theta function
on GL(3,C), the Whittaker function can be expressed in terms of the Bessel function
K1/3, so the asserted nonvanishing follows from Pólya’s result. See Bump and Fried-
berg [3] and Bump and Huntley [4].

And thirdly, an analogous statement is true for spherical Whittaker functions on
PGL(n, F ), when F is a nonarchimedean local field. Let π be a spherical principal series
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representation with Satake parameters α1, · · · , αn. Let

h =



y1

. . .

yn




be a dominant element of the diagonal subgroup, so that if λi is the valuation of yi, we
have λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0. Let sλ be the Schur polynomial corresponding to the
partition λ = (λ1, · · · , λn), a symmetric polynomial in n variables (Macdonald [21]). Ac-
cording to Shintani [29] and Casselman and Shalika [8], the value W (h) of the normalized
Whittaker function with respect to an additive character ψ whose conductor is the ring
o of integers in F equals δ(h)1/2 sλ(α1, · · · , αn), where δ is the modular quasicharacter
of the Borel subgroup of GL(n, F ). Now suppose that π is a symmetric n− 1-st power
lift from GL(2). Thus we assume that there exists a complex number α such that

(α1, · · · , αn) = (αn−1, αn−3, · · · , α1−n).

Proposition. In this situation, if W (h) = 0 for h dominant, then π is tempered.

Proof. We have sλ(α
n, αn−2, · · · , α−n) = 0, and we will show that |α| = 1. Indeed, by

homogeneity of the Schur polynomial, we have sλ(α
2n−2, α2n−4, · · · , 1) = 0. We recall

that

sλ(α1, · · · , αn) =

∣∣∣∣∣∣∣∣∣

αλ1+n−1
1 αλ1+n−1

2 · · · αλ1+n−1
n

αλ2+n−2
1 αλ2+n−2

2 · · · αλ2+n−2
n

...
...

αλn

1 αλn

2 · · · αλn

n

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣

αn−1
1 αn−1

2 · · · αn−1
n

αn−2
1 αn−2

2 · · · αn−2
n

...
...

1 1 · · · 1

∣∣∣∣∣∣∣∣∣

.

Substituting (α2n−2, α2n−4, · · · , 1) for (α1, · · · , αn), the numerator here becomes

∣∣∣∣∣∣∣∣∣

βn−1
1 βn−2

1 · · · 1
βn−1

2 βn−2
2 · · · 1

...
...

βn−1
n βn−2

n · · · 1

∣∣∣∣∣∣∣∣∣
=

∏

i<j

(βi − βj),

where βi = α2(λi+n−i). If this is zero, then some βi = βj , which implies that α is a root
of unity. Thus |α| = 1, so π is tempered.
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2. The metaplectic representation. Witten, Brekke, Freund and Olsen in [1], [10]
and [9] considered p-adic analogs of bosonic string theory. This led Ruelle, Thiran,
Verstegen and Weyers [27] to consider the p-adic harmonic oscillator, also studied in the
recent book of Vladimirov, Volovich and Zelenov [32]. The p-adic harmonic oscillator
may be understood in terms of the restriction of the metaplectic representation of the
double cover of SL(2,R) on L2(R) to the group SO(2) of symmetries of the Hamiltonian
of a single particle moving in a quadratic potential field. In this formulation, there is no
obstacle to replacing R by an arbitrary local field, and this is the point of view we will
take.

Let F be a local field of characteristic not equal to 2. Let ( , ) denote the Hilbert
symbol of F . Let ψ denote a nontrivial additive character of F . Let dx denote the
measure on F which is self-dual with respect to the Fourier transform; thus if

f̂(x) =

∫

F

f(y)ψ(2xy) dy,

dx is self-dual if
ˆ̂
f(x) = f(−x). If t ∈ F×, let

γ(t) = |t|1/2
∫

F

ψ(tx2) dx.

This oscillatory integral is conditionally convergent in an obvious sense. The absolute
value of γ equals 1—indeed it is an eight-th root of unity—and

γ(a) γ(b) = (a, b) γ(ab) γ(1).

Furthermore, we have

γ(b2 a) = γ(a), γ(−a) = γ(a)−1.

Let G = SL(2, F ), and let G̃ be the metaplectic double cover of SL(2, F ) defined by
Kubota’s cocycle σ : G×G→ µ2 = {±1}. Thus in terms of the Hilbert symbol,

σ(g1, g2) =

(
X(g1)

X(g1g2)
,
X(g2)

X(g1g2)

)
,

where

X

(
a b
c d

)
=

{
c if c 6= 0;

d otherwise.

Let s : G→ G̃ be the standard section, so that

s(g1) s(g2) = σ(g1, g2) s(g1g2).
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We will also use the notation

[
a b
c d

]
= s

((
a b
c d

))
∈ G̃.

The metaplectic representation ω = ωψ is an action of G̃ on the Schwartz space S(F ).
It is given on generators by

(
ω

[
1 t

1

]
f

)
(x) = ψ(tx2) f(x),

(
ω

[
1

−1

]
f

)
(x) = γ(1) f̂(x),

(
ω

[
a

a−1

]
f

)
(x) = |a|1/2 γ(1)

γ(a)
f(ax).

See Weil [35] and Gelbart and Piatetski-Shapiro [12].
Let

H =

{(
a −b
b a

) ∣∣∣∣a, b ∈ F, a2 + b2 = 1

}
,

and let H̃ be the preimage of H in G̃. Let H ′ be the unique maximal compact subgroup

of H, H̃ ′ its preimage in H̃. If −1 is not a square in F , then H is compact, so actually

H ′ = H and H̃ ′ = H̃. On the other hand, if −1 is a square, then H ∼= F×, so H ′ is a

proper subgroup. The action of H̃ on the Schwartz space by means of the metaplectic
representation is given by the following formula:

(
ω

[
a −b
b a

]
f

)
(x) = |b|−1/2 γ(b)−1

∫

F

ψ

(
1

b
(ax2 − 2xy + ay2)

)
f(y) dy.

If −1 is not a square, so that H̃ is compact, then the restriction of ω to H̃ is
multiplicity-free. If F = R, this follows from our proof of Theorem 2 below (though
it was known long before by Howe). If F is p-adic, this follows from the Howe duality
principle for the dual pair U(1) × U(1) in SL(2). (Our group SO(2) is the same as
U(1).) See Howe [16] and Waldspurger [33] for Howe duality, which is a theorem except
in residual characteristic two. Other papers concerned specifically with the character of
the metaplectic representation restricted to SO(2) in the case of odd residual charac-
teristic are Moen [22] and Prasad [24]. Tonghai Yang [37] has formulas for the actual
eigenfunctions of U(1) acting on the Schwartz space.

In the case of residue characteristic two, the fact that the restriction of the metaplectic
representation to compact SO(2) is multiplicity-free is still known. This is implicit in the
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work of Rogawski [26], which uses global to local methods, and a purely local proof may
be found in Harris, Kudla and Sweet [14]. Also P. Ruelle, E. Thiran, D. Verstegen and
J. Weyers [27] have calculated the character of the restriction of the metaplectic repre-
sentation to tori in the fields Qp, including Q2, and their result implies this multiplicity
one statement for Q2.

On the other hand if −1 is a square in F , the restriction of ω to H̃ does not decompose
into a direct sum of constituents (though its dual space of distributions does so decom-

pose). Instead we will consider the group H̃ ′. The restriction of ω to this group is not
multiplicity free.

The metaplectic cover splits over H̃. Indeed, if −1 is not a square, H̃ is contained
in SL(2, o), and an explicit splitting over this maximal compact subgroup was given by
Kubota [18]. If we define

κ

(
a −b
b a

)
=

{ −1 if v(b) is odd and a ≡ −1 modulo p;

1 otherwise,

then

σ(g1, g2) =
κ(g1) κ(g2)

κ(g1 g2)

when g1, g2 ∈ H. (It is worth mentioning that if the valuation v(b) > 0, then a ≡ ±1
modulo p since a2 + b2 = 1.) We may therefore define a representation of the abelian
group H by

(
ω

(
a −b
b a

)
f

)
(x) = κ

(
a −b
b a

)
|b|−1/2 γ(b)−1

∫

F

ψ

(
1

b
(ax2 − 2xy + ay2)

)
f(y) dy.

On the other hand, if −1 is a square in F , then H is conjugate to the diagonal torus
in SL(2), and it is well known (and easy to prove from Kubota’s cocycle formula) that
the metaplectic cover splits over this subgroup. Since the cover splits over H ′, we may
regard ω as giving a representation of this group.

Local Riemann Hypothesis. Suppose that F is a local field. Assume that F is not
complex, and that the characteristic of F is not equal to 2. Let f ∈ S(F ) be an eigen-
function of this action of H ∩ K, and let ν be a character of F×. Then the Mellin
transform ∫

F

f(x) ν(x) |x|s d×x,

if not identically zero, has its only zeros on the line re(s) = 1
2
.

This assertion is largely proved, in this paper and its companion piece, Kurlberg [19].
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Lt us study what happens when we change the additive character. If λ ∈ F×, let
ψλ be the character x 7→ ψ(λx). Let dψx denote the additive Haar measure which is

self-dual with respect to ψ. Then dψλ
x = |λ|1/2 dψx. Let ωψ denote the metaplectic

representation parametrized by ψ. If f ∈ S(F ), let fλ(x) = f(λx). Then it is easy to see
that

ωψ
λ2

((
a −b
b a

)
fλ

)
(x) = ωψ

((
a −b
b a

)
f

)
(λx).

Thus if f is an eigenfunction of H̃ under the representation ωψ, then fλ is an eigenfunction

of H̃ under ωψ
λ2

. The zeros of ζ(s, ν, f) and ζ(s, ν, fλ) are at the same places, so we have

the freedom to change ψ to ψλ2 for any square λ2.

Theorem 2. The Local Riemann Hypothesis is true if F = R.

Proof. We reduce this to Theorem 1. Since we have the freedom to change ψ by a
square, we may assume that ψ(x) = e±iπx. We will assume that ψ(x) = eiπx; the other
case is obtained by replacing i by −i throughout the following discussion.

In this case, the self-dual measure on R coincides with Lebesgue measure, and

γ(1) =

∞∫

−∞

eiπx
2

dx = lim
t→0+

∞∫

−∞

e−π(t−i)x2

dx = lim
t→0+

(t− i)−1/2 =
1√
2
(1 − i).

Let g be the Lie algebra of SL(2,R). The exponential map g → SL(2,R) lifts to a

map ẽxp : g → G̃. We then have a representation dω of g on S(R) by

(
(dωX)(f)

)
(x) =

d

dt
(ẽxp(tX) f)(x)|t=0.

Let F : S(R) → S(R) denote the Fourier transform Ff = F̂ , and let F−1 be its inverse:

(F−1f)(x) =

∞∫

−∞

f(y) e−2πixy dy.

Define “momentum” and “position” operators P and Q on the Schwartz space by

(Pf)(x) =
1

2πi

df

dx
(x), (Qf)(x) = x f(x).

We have

F−1Q2 F = P 2.
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Indeed, (F−1Q2 F f)(x) equals

∞∫

−∞

y2 f̂(y) e−2πixy dy = − 1

4π2

d2

dx2

∞∫

−∞

f̂(y) e−2πixy dy = − 1

4π2

d2f

dx2
(x).

We now prove that

dω

(
0 1
0 0

)
= iπQ2, dω

(
0 0
−1 0

)
= iπP 2.

The first identity follows directly from the definitions:

(
dω

(
0 1
0 0

)
f

)
(x) =

d

dt

(
ω

[
1 t
0 1

]
f

)
(x)

∣∣∣∣
t=0

=
d

dt
eiπx

2tf(x)

∣∣∣∣
t=0

= iπx2 f(x).

Since (
0 −1
1 0

) (
0 1
0 0

) (
0 1
−1 0

)
=

(
0 0
−1 0

)
,

we have

dω

(
0 0
−1 0

)
=

(
ω

[
0 1
−1 0

])−1 (
dω

(
0 1
0 0

)) (
ω

[
0 1
−1 0

])
= iπ F−1Q2F,

and so the second identity follows from the first.

Now suppose that f is an eigenfunction of H̃. Since

H̃ = ẽxp

(
R

(
0 1
−1 0

))
,

f is also an eigenfunction of

dω

(
0 1
−1 0

)
= dω

(
0 1
0 0

)
+ dω

(
0 0
−1 0

)
= iπ(P 2 +Q2),

which is (up to constant) the oscillator Hamiltonian. Hence f is one of the functions fn.
There are two possibilities for ν: ν(x) = sgn(x)δ, where δ = 0 or 1. Depending on

whether f is even or odd, exactly one of the integrals
∫
f(x) ν(x) |x|s dx/x will be nonzero,

and this one will be just twice the Mellin transform of f . Consequently, Theorem 2 follows
from Theorem 1.
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We turn now to the case of a p-adic field F . In this case, following some preliminary
investigation by Bump and Hoffstein, Kurlberg [19] has proved:

Theorem 3. The Local Riemann Hypothesis is true if F is a nonarchimedean local field
of odd residue characteristic.

On the other hand, Kurlberg has also shown that the Local Riemann Hypothesis is
false if F = C.

3. Laguerre polynomials, the n-dimensional harmonic oscillator and a reci-

procity law. The Laguerre polynomials (cf. Rainville [25]) are defined by:

Lαn(x) =
n∑

k=0

(
n+ α

n− k

)
(−x)k
k!

=
n∑

k=0

(1 + α)n(−x)k
k! (n− k)! (1 + α)k

,

where (α)n = α(α+ 1) · · · (α+ n− 1). They satisfy the differential equation

x
d2

dx2
L(α)
n (x) + (1 + α− x)

d

dx
L(α)
n (x) + nL(α)

n (x) = 0,

and the orthogonality relation:

∫ ∞

0

xα e−x L(α)
n (x)L(α)

m (x) dx =

{
0 if n 6= m,
Γ(1+α+n)

n! otherwise.

Let L(α)
n (x) = xα/2 e−x/2 L

(α)
n (x). Then the Laguerre functions L(α)

n are orthogonal with
respect to Lebesgue measure on [0,∞). Their Mellin transforms

M(α)
n (s) =

∫ ∞

0

L(α)
n (x) xs−1 dx = 2s+

α

2 Γ
(
s+ α

2

)
P (α)
n (s),

where

P (α)
n (s) =

n∑

k=0

2k
(
n+ α

n− k

) (−s− α
2

k

)
.

Theorem 4. The zeros of P
(α)
n (s) lie on the line re(s) = 1

2 .

Proof. The first proof of Theorem 1 is easily adapted. Using the orthogonality of the

Laguerre functions, we see that the polynomials P
(α)
n

(
1
2 + it

)
are orthogonal with respect

to the measure 21+α |Γ
(

1
2

+ α
2

+ it
)
|2 dt, and their zeros are therefore real.
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The polynomials P
(α)
n (s) satisfy a functional equation:

P (α)
n (s) = (−1)n P (α)

n (1 − s).

We may prove this as follows. We start with the generating function for the Laguerre
polynomials (Rainville [25], p. 202):

∞∑

n=0

L(α)
n (x) tn = (1 − t)−1−α e−xt/(1−t).

Taking the Mellin transform in this identity yields

∞∑

n=0

P (α)
n (s) tn = (1 − t)s−1−α/2 (1 + t)−s−α/2,

whence the functional equation.
Now let us investigate the harmonic oscillator in n-dimensions. If x = (x1, · · · , xn) ∈

Rn, let r = |x| =
√∑

i x
2
i be the radial distance from the origin, and let ∆ be the n-

dimensional Laplacian
∑
i ∂

2/∂x2
i . Then consider the Schrödinger equation correspond-

ing to a quadratic potential V (r) = r2:

(4) (−∆ + r2)φ = ǫφ.

The eigenvalue ǫ is the energy level. The potential is rotationally symmetric and the
Hamiltonian −∆ + r2 commutes with the orthogonal group. We may thus restrict our-
selves to φ which lie in an irreducible subspace of O(n).

Theorem 5. Let φ be a solution to (4) lying in an irreducible subspace of O(n). Let
X be any radially symmetric function on Rn, so that X(tx) = X(x). Then the Mellin
transform

(5)

∫

Rn

φ(x)X(x) |x|2s−n

2
−1 dx

has its zeros on the line re(s) = 1/2.

Proof. We make use of spherical coordinates. Thus if x ∈ Rn is given, we take r =
|x| ∈ R+ and ξ = x/|x| ∈ Sn−1 as basic coordinates. The group O(n) acts on L2(Sn−1),
which decomposes as a direct sum of irreducible subspaces, each with multiplicity one.
Because of this, our assumption that φ lies in an irreducible subspace of O(n) implies
that φ may be written in the form φ0(r) Φ(ξ), where Φ lies in one of these irreducible
subspaces of L2(Sn−1). Since dx = rn−1 dr dξ, the integral equals

(6)

∫ ∞

0

φ0(r) r
2s+n

2
−1 dr

r
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times the inner product on Sn−1 of X and Φ. In spherical coordinates, the Laplacian in
n dimensions has the form:

∆ =
∂2

∂r2
+
n− 1

r

∂

∂r
+

1

r2
Λ,

where Λ is the Laplacian on Sn−1 (Helgason, Groups and Geometric Analysis p.16).
Moreover, the eigenvalue of Λ on an element of an irreducible subspace of Sn−1 is equal to
the eigenvalue of the Casimir operator on the corresponding irreducible representation,
which Helgason shows has the form −l(l + n − 2), where l ∈ Z. We thus have the
differential equation (with eigenvalue λ for Λ):

φ′′0 +
n− 1

r
φ′0 +

(−l(l + n− 2)

r2
− r2 + ǫ

)
φ0 = 0.

In order for φ0 = e−r
2/2 rl L(r2) to satisfy this differential equation, we need

r L′′ +
(
l +

n

2
− r

)
L′ +

(
ǫ

4
− l

2
− n

4

)
L = 0.

This differential equation has a regular singular point at the origin, and a solution that is

well-behaved there must be a constant multiple of L = L
(l+ n

2
−1)

k , where k is an integer,
and ǫ = 4k + 2l + n. The result now follows from Theorem 4.

We note that this setup can be adapted to the metaplectic group by means of the Weil
representation. The eigenfunctions at hand live in irreducible subspaces for the group
O(2) × O(n), which is a maximal compact subgroup of the dual pair SL(2,R) × O(n)
in Sp(2n,R), acting on Lr(Rn) via the standard polarization in the Weil representation.
Expressed this way, the integrals of Theorem 5 have p-adic analogs, and though we
haven’t had a chance to investigate whether these satisfy a Riemann hypothesis, we
hazard to conjecture that they do, at least in the case of anisotropic O(n).

The polynomials P
(α)
n satisfy a reciprocity law relating their values at negative integers.

We will show that

(7)

(
m+ α

m

)
P (α)
n

(
−m− α

2

)
=

(
n+ α

n

)
Pm

(
−n− α

2

)
.

Indeed, the left side equals

n∑

k=0

2k
(
m+ α

m

) (
n+ α

n− k

) (m
k

)
,
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and the reciprocity law follows from the identity
(
m+ α

m

) (
n+ α

n− k

) (m
k

)
=

(
n+ α

n

) (
m+ α

m− k

) (n
k

)
.

We note the special case

(8) P (0)
n (−m) = P (0)

m (−n).

This identity has an interesting combinatorial interpretation.

Theorem 6. P
(0)
n (−m) equals the number of lattice points (x1, · · · , xn) ∈ Zn such that∑ |xi| ≤ m.

Proof. We can count the number of lattice points in Zn satisfying
∑ |xi| ≤ m as

follows. The number of lattice points having exactly k nonzero entries is 2k
(
n
k

) (
m
k

)
if

0 ≤ k ≤ min(m,n), because there are
(
n
k

)
choices for which coordinates shall be nonzero;

and once this choice is fixed, there are 2k possible distibutions of signs, and
(
m
k

)
possible

distributions of absolute values. Hence the number of lattice points is

min(m,n)∑

k=0

2k
(n
k

)(m
k

)
= P (0)

n (−m).

This completes the proof.

We derive a generating function for P
(0)
n (−m). Let a(m,n) be the number of lattice

points satisfying the condition on the theorem. Then a(m,n)−a(m,n−1) is the number
of lattice points satisfying exactly

∑ |xi| ≤ m having a nonzero last component. If the
last component is ±m− k, with 0 ≤ k ≤ m− 1, then the number of possibilities for the
first n− 1 components is a(k, n− 1), and so we have

a(m,n) − a(m,n− 1) = 2

m−1∑

k=0

a(k, n− 1).

Hence (assuming m, n > 0) we have

a(m,n) − a(m,n− 1) − a(m− 1, n) + a(m− 1, n− 1) = 2 a(m− 1, n− 1),

which leads to the recursion

∞∑

n=0

∞∑

m=0

a(m,n) xm yn = (1 − x− y − xy)−1.

The reciprocity law (8) is reflected by the symmetry of the generating function.
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