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Abstract

This report considers problems from number theory through the lens of
machine learning. The work encompasses class groups of imaginary quadratic
fields and places particular focus on their orders and discriminants. The
class group of discriminant d < 0 is denoted by H(d) and its order — also
referred to as the class number — is denoted by /(d). Methods for predicting
divisibility properties of class numbers based on discriminant information
are investigated. Moreover, we implement methods for approximating the
number F(h) of negative fundamental prime discriminants with class groups
of order h. Class groups have been studied since the early 19th century
and extensive theory related to these objects has been developed over the
years. Yet, a large part of this theory consists of conjectures supported by
heuristics, and many related questions remain unanswered. The purpose of
this thesis is to explore whether methods from machine learning can shed new
light on this domain. We find that our implemented models reach relatively
low errors when predicting F(h) based on h. However, this only works
when the models have knowledge about certain divisibility properties of h.
Furthermore, we conclude that the methods reviewed in this thesis fails when
it comes to separating discriminants based on three and five divisibility of
their corresponding class numbers. Higher accuracy is reported in regards to
separating discriminants, within certain feature spaces, based on the number
of prime factors in their corresponding class numbers. However, these results
can largely be explained by already established theory.

Keywords

Class group, Class number, Deep learning, Fundamental discriminant,
Machine learning, Number theory, Quadratic number field
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Sammanfattning

Denna rapport behandlar problem fran talteori utifrdn ett maskininldrnings-
perspektiv. Arbetet omfattar klassgrupper av imaginira kvadratiska talkroppar
och fokuserar sérskilt pd deras ordningar och diskriminanter. Klassgruppen
med diskriminant d < 0 betecknas med H(d) och dess ordning —
dven kallad klasstalet — betecknas med h(d). Metoder for att forutsiga
delbarhetsegenskaper hos klasstalet baserat pa diskriminantinformation un-
dersoks. Dessutom implementerar vi metoder for att approximera antalet F (h)
negativa fundamentala primtalsdiskriminanter med klassgrupp av ordning h.
Klassgrupper har studerats sedan borjan av 1800-talet och omfattande teori
relaterad till dessa objekt har utvecklats genom dren. Andé bestér en stor del
av denna teori av formodanden stddda av heuristik, och ménga relaterade
frdgor dr obesvarade. Syftet med denna rapport ir att undersoka om metoder
frdn maskininldrning kan ge ny insikt inom detta omrdde. Vi finner att vira
implementerade modeller nar relativt 1aga fel nér de forutsager F(h) baserat
pa h. Dock fungerar detta endast nidr modellerna har kunskap om vissa
delbarhetsegenskaper hos h. Vidare drar vi slutsatsen att de metoder som
granskas i detta arbete misslyckas nér det giller att separera diskriminanter
baserat pa tre- och femdelbarhet hos deras motsvarande klasstal. Hogre
noggrannhet rapporteras nar det giller att separera diskriminanter, inom vissa
representationsrum, baserat pa antalet primtalsfaktorer i deras motsvarande
klasstal. Dock kan dessa resultat till stor del forklaras av redan etablerad teori.

Nyckelord

Klassgrupp, Klasstal, Djupinldrning, Fundamental diskriminant, Maskininlar-
ning, Talteori, Kvadratisk talkropp
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Chapter 1

Introduction

Over the past few decades, the field of artificial intelligence (AI) has
experienced unprecedented growth. This form of machine intelligence has
achieved impressive feats to say the least: from Deep Blue’s victory against
Garry Kasparov in 1997 to Google DeepMind’s recent AlphaGeometry [1] —
an Al system capable of solving IMO-level geometry problems.

Machine learning (ML) and deep learning (DL) are subsets of Al that
focuses on enabling machines to learn from data. Due to the advancement of
big data and hardware, methods from these areas have achieved outstanding
success in a variety of applications, including natural language processing,
speech recognition and image classification. [2]

In regards to pure mathematics, the composition of computers, big data and
Al enables exploration in novel ways. Leveraging Als abilities in discovering
patterns from data could expedite advances in experimental math. For
instance, these tools can aid in formulating and supporting conjectures that
can eventually be proven. [3]

The purpose of this paper is to explore whether machine learning
methods can perform well in certain tasks from computational number theory.
In particular, we consider problems regarding class groups of imaginary
quadratic fields.

1.1 Preliminaries
Defining the ideal class group of an imaginary quadratic field or, more
generally, a number field requires a few underlying definitions.

Definition 1.1.1. Let K be an extension field of Q. If K, considered as a
Q-vector space, has finite dimension, we say that K is a number field. The
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dimension of K, as a Q-vector space, is called the degree of K, which we
denote as deg(K).

In other words, a number field is a field that contains Q as a subfield and
is finite-dimensional considered as a vector space over Q. For example, the
Gaussian rationals, Q(i) = {a + bi : a,b € Q}, is a number field with degree
2. In fact, the Gaussian rationals is an example of an imaginary quadratic field.

Definition 1.1.2. Let /' be a number field of the form Q(v/d) = {a + bV/d :
a,b € Q} where d ¢ {0,1} is a square-free integer. Then K is a quadratic
field. If d > 0 we say that K is a real quadratic field and if d < 0 we say that
K is an imaginary quadratic field.

We need the definition of an algebraic integer.

Definition 1.1.3. Consider o € C. If there exists a monic polynomial (a
polynomial whose leading coefficient is 1) p(x) € Z[x] with p(«r) = 0, then
we say that «vis an algebraic integer. We denote the set of all algebraic integers
by Z.

Thus, 3i € Z since it is a root of p(z) = 2% + 9 € Z[z]. In fact, Z is
a subring of C. Thus it follows that the intersection between the algebraic
integers and any number field is a ring.

Definition 1.1.4. If K is a number field, then the ring Zx == K N 7 is called
the ring of integers of K.

At this point we need to recall the definition of a module over a ring.

Definition 1.1.5. A module over aring % is an abelian group (M, +) together
withamap - : Z x M — M such that Va,b € #Z and x,y € M,
()a-(r+y)=a-x+a-y,
(i) (a+b)-x=a-z+0b-x,
(7i1) (ab) -z =a- (b- x),

(iv) 1 -z ==x.

In fact, every abelian group corresponds to a module over Z (a Z-module)
byn-z—ax+x+---+ 2.

Definition 1.1.6. We say that an Z-module is finitely generated if there exists
finitely many elements x4, ..., z, € M such that for any y € M there exists
ay,...,a, € % such that

Yy=a -T1+---+a,-  Tn.
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Definition 1.1.7. Let M be an #-module. If N C M is a subgroup of M
such that Z - N C N, we say that N is a submodule of M.

Definition 1.1.8. Let M be a finitely generated module over an integral domain
#. The rank of M is the maximal number of .# -linearly independent elements
in M. In other words, the rank of M is the maximal number n of elements
X1,...,%, € M suchthatify,...,y, € & and y121 + ... + y,x, = 0 then
yi=0foralli =1,...,n.

We introduce the concept of orders in number fields.

Definition 1.1.9. Let K be a number field. An order R in K is a subring of
K which as a Z-module is finitely generated and of maximal rank deg(K).

For example, Z[i] = {a + bi : a,b € Z} is an order in the number field
K = Q(v/—1). Itis clear that Z[i] is a subring of K. Furthermore, Zl[i
considered as a Z-module is generated by 1 and ¢ and has rank 2 = deg(K).

The set Z[i] is called the Gaussian integers and is in fact the ring of integers
of Q(7). It is true in general that the ring of integers Zj of any number field
K is an order in K. Moreover, Z is the unique maximal order in K [4, p.
186].

Orders give us the definition of fractional ideals.

Definition 1.1.10. Let K be a number field and let R be an order in K. A
fractional ideal I of R is a non-zero R-submodule of K such that there exists
a non-zero integer d with dZ being an ideal of R.

We are now ready to define the ideal class group.

Definition 1.1.11. Let /K be a number field and Zy its ring of integers.
We say that two fractional ideals, 7 and 7, of Zx are equivalent if da €
K \ {0} such that «Z = J. This defines an equivalence relation ~ on
the set of all fractional ideals of Zx. The set of equivalence classes {[Z] :
7 is a fractional ideal of Zx } is called the ideal class group of K, and is
denoted by Cl(K).

The set C1(K) is indeed a group under the operation [Z] * [J] = [ZJ],
where (the fractional ideal of Z ) Z.7 is defined as

T = {szyzxz GI,yl-EJ,nEN}.
i=1

The group CI(K) is finite and commutative, and its order is referred to as the
class number of K, see [4, p. 208]. For clarity, we repeat this below.
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Theorem 1.1.1. Let K be a number field. The class group CI(K) is a finite
abelian group.

Definition 1.1.12. Let K be a number field. The order of Cl(K) is called the
class number of K.

Recall the fundamental theorem for finite abelian groups: every finite
abelian group is isomorphic to a direct product of cyclic groups of prime-
power order.

We turn our focus to an important invariant connected to number fields,
namely the discriminant. Moreover, we limit our scope to quadratic number
fields.

Definition 1.1.13. Consider d € Z such that K = Q(v/d) is a quadratic field.
The discriminant d(K) of K is defined to be

d(K) =

difd=1 mod4
4d otherwise .

In the continuation of this paper, we solely consider so called fundamental
discriminants.

Definition 1.1.14. If d € Z is the discriminant of a quadratic field, then we
say that d is a fundamental discriminant.

Thus, d € Z is a fundamental discriminant if and only if

(1) d=1 mod 4 and d # 1 is square-free, or

(17) d = 4m where m = 2,3 mod 4 is square-free.

In case (i), Q(v/d) is the corresponding quadratic field and in (ii), the
quadratic field is Q(v/d) = Q(y/m).

A different, yet (for imaginary quadratic fields) equivalent formulation
of the class group, is given in Appendix A. This approach involves binary
quadratic forms f(z,y) = az? + bry + cy® with discriminant A := b — 4ac;
the class group in this setting is referred to as the form class group. Importantly
and interestingly, if an integer d < 0 is square-free then the ideal class group of
K = Q(+/d) is isomorphic to the form class group of discriminant A = d(K).

In this paper, we are only concerned about class groups of imaginary
quadratic fields. If d < 0 is a fundamental discriminant, we shall denote,
by H(d), the ideal class group of Q(v/d). Moreover, we let h(d) = |H(d)|
represent the class number of Q(v/d).
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Table 1.1 shows examples of related discriminants, quadratic fields, class
numbers and class groups.

Table 1.1: Examples of fundamental discriminants d < 0, quadratic fields,
class numbers and class groups. These examples were computed through
PARI’s quadclassunit [5]. Moreover, Z,, = (Z,,+) = C,.

d Quadratic field | h(d) H(d)
-3 Qv-3) 1 Z,
—15 Q(v—15) 2 Z,
—24 Q(v/=6) 2 Zs
—39 Q(v/—39) 1 Z4

—555 | Q(v/—555) | 4 Ly % Zs
—1031 | Q(v—1031) | 35 Zas
—9543 | Q(v—2543) | 35 Zas
—8932 | Q(v/—2233) 16 | Zy X Zo X Zs
—12451 | Q(v/—12451) | 25 7 X Zs
—928771 | Q(v/—28771) | 25 Zos
—29443 | Q(v/—29443) | 25 Zos

1.2 Background

One of the most remarkable results regarding class numbers is Dirichlet’s class
number formula. Let d < 0 be a fundamental discriminant and set

2ifd < —4,
w=4ifd = —4,
6ifd = —3.

In other words, w is the number of roots of unity in Q(v/d). The following
theorem was proved by Dirichlet in 1839 [6].

Theorem 1.2.1.

wy/|d|

27

In theorem 1.2.1, L(1, x4) is a Dirichlet L-series, which may be expressed
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as

L) =3 ) = [T (1- 2w

n=1 p

where x4(-) is the Kronecker symbol and the product is taken over prime
numbers p. We remark that L(1, y4) is conditionally convergent [4, p. 237,
250]. For a € Z we have y,(1) := 1 and

—lifa <0,

2(2)={1lifa=+1 modS8, o(—1) =
Xa(2) if a mo Xa(—1) Lifa> 0.

0 if a is even, {
—lifa =43 mod 8,

The Kronecker symbol is a generalization of the Legendre symbol. Let m € Z
and write m = up{' - - - p;*, where u € {—1, 1} and p; is prime. Then, for an
integer a,
B a\E
xam>=xam11(;) ,

=1

where, for odd p;, () is the Legendre symbol and (3) = xa(2).
To define the Legendre symbol, we need the notion of quadratic residues.

Definition 1.2.1. Let p be an odd prime and let a € Z. If there is an integer
n € (0,p) such that

2:

n a mod p,

we say that a is a quadratic residue modulo p. Otherwise, we say that a is a
quadratic nonresidue modulo p.

The Legendre symbol (%) assumes three possible values.
1 if a is a quadratic residue modulo p and a # 0 mod p,
a
(—) = { —1if a is a quadratic nonresidue modulo p,

Oifa=0 mod p.

This means that (2) = 1 since 4> = 23 mod 7.
Theorem 1.2.1 tells us the class number corresponding to the fundamental
discriminant d < 0. A follow-up question is: how many fundamental
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discriminants d < 0 maps to a given h? Consider a positive integer i and
let

F(h) = |{fundamental discriminants d < 0 : h(d) = h}|.

Table 1.1 shows that F(25) > 3.

The quantity F(h) is closely related to the classical Gauss’ class number
problem for imaginary quadratic fields: given a positive integer /, determine
all imaginary quadratic fields Q(+/d) with class number h.

The Gauss’ class number problem was solved for all 2 < 100 by Watkins
in 2003 [7]. However, the problem for h = 1 was solved already in 1952 by
Heegner [8]. It is in fact known, in principle, how to solve the class number
problem for any A due to Goldfeld and Gross-Zagier [8]. Nevertheless, it
appears to be a very difficult problem from a computational point of view as
h grows [7].

The negative fundamental discriminants of class number 1 are —3, —4,
—7, -8, —11, —19, —43, —67 and —163, and thus we have F(1) = 9. A few
more examples, picked from Watkins tables, are F(25) = 95, F(48) = 1365,
F(65) = 164 and F(92) = 1248.

In this paper, we restrict ourselves to only consider odd class numbers
h, which is equivalent to only considering discriminants that are prime [9].
Figure 1.1 shows F(h) for all odd A in the range 1 — 100.

300
250
200
150
100

50

Figure 1.1: F(h) for all odd A in [1, 100].
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1.3 Research Questions

In this thesis we consider two main research questions. The first question
concerns predicting F(h) based on h, while the other question is about
predictions regarding h(d) given d.

Question 1: Can deep learning models compete with state-of-the-art theory
in predicting F(h) given h, and if so, under what circumstances?

Question 2: Given a fundamental prime discriminant d < 0, what can
machine learning models tell us about the class number h(d)?

A detailed description of all underlying questions and problems is given in
chapter 3.

1.4 Structure of the Thesis

Chapter 1 presents relevant background information about class groups and
their class numbers, as well as the research questions of the thesis. In chapter 2
we present some related work in class group theory and machine learning.
Chapter 3 presents the methods used to answer the research questions, while
chapter 4 contains the experimental results. The thesis is concluded in chapters
5 and 6 with discussions, conclusions and ideas for future work.
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Chapter 2
Related Work

This section provides a review of existing literature relevant to our research
questions.

2.1 Class Group Heuristics

A significant part of all research concerning class groups of quadratic fields
has resulted in conjectures and not in theorems. An important set of such
heuristically derived conjectures is the Cohen-Lenstra heuristics (see [4, p.
295-297] for a detailed introduction). For instance, if p is an odd prime, the
Cohen-Lenstra heuristics states that p divides a random class number h(d)
(d < 0) with probability 1 — (p).., where

0--10-2)

k=1

This is an interesting observation. At first one might think that 3 divides a
random h(d) with probability 1/3, but the Cohen-Lenstra heuristics suggests
that the actual probability is approximately 0.43987.

Interestingly, the Cohen-Lenstra heuristics tell us that if d < 0 is
a fundamental prime discriminant, then H(d) is cyclic with very high
probability (see [4, p. 261]). Thus, looking back at table 1.1, discriminants
d with h(d) = 25 should much more often have H(d) = Zy; rather than
H(d) =75 x Z5. *

Regarding the quantity F(h), K. Soundararajan conjectured in 2007 [10]
that 7 (h) < h/log(h) for odd h. This means that F(h) = O(h/log(h)) and

*Recall that C,, x C,, is cyclic if and only if n and m are coprime.
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h/log(h) = O(F(h)).

In their work [9] from 2014, Holmin, Jones, Kurlberg, McLeman
and Petersen refined Soundararajan’s conjecture regarding the asymptotic
behaviour of F(h). Let

1 with probability 1/2
Y(p) = . -
—1 with probability 1/2,

-1
and consider the random Euler product L(1,Y) = [], (1 — M) . The

p
authors conjectured that

¢ 1
W ~m2. = .¢h)-h-E 2.1
Fh) o m™- g5 - elh) (L(l,Y)Qlog(wh/L(l,Y))) @D
as h — oo through odd values.
In conjecture 2.1, the values € and ¢(h) are defined as

oo o 1
¢:=15 [T ]I (1 - E) ~ 11.317,

=3 i=2
£ prime

and

(=TI T1 (1_1%)_1.

pr[h =1

Thus, the quantity ¢(h) encapsulates divisibility properties of h. For instance,
consider two odd class numbers h; and hs of relatively large size, say around
105, where h; contains many small prime factors — suppose for example that
3% | h — and hs is itself a prime number. In this case it is easy to reach the
conclusion that h; is far more ’divisible’ than hy by merely comparing c(h;)
with ¢(hs). Since ¢(h) = [T, [Tiz, (0'/p" — 1) we have that c(hs) is close
to one wheras c(hy) > 1.77. A larger ¢(h)-value implies divisibility by more
small prime numbers.

The authors of [9] used 2.1 to construct a formula pred(h) for
approximating F(h) for odd h and they visualized the performance of
pred(h) by plotting a histogram of the scaled errors r(h) = (F(h) —
pred(h))/+/pred(h) (see figure 3.1 for & = 3). The interesting thing about
this error distribution is that there are two distinct peaks where the left one
consists mostly of inputs A that are divisible by three whereas the right peak
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corresponds to inputs not divisible by three (see [9] for these results). This
intriguing three divisibility bias is something we keep in mind when designing
experiments and analyzing results.

2.2 Machine Learning in Number Theory

This overview is divided into two parts: one that covers the important aspect
of feature engineering in machine learning and one that discusses the general
paradigm of computers and Al within math and number theory.

Feature engineering

In their paper [11] from 2018, Stekel, Shukrun and Azaria used machine
learning to predict Goldbach’s partition function. Goldbach’s partition
function is related to Goldbach’s conjecture, which is one of the most famous
unsolved problems in number theory. The conjecture was proposed in 1742
by Christian Goldbach and states that every even integer greater than 2 can be
written as the sum of two prime numbers. To this day, no one has been able to
prove or disprove this simple statement. Nevertheless, the authors of the 2018
paper tried to approximate Goldbach’s partition function

G(n) = Z Liptg=ny,
p,q primes
P=q
which essentially counts the number of prime pairs that sum to a given integer
n, through the use of deep learning models. They found that by converting the
input integers to their binary, ternary (base 3), quinary (base 5) and septenary
(base 7) forms — thus representing an integer as a high-dimensional feature
vector — the models were able to outperform all previous, analytically derived,
prediction formulas.

The Goldbach paper showed that deep learning models can achieve great
performance in approximating G(n). However, this hinges on the extraction of
relevant features from the natural number n. The same is true for all problems
in machine learning — without relevant features, the models do not perform.
This begs the question: which features are fruitful as input to a model? The
answer to this question is not always obvious and of course depends on the
nature of the problem.

The process of producing a feature space for some data variable is
referred to as feature engineering. For instance, consider a streaming service
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provider aiming to predict subscription cancellations. Initially, representing
customers solely by their customer-IDs yields a one-dimensional feature
space, likely insufficient for robust predictions. Instead, a more sophisticated
approach involves extracting relevant features from customer data, such as age,
gender, location, subscription duration and type, billing history, and platform
engagement metrics like ratings given. This enriches the dataset, creating a
more complex, high-dimensional customer feature space. Neural networks
excel in leveraging such intricate data representations, making them well-
suited for tasks requiring analysis of multifaceted relationships and patterns
within the data.

An article that analyzes the impact of feature engineering in deep learning,
especially when it comes to problems in number theory, is [12] written by
Wu, Yang, Ahsan and Wang. They consider the task of classifying integers
based on their residues when divided by small prime numbers. For instance,
when dividing integers by 2 the problem becomes a binary classification task:
input=n, label=n mod 2. They analyze the performance of different deep
learning models over varying feature spaces for the integers n. They conclude
that the provided feature space has great impact on the results. For example,
consider the task of predicting » mod 3. In this case we expect models with
enough degrees of freedom to reach 1.0 accuracy when given the ternary form
of n because we thereby essentially provide the models with the correct answer
already in the feature vector. On the other hand, providing the models with n
in its binary form yields an expected accuracy of ~ 0.33.

Another paper that demonstrates the importance of feature engineering in
machine learning is [13] by Heaton. They show how various machine learning
models respond differently to the same feature space. Moreover, they stress
that if a model can learn a feature on its own, there is no need to include
it in the feature vector. These studies highlight the fact that manual feature
engineering can be both time-consuming and non-intuitive.

Al in mathematics

In his work [14] from 2021, Yang-Hui He reviews and summarizes recent
experiments aimed at machine learning mathematical data. He brings up
scenarios where machine learning models evidently do well, for example
in classifying graphs as acyclic or not, or as planar or not based on the
corresponding adjacency matrix as input. Moreover, he highlights the
expected difficulty in problems belonging to number theory; we do not expect
machine learning algorithms to easily detect basic new patterns in the primes.
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An interesting aspect of this ML-paradigm of mathematics, as discussed
in [14], is the potential aid in producing conjectures. Suppose a neural
network surprisingly achieves 1.0 accuracy in a classification task related to
mathematical data. This can certainly be useful in itself since we are now in the
possession of a model that can tell us which class an object belongs to. More
interesingly though is if the model is interpretable or not. If it is possible
to extract some association rule constructed by the network, then we have
a potential conjecture. However, powerful ML models such as deep neural
networks are notorious for being difficult to interpret due to their black-box
nature. In his book [15] from 2021, Cristoph Molnar discusses the importance
of interpretable machine learning. Oftentimes we need to know why a model
produces a certain output.

The abovementioned way of doing mathematics — arriving at conjectures
and possible theorems from experiments and observations — is referred to,
in [14], as a top-down approach. The other way, namely starting from a
theoretical foundation and directly build on it, is referred to as a bottom-up
approach. Intuitively, the latter approach might feel as the natural way of doing
mathematics. Altough, countless examples show that oftentimes knowledge
gained from experiments and observations precedes formalization (see [14]
for interesting notes).

In regards to bottom-up math, computers have played an increasingly
integral role in research endeavors over the past few decades. Formal
proof management systems such as Coq [16] and Lean [17] have enabled
mathematicians to explore complex mathematics in a different way. The
use of computers to build and verify mathematics through formalized logical
principles will likely keep increasing. To name one of many already
accomplished feats, in 2005, Georges Gonthier and Benjamin Werner were
able to use Coq to formalize a proof of the famous 4-color theorem [18].

More recently, Al systems that intertwine formal logic environments
with generative transformers have demonstrated promising capabilities in
generating mathematical proofs [19].

In summary, computers and Al show potential in aiding mathematicians
in regards to both approaches mentioned avove.
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Chapter 3

Methodology

As mentioned in section 2.2, it can be tricky to answer in advance the question
whether a machine learning model ’should’ be able to solve a problem related
to mathematical data based on some given feature space. Sometimes — due
to human knowledge in the area — the answer is obvious, but other times the
question can be really daunting. In many cases, it simply boils down to a lot
of trial and error.

When designing the experiments purposed to give insight into questions 1
and 2, we make efforts to interpret the models, when they perform well. We
do this by thoughtful feature engineering, examining feature importance and
comparing the results with appropriate benchmarks.

For quantifying feature importance, we use the classical permutation
feature importance [15]. Suppose we have trained and evaluated a model .#
on a task and have gotten the score .. If .Z is a classifier (a model used to
separate data points into categorical classes), the score .’ would be accuracy;
if ./ is a regression model (a model used to approximate a continuous target
variable), . would be the 2. Recall that if y; denote labels with mean value
7 and f; denote the approximations of ;, then the R?-score is defined as

Zi(yi - fi)2
Zz(yl —7)? .

We want to measure the contribution of each feature to the model’s
performance. Let M € R"*"™ represent our evaluation data set; the m columns
represent the features and in total we have n data points. To compute the
importance score s; of feature j € {1,...,m}, generate the matrix /P
by permuting column j of M. This permutation should randomize the values
of the feature j while preserving the same distribution of values within the

R?2=1-—
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column, thus this process should break the link between feature ;7 and the
labels. This will give a new evaluation score .%;. We can repeat this process
k times so that we get permuted scores .%; 1, . . ., . ;. We can then define the
importance score of feature j as

k
1
Sj:y—E E tgﬂj,k.
i=1

The objective of this research is not to develop efficient ML algorithms
for practical computations of class numbers or F(h). Instead, the primary
aim is to explore the question: do discernible patterns exist within the
data? Consequently, we refrain from imposing explicit constraints on the
construction of feature spaces for the input data. Our intention is to explore
the response of various models to these distinct feature spaces.

3.1 Predicting F(h)

This section presents the methods used to answer question 1. In particular, our
main task is to implement supervised deep learning methods for approximating
F(h) given h.

3.1.1 Data Collection

We collect data points of the form (h, F(h)) for all odd natural numbers h <
10° from [20]. *

3.1.2 Problem Setup and Model Design

We consider the problem of predicting F(h), given h, as a regression task. Let
T" : Zy — [0,1]° represent a function that maps each h to a feature vector
with ¢ elements. We define the feature space corresponding to 7" as Dyu :=
im(7"). Let 4y : Dy» — R be our prediction model, with parameters 6 €
R™. If S is our input dataset, we define the corresponding loss function Lg 7 :
R™ — R as

1

Lgn(0) = &l > (Ao o T")(hi) = F(hi)]> (MSE-loss)

h;eS

*The computations of F(h) assume the generalized Riemann hypothesis (GRH).
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and the objective is to minimize Lg 7» with respect to 6.

The models .#, we consider for this task are deep neural networks,
and in particular we employ multilayer perceptrons (MLPs). An MLP is
a type of feedforward artificial neural network (ANN) that consists of at
least three layers of neurons. An important component of an MLP is its
activation function. The activation function is a function which is usually non-
linear. A common choice of activation function is ReLU, which is defined by
ReLU(z) = max(0, ). An arbitrary MLP of n layers and activation function
a can be expressed as

My(x) = (Lp,oao L, 10a---o0aoL)(x), (3.1)

where L;(w) = A;w + b;; the A; are linear transformations (matrices) and
the b; are bias vectors. The #-vector represents the learnable parameters of the
model, i.e. the elements of all A; and b;.

To investigate how the network architecture affects performance, we
consider two different models, call them .#j and .#,,. The explicit
architecure of .#,, and .#,, are given in table 3.1 and 3.2, respectively. For
both models, we use ReLU as activation function.

Table 3.1: Architecture of model .#p,. This model has 5 hidden layers and
60721 learnable parameters.

Layer | Output Size | # Parameters | Activation
Input 20

Linear 120 2520 ReLLU
Linear 120 14520 ReLLU
Linear 120 14520 ReLLU
Linear 120 14520 RelLU
Linear 120 14520 RelLU
Output 1 121

It is of interest to examine how the performances of the neural network
models change as we provide them with different representations of the inputs
h. For example, will a model perform significantly better when given the
values ¢(h) attached to each h? Does a model’s performance depend on
whether it knows if / is divisible by 3 or not? To try to answer these questions,
we consider three feature spaces: Dy, Dy and Dy, specified below.
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Table 3.2: Architecture of model .#j,. This model has 11 hidden layers and
56571 learnable parameters.

Layer | Output Size | # Parameters | Activation
Input 20

Linear 160 3360 RelLU
Linear 160 25760 RelLU
Linear 80 12880 RelLU
Linear 80 6480 ReLLU
Linear 40 3240 RelLU
Linear 40 1640 RelLU
Linear 40 1640 RelLU
Linear 20 820 RelLU
Linear 20 420 RelLU
Linear 10 210 ReLLU
Linear 10 110 ReLLU
Output 1 11

Some notations we use are

Q(h) = Z n (the number of prime factors of h),

p"lh
w(h) = Z 1 (the number of distinct prime factors of h),
plh
h= Z c.i(h)B" (base-B representation of h)
ieN

C%J(h) S {O, 1, .. .,% - 1}, B € ZZQ.

Below when we write ¢y ,5(h) with 0 < a < b we mean the features
C%ﬂ(h), C%,a_,_l(h), sy Cc&b(h).

The feature vectors corresponding to each feature space will have a
constant size of 20 elements, i.e. DTZ‘L’BC C [0,1]*°. The common features
for all spaces are h, log(7h), Q(h), w(h), c21-5(h), ¢50-2(h) and ¢z -1 (h). *

In addition to the common features, D+ contains ¢y —7(h), ¢53-4(h) and
¢7,2-3(h). Thus, Dy contains neither ¢(h) nor o mod 3. In D, we include
c(h) as well as ¢ 4(h), c53-4(h) and c79_3(h). Lastly, in DTCh we have c(h)
and ¢z 9_4(h).

*All features are normalized.
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3.1.3 Benchmarks

When predicting F (h), we benchmark our models against conjecture 2.1. To
do this, we evaluate the expected value E[1/(L(1,Y)?log(mh/L(1,Y)))]. To
begin with, we have

log ( - (71T,hY)) = log(rh) — log(L(1,Y)) = log(rh) <1 - %) .

Moreover, by using a Taylor expansion we may write

L (s )N
1 _ los(L(LY)) Z log(mh) '

log(7h) k=0

Thus we obtain

1 1 1 & (log(L(1,Y))\*
£ (L(l,Y)2log(7rh/L(1,Y))) B 1og(7rh)E (L(l,Y)2 Z ( log(7h) ) )
)

By denoting
log(L(1, Y))*

Ey =E

=B () e

cr = Ey/E,
we get

¢ h Ey Ey Es
F(h) ~7m* = -¢(h) ———— | B
(h) ~m 15 (h) log(mh) < 0t log(7h) +10g(7rh)2 * log(mh)3 * )

¢ h 1 Co
=Ey- -7 — -¢(h)- 1 o)
T «(h) log(mh) ( * log(mh) * log(mh)? * )

Let L, = 1 — Y(p)/p. We have Ey = E (Hp Lf,) — [I,E (12) = 15/x2,
and for our benchmarks, we explicitly compute c;, ¢, c3 and ¢4 (see Appendix
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B). To summarise, we have

c1 ~ —0.578072,
+0.604050,
c3 ~ —0.526259,
cy = +0.618741.

Q

Co

We define the predictive formula, pred,, corresponding to including &
coeflicients of the expansion as

k
h Cj
“log(mh) ]Zo log(mh)7"

pred, (h) == € - c(h)

These formulas provide natural benchmarks for our experiments. To visualize
the performance of the benchmark formulas, define for each k the scaled error

function 7y (h) = (F(h) — pred,(h))/+/pred,(h) , as well as the sample
Sy = {re(h) : h € [5-10°,10° is odd}.

In figure 3.1 we present histograms of Sy for & = 0,1,2,3,4. For each
histogram, we include the sample mean p and standard deviation o. Moreover,
for each k& we include, in the legend, the corresponding mean squared error
(MSE) 5455 > hefs105,100) [F () — pred, (h) 2, where the sum is taken over
odd integers h.

3.1.4 Experiments

We train both models, .#), and .#j,, on each feature space, DTX’ ng and
DTCh , separately. From this we get six different trained models. For each model
and each feature space, we train for 2500 epochs (an epoch corresponds to one
complete pass of the training dataset through the model) and we employ the
ADAM optimizer [21] with hyperparameters 5; = 0.9 and 5, = 0.999. The
learning rate 1r is initially set to 5e — 03 and decays exponentially with factor
~v = 0.90 after every epoch. When 1r has reached a value below 5e — 05, the
decay halts and training proceeds with constant learning rate. In other words,
with 1r(0) = 5e — 03 we have, for epochs ¢t = 1, ..., 2500,

Lr(t) 1r(t—1)-yiflr(t—1)>5-1077,
r =
1r(t — 1) otherwise.
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predo, MSE = 9.074€8, (4, 0) = (~31.503,6.871)
0.25  eeeee preds, MSE = 8.486¢6, (1, 0) = (2.621, 2.455) 43\
—-~ pred,, MSE = 6.405€6, (1, 0) = (0.144,2.701) il
—— preds, MSE = 6.248e6, (1, 0) = (0.291,2.685)  [{ |
0.20 preda, MSE = 6.259€6, (1, 0) = (0.279, 2.687) i
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Figure 3.1: For k = 0,1, 2, 3, 4, we plot a histogram of the error data S;. The
1 and o represent the corresponding sample mean and standard deviation.

For evaluation of the models, we consider the mean squared error (MSE),
as well as the mean, p, and standard deviation, o, of the scaled errors
Tmodel(R) == (F(h) —model(h))/+/model(h). This gives us three evaluation
metrics which indicate the performance of the models.

In regards to training and test split, we consider two distinct experiments
purposed to investigate interpolation vs extrapolation. In both experiments, the
size of the training and test datasets are 4e5 and 1eb respectively. For training,
we use a batch size of 1000, meaning that the model parameters are updated
after each processed batch of 1000 data points. Consequently, an epoch in this
scenario corresponds to 400 gradient steps.

Interpolation

Let B denote our total input dataset, i.e. B={h € [1,105 : he ZAh =1
mod 2}. We use K -fold cross-validation for evaluation, i.e. we shuffle 5 and
divide it into K subsets, By, (k =1, ..., K), such that

B| "
(|Bk|=7wg)A(k;#z:zskm&:@w UB.=8].
k=1

Let 7" be the current feature function. For k = 1,..., K, let .#p, denote
the version of the model .#j that was trained on B \ By and is going to be
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evaluated on Bj. For evaluation, we quantify the cross-validated performance
as

%;zw (0()).

When conducting the experiments we set K = 5. The choice of K is arbitrary,
however K = 5 implies that we iteratively train on 80% of the data and test
on the other 20% which is a reasonable distribution in this context.

Extrapolation

The aim of this experiment is to investigate how well the models can
extrapolate to inputs of greater size. Therefore, we train on all odd integers
h € [1,8 - 10°] and validate on all odd i € [8 - 10°,10°]. Here we do not use
cross-validation.

3.2 Predicting Class Numbers

This section presents the methods used to answer question 2. We limit
our focus to making predictions regarding divisibility properties of class
numbers h(d) based on discriminant information. For this aim, we implement
supervised machine learning methods for binary classification.

3.2.1 Data Collection

We use the Python package CyPari?2 to compute h(d) for all fundamental
prime discriminants d < 0 such that |d| € [10% 65 - 10°]. The package
CyPari2 provides a Python interface for the computer algebra software PARI
[5]. These computations give us a total of 1881326 data points of the form
(d, h(d)). This collection acts as a pool from which we select data points that
are appropriate in a particular context.

3.2.2 Problem Setup and Model Design

Let B (positive samples) and 1 (negative samples) represent two arbitrary
distinct classes for fundamental prime discriminants d < 0. We consider
the task of separating fundamental prime discriminants d < 0 based on
divisibility properties in their corresponding class numbers /(d). For instance,
we investigate the ability of deep learning models to classify a random
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discriminant d as having class number /(d) such that either 3 | h or 3 1 h(d).
In this example we would set

B := {fundamental prime discriminants d < 0 : 3 | h(d)},
M := {fundamental prime discriminants d < 0 : 3 { h(d)}.

We stick to the notation from 3.1 and let 79 : Z_ — [0, 1]* represent a generic
feature function that maps each d to a feature vector with ¢ elements. With
parameters 0 € R", let .#y : Dy« — (0, 1) denote a model that outputs the
predicted probability that a given discrimant d belongs to class *J3. To each d,
we attach a label y; = T 4eq (ground truth probability) and the loss function
we want to minimize over our input dataset .S is a binary cross-entropy loss
L S, 7d - R - R

Lars(d) =~ 3 lnalog((0 0 T*)(d) + (1= ) log(1 = (o T)(d )]
i€

For these experiments, we consider one neural network architecure, which
we denote as .#, from here on out. In addition to this, we also review the
performance of linear classifiers (see section 3.2.3). The model .# is an
MLP with input size ¢ = 54 and four hidden layers of size 100. The output
layer consists of one neuron. Hence, the model consists of 35901 learnable
parameters. The activation function is ReLU for the hidden layers and sigmoid
for the output layer. Recall the sigmoid function o : R — (0, 1), defined by

el?

Tl ger

()

Let d; be a discriminant we want to classify as beloning to either 3 or 91 and
recall that its label is 1;4,cq. Having o as activation for the output neuron
means that if

2(d;) = (M) o TY(d) €R

denotes the pre-activation value of the output neuron of the network (compare
A" with 3.1), we pass this value through the sigmoid function so that the
output of the model is (.#y o T?)(d;) = o(z(d;)) € (0,1). Thus the sigmoid
activation is particularly useful in the binary classification-scenario since it
allows us to interpret the output of (.#y o T?)(d;) as the probability that d;
belongs to 3. When computing the accuracy of the model, we convert these
probabilities into binary predictions by pred(d;) := 1{(z,074)(4,)>0.5}- This is
discussed in more detail below.
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To see how the models (both the neural network and the linear models)
perform for different discriminant representations, we try four different feature
spaces, denoted D4, D74, D7 and Da.

We let D be the most basic feature space — which will only be used for
the linear model as baseline — consisting only of normalized discriminants
|d|. Moreover, we let D consist of ¢z 2_25(|d|), c3,0-16(|d]), ¢50-11(|d]) and
cz,0(|d]). For the space D4, we take inspiration from the class number formula
1.2.1 and let the ith feature be x4(p;) where p; is the ith prime fori = 1,. .., 54.
We make an important remark here that the symbol x4(-) has the following

property:
Xa(nm) = xa(n)xa(m).

Thus, if for instance the feature y4(35) is useful to the model, it should be able
to easily construct it on its own by x4(35) = xa(5) - xa(7).

For the space Dy, let 7(+) denote the prime counting function. Moreover,
we introduce the following notation.

|d|

7Td< | d| ) = E :H-{—z is a fundamental prime discriminant} -
=1

The space Dy consists of caa-5(|d|), cs0-4(|d]), cs50-a(|d]), cr0-a(|d]),

)
croo-a(|d]), cro0-4(10%d|2), cap-1(x(|d]), eso 1 (m(ld])), eso-1(m(|d])),
cro-1(m(|d])), cr00-1(7(|d])), c2,0-1(ma(|d])), cs0-1(ma(|d])), cs5.0-1(ma([d])),
cro-1(ma(|d])) and c100-1(ma(|d])), as well as the five features chen(|d|),
balanced(|d|), safe(|d|), sophie(|d|), super(|d|) which indicate whether or not
|d| is a Chen prime or a balanced prime etc. The inclusion of these last five
features in the feature space is motivated solely by an exploratory approach,
driven by a curiosity to investigate whether these attributes might have any
correlation with the labels.

3.2.3 Benchmarks

To the best of the author’s knowledge, no similar experiments have been
conducted. Therefore, we need to construct baseline performance benchmarks
to establish a foundation for comparison. We do this by employing Fisher’s
linear discriminant analysis (LDA) (we follow the exposition in [22, p. 86]).
Fisher’s LDA is a classical machine learning method that can be viewed as
a linear classification model. Hence, this allows us to benchmark the neural
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networks against linear classifiers.

Let N = {d;} be a collection of discriminant feature vectors, where d; €
Da for some feature space Dy«. This A is our training set. Furthermore,
let 533 and 1 represent two distinct classes such that every d; belongs to either
class I3 or class 1. The goal is to reduce the data into one dimension in a way
such that the two classes B3 and 91 can be distinguished from each other.

Let

1 A 1 .
my = —— d; and mg = — d;
I % || dezm

denote the mean vectors corresponding to population B3 and 91 respectively.
Moreover, let X and X, be the corresponding covariance matrices

(Xp)i; = cov(feat.;, feat.;) and (Xy);; = cov(feat.;, feat.;).

Consider the separation ratio

(7 (my — m))”

.’L’T(Zm + Zm).’[ ‘

R(z) =

The idea is to find a vector v that maximizes the ratio R, ie. v €
arg max R(x). Given some threshold constant ¢, this vector v will give us
a classification criteria: if v7d; > ¢, we guess that d; belongs to class 3 and
otherwise class 1. In fact we may choose

v=(Sg + Sn) " (mgp — mn)
and set ¢ = 107 (my + my). To avoid errors when Xg; + Sy is singular, we
add a regularization term g + X — X + Xy + A for some small \.*

3.2.4 Experiments

We consider the following classification tasks: 3 | h(d) vs3 1 h(d), 5 |
h(d) vs 5 t h(d), Q(h(d)) = 1vs Q(h(d)) > 2, Q(h(d)) = 1vs Q(h(d)) >
3and Q(h(d)) = 1vsQ(h(d)) > 4. Each task name follows the standard
positive vs negative.

For each task we train both models on D4, D74 and Dre. The LDA is
trained on DT;{ as well. For the MLP .#j, we train for 1500 epochs with the
ADAM optimizer with hyperparameters 5; = 0.9 and S> = 0.999. We use

*We use A = le—4.
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a constant learning rate 1r = le—6. In regards to training and test split, we
apply 5-fold cross-validation on a total dataset of 5e4 data points such that
each fold has equally many positive labels as negative labels. This establishes
an elemental baseline classification accuracy at 0.5.

As mentioned, the MLP outputs the probability that the given input has
positive label. Naturally, before evaluating the classification accuracy of .#,
we need to convert these probabilities into binary classifications. We do this
by employing a threshold at 0.5:

Lif (Myo T4 (d;) > 0.5

0 otherwise.

pred(d;) = {

Let§;, =B, UMN,; ( € {1,2,3,4,5}) denote a test fold in the context of
some classification task. For any model .# (linear or not) with corresponding
predictions pred(d;) for all d; € F;, we define the accuracy (ACC), true
positive rate (TPR) and true negative rate (TNR) as

Edie‘ﬁj ﬂ{pred(d¢)=ydi} + Zdiemj l{pred(di):ydi}

ACC = )
1351
) . 1 red(d;)=vyq,
TPR > diep; Lpred(di)=ya,} ond
Rt
TNR — > _dsen; Lipred(d)=ya,}

RIA
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Chapter 4

Results

This chapter summarizes our main findings. Regarding the reviewed machine
learning models, we make the important remark that all reported evaluation
metrics as well as all data from the related figures concerns the corresponding
test datasets — we do not show any results related to the training phases. In
other words, we only report results on unseen data.

For brevity, we make use of the following notation: if a model (structure)
A was trained on a feature space D in the context of some prediction task,
we merge this into a unified evaluable model denoted as [.#, D|.

4.1 Predicting F(h)

This section presents the results obtained from conducting the experiments
described in section 3.1.

In tables 4.1 and 4.2 we present evaluation metrics, for all models
discussed in section 3.1, corresponding to the interpolation and extrapolation
experiment, respectively. Figures 4.1, 4.2, 4.9 and 4.10 show the test loss for
all models as a function of the number of training epochs. Figures 4.3, 4.5,
4.7,4.11,4.13, and 4.15 display histograms of the scaled test errors r,qe1(h),
which can be compared to the histograms of figure 3.1. Lastly, figures 4.4, 4.6,
4.8,4.12,4.14, and 4.16 show feature importance scores in descending order.

4.2 Predicting Class Numbers

This section presents results obtained from conducting the experiments
described in section 3.2.
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Table 4.1: (Interpolation experiment.) This table presents evaluation metrics
for different models on the regression task of predicting F(h). The MSE is
computed over the test dataset, and the statistics, ; and o, are the sample mean
and standard deviation of the scaled test errors 7,401 (7). The reported results
represent the mean + standard deviation over five folds of cross-validation,

performed on a total set of 5e5 data points.

Table 4.2: (Extrapolation experiment.) This table presents evaluation metrics
for different models on the regression task of predicting F(h). The MSE is
computed over the test dataset, and the statistics, iz and o, represent the sample

MSE/1e6 I o

predg 535.3 £ 1.3 —25.364 £0.012  9.375 £ 0.009

predy 5.322 £ 0.021 2.209 + 0.006 2.369 + 0.005

preda 4.118 £0.013 0.140 £ 0.005 2.524 + 0.006

preds 4.019 £0.014 0.268 £ 0.005 2.511 + 0.006

predy 4.027 £0.014 0.257 £ 0.005 2.512 £ 0.006
[//[917,D7’£] 231.7+6.6 —0.13 +0.38 18.60 &+ 0.54
(Ao, , DTg] 0.832 £ 0.063 0.012 £ 0.031 1.56 £ 0.14
(A, , DTC@] 0.76 £ 0.15 —0.005 + 0.034 1.44+0.20
[Ay,, DTX] 224.7+ 3.3 0.06 +0.42 17.914+0.16
[Ao,, DTJ}BL] 0.739 £ 0.038 0.024 £ 0.039 1.316 4+ 0.028
[J/ZQQ,DTéL] 0.84 £0.15 —0.022 £ 0.055 1.46 £0.14

mean and standard deviation of the scaled test errors ry,0de1(h).

MSE/1e6 o o
predo 1217.5 —34.1 6.83
predq 10.761 2.79 2.50
preda 7.9220 0.145 2.77
preds 7.7223 0.300 2.75
predy 7.7364 0.287 2.75
[, ,Dynl 832.51 —2.26  29.0
(A, , Dynl 75.452 —6.10 7.92
[, ,Drnl 112.53 —7.40  9.29
[y, Drnl 1967.5 —0.576  45.7
(A, Dynl 204.24 —10.2 12.9
[y, Drnl 54.568 —4.18 6.85
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Figure 4.1: (Interpolation experiment.) Mean test loss for [.#p,, Dy C}. The
error bars indicate one standard deviation over five folds of cross-validation.

MSE-loss
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Figure 4.2: (Interpolation experiment.) Mean test loss for [.#p,, Dy C}. The
error bars indicate one standard deviation over five folds of cross-validation.

Tables 4.3 — 4.7 contain evaluation metrics, for all models discussed in
section 3.2, corresponding to the classification tasks that were presented in
3.2.4. Figures 4.17, 4.20, 4.23, 4.26 and 4.29 show the test loss, for all deep
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Figure 4.3: (Interpolation experiment.) Histograms of scaled test errors
T'model(h) for the models [.#y, k), D] and [ Ay, k), Drs] for all folds k =

1,...,5.
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Figure 4.4: (Interpolation experiment.) Mean feature importance scores in

descending order for the models [.#,, D+] and [.#,, D7+|. The error bars
A A

indicate one standard deviation over five folds of cross-validation.

learning models as a function of the number of training epochs, corresponding
to each task. Similarly, figures 4.18, 4.21, 4.24, 4.27 and 4.30 show the test
accuracy for all DL. models and all tasks, as a function of the number of training
epochs. For each task, we select the two DL models with highest performance
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(a) Error histograms for [.#p, 1), DTg]‘
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Figure 4.5: (Interpolation experiment.) Histograms of scaled test errors
T'model(h) for the models [.#y, ), D] and [y, k), Drz] for all folds k =

1,...
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Figure 4.6: (Interpolation experiment.) Mean feature importance scores in
descending order for the models [.#},, DTE*;] and [.#j,, DTg]. The error bars
indicate one standard deviation over five folds of cross-validation.

and, for these models, display the top 20 most important features in descending
order — see figures 4.19, 4.22,4.25, 428 and 4.3 1.
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Table 4.3: Evaluation metrics for different models on the classification task 3 |
h(d) vs 3 1 h(d). The results represent the mean =+ standard deviation over five
folds of cross-validation, performed on a total set of 5e4 data points.

[LDA.D;,] [LDA.Dys] [LDADys] [LDADy|

[#y.Dra] [ My.Drg]l [ My, Dryl

ACC .501+.004 .502£.004 .505=£.007 .503+.003
TPR .508 £.005 .4994.006 .502+.010 .498 £ .001
TNR 493 +£.008 .505£.011 .507 £.005 .507 £ .008

506 +£.002 506 £ .002 .508 £ .003
590 £.099 565 £ .111  .511+£.035
423 +£.097 446 £ 111 .506 £ .035

Table 4.4: Evaluation metrics for different models on the classification task
5| h(d) vs 5 1 h(d). The results represent the mean + standard deviation over
five folds of cross-validation, performed on a total set of 5e4 data points.

[LDA,Dyy] [LDA,Dyy] [LDA,Dys] [LDA,Dyy]

(#o.Drg] My, D7g] [ My Dry]

ACC .501£.004 .5034.002 .502+.004 .501+£.006
TPR .508 £.003 .504 +.005 .502 £ .004 .500 £ .011
TNR 493 +.005 .501£.003 .502=£.010 .502=+.009

512 4.001  .509 £.002 .505 £ .002
615+ .136  .567 £ .067 .625 £ .163
408 £.138 451 £.068 .385 +£.165

Table 4.5: Evaluation metrics for
classification task Q(h(d)) = 1vsQ(h(d))

different models on the
> 2. The results represent

the mean =4 standard deviation over five folds of cross-validation, performed

on a total set of 5e4 data points.

[LDA.D;y] [LDADy;] [LDADy| [LDADy]

(#y,Drg] [ My,Dya] [ My, Dyl

ACC 516 +£.002 .528 £.005 .522+£.004 .523+.003
TPR .524+.005 .526 +.007 .525=£.006 .522+.005
TNR .5094.005 .530£.006 .520£.003 .524 £ .005

528 +£.002 519 £.005 .526 £ .003
495 +£.030 477 £.047 506 £ .008
561 £.025 .562 £ .046 .546 £ .006

Table 4.6: Evaluation metrics for
classification task Q(h(d)) = 1vsQ(h(d))

different models on the
> 3. The results represent

the mean + standard deviation over five folds of cross-validation, performed

on a total set of He4 data points.

[LDA,Dyy] [LDADyy] [LDA,Dys] [LDA,Dy]

[#yDrg] [ #My.Drg] [ My, Dyl

ACC 523+ .006 .5364.003 .534+£.003 .534+.004
TPR 528 £.005 .529 4 .003 .534£.006 .532=+.009
TNR 517+ .011 .544 £.006 .534 £.007 .536 +£.003

535 +£.003  .532£.005 .534 £.004
5124+ .010 .516 £.010 .521 £.008
558 £.011  .548 £.006 .547 £ .005
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Figure 4.7: (Interpolation experiment.) Histograms of scaled test errors
Tmodel(h) for the models [.#y, ), Drx] and [y, k), Drz] for all folds k =
1,...,5.
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Figure 4.8: (Interpolation experiment.) Mean feature importance scores in
descending order for the models [.#p,, Dr+] and [.#p,, Dyx]. The error bars
indicate one standard deviation over five folds of cross-validation.
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Figure 4.9: (Extrapolation experiment.) Test loss for [.#,, Dy = ]
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Figure 4.10: (Extrapolation experiment.) Test loss for [.#,, Dy .
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Figure 4.11: (Extrapolation experiment.) Histograms of scaled test errors
Tmodel (1) for the models [.#,, DT}] and .4y, DTX].
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Figure 4.12: (Extrapolation experiment.) Feature importance scores in
descending order for the models [.#p,, D7+] and [.#y,, Dy ].



36 | Results

0.12
0.10
0.08
0.06
0.04

0.02

() Error histograms for [/, , DTJQ]'

-30 -20 -10 0 10
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Figure 4.13: (Extrapolation experiment.) Histograms of scaled test errors
T'model(h) for the models [.#p,, Dr+] and [#y,, Dr2].
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Figure 4.15: (Extrapolation experiment.) Histograms of scaled test errors
Tmodel(h) for the models [.7, DTCh] and [y, , DTg].
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Figure 4.16: (Extrapolation experiment.) Feature importance scores in
descending order for the models [.#5,, D7x] and [#y,, Dry].
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Figure 4.17: Mean test loss for the models [.#,Dya ] on the

classification task 3 | h(d) vs 3 1 h(d). The error bars indicate one standard
deviation over five folds of cross-validation.
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Figure 4.18: Mean test accuracy for the models [.#p,Dya | on the

classification task 3 | h(d) vs 3 1 h(d). The error bars indicate one standard
deviation over five folds of cross-validation.
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Figure 4.19: Top 20 mean feature importance scores in descending
order for the two best DL models — according to table 4.3 — on the
classification task 3 | h(d) vs 3 1 h(d). The error bars indicate one standard
deviation over five folds of cross-validation.
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Figure 4.20: Mean test loss for the models [.#,Dya ] on the

classification task 5 | h(d) vs 5 1 h(d). The error bars indicate one standard
deviation over five folds of cross-validation.
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Figure 4.21: Mean test accuracy for the models [///g,DTgCD] on the

classification task 5 | h(d) vs 5 1 h(d). The error bars indicate one standard
deviation over five folds of cross-validation.
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Figure 4.22: Top 20 mean feature importance scores in descending
order for the two best DL models — according to table 4.4 — on the
classification task 5 | h(d) vs 5 t h(d). The error bars indicate one standard
deviation over five folds of cross-validation.
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Figure 4.23: Mean test loss for the models [.#,Dya ] on the

classification task Q(h(d)) = 1 vs Q(h(d)) > 2. The error bars indicate one
standard deviation over five folds of cross-validation.
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Figure 4.24: Mean test accuracy for the models [.#p, Dra | on the

classification task Q(h(d)) = 1 vs Q(h(d)) > 2. The error bars indicate one
standard deviation over five folds of cross-validation.
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Figure 4.25: Top 20 mean feature importance scores in descending
order for the two best DL models — according to table 4.5 — on the
classification task Q(h(d)) = 1 vs Q(h(d)) > 2. The error bars indicate one
standard deviation over five folds of cross-validation.
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Figure 4.26: Mean test loss for the models [.#,Dra ] on the

classification task Q(h(d)) = 1 vs Q(h(d)) > 3. The error bars indicate one
standard deviation over five folds of cross-validation.
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Figure 4.27: Mean test accuracy for the models [.///g,DTgCD] on the

classification task Q(h(d)) = 1 vs Q(h(d)) > 3. The error bars indicate one
standard deviation over five folds of cross-validation.
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Figure 4.28: Top 20 mean feature importance scores in descending
order for the two best DL models — according to table 4.6 — on the
classification task 2(h(d)) = 1 vs Q(h(d)) > 3. The error bars indicate one
standard deviation over five folds of cross-validation.
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Table 4.7: Evaluation metrics for different models on the
classification task Q(h(d)) = 1vsQ(h(d)) > 4. The results represent
the mean =+ standard deviation over five folds of cross-validation, performed
on a total set of 5e4 data points.

[LDADyy] [LDADy| [LDADy| [LDADy| [#3Drsl [#sDral [ Mp.Dri]

ACC .529+.004 .551+.001 .548£.005 .544+.004 .5514.001 .546 £ .005 .545+.002
TPR .533+£.005 .5404.007 .547 £ .010 .544 £ .008 .536+.007 .5324.009 .522 £ .008
TNR .525+.008 .563 £.009 .549 £.003 .543£.006 .566 & .007 .559 £.005 .568 £ .007
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Figure 4.29: Mean test loss for the models [,//ZQ,DTECD] on the

classification task 2(h(d)) = 1 vs Q(h(d)) > 4. The error bars indicate one
standard deviation over five folds of cross-validation.
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Figure 4.30: Mean test accuracy for the models [.#p,Dya | on the

classification task Q(h(d)) = 1 vs Q(h(d)) > 4. The error bars indicate one
standard deviation over five folds of cross-validation.
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Figure 4.31: Top 20 mean feature importance scores in descending
order for the two best DL models — according to table 4.7 — on the
classification task Q(h(d)) = 1 vs Q(h(d)) > 4. The error bars indicate one
standard deviation over five folds of cross-validation.



46 | Results



Discussion |47

Chapter 5

Discussion

We discuss the results from chapter 4 and we divide the discussion into two
parts. The first part focuses on the results from section 4.1 while the other part
concerns the results from section 4.2.

5.1 Predicting 7 (h)

When it comes to interpolating F(h), the results from section 4.1 show that
the deep learning models that have explicit knowledge of ¢(h) outperform
the benchmark models. However, the performance of the models does not
appear to improve significantly when provided with 2 mod 3 in addition
to ¢(h). This suggests that c¢(h) contains enough divisibilty-information of
h for the models to extract three-divisibilty on their own. Moreover, it is
interesting to analyze the feature importance scores. We see that i (and
log(mh) for interpolation) and, when provided, ¢(h) are dominant features in
regards to importance scores. Generally speaking, we also see that the models
make use of knowing 3-, 5- and 7-divisibilty of & and these features seem to
have decreasing rank in terms of importance scores. Thus, having explicit
knowledge of which small prime numbers divide h appears to be important
for accurate predictions. However, since the results for the models that do not
know c¢(h) are poor, it is evidently not enough to only have 4~ mod 5 and h
mod 7 etc. as inputs. We also note that 2(h) and w(h) consistently appear as
relatively important features.

Of course, we expect the performance of the models in the extrapolation
experiment to be worse compared to interpolation. This is because the models
in the former case need to predict outputs based on values of h that are beyond
the observed training data. Neural networks and MLPs in particular tend



48 | Discussion

to struggle when it comes to this kind of extrapolation and generalizing to
examples far from the training data [23]. Indeed, figures 4.12, 4.14 and 4.16
show that the size of the input, h, is a significant feature.

In regards to the extrapolation experiment, it is interesting to compare the
shapes of the 0401 (h)-distributions displayed in figures 4.11, 4.13 and 4.15.
Recall that the feature space DTX does not contain ¢(h), yet the histograms in
4.11a and 4.11b resemble the distributions in figure 3.1 in that there are two
distinct peaks. The histograms in 4.13a and 4.13b have heavy tails towards
the left, which indicate that most of the prediction error is due to overshooting
(predictions larger than the actual) rather than undershooting (predictions
smaller than the actual). This behaviour seems to subside when & mod 3
is included in the feature vector together with ¢(h) — see figures 4.15a and
4.15b, and note that their distributions do not have as distinct tails as in 4.13a
and 4.13b. Since the test loss for [,//[91,2)75] has not converged after 2500
epochs and is still decreasing (see figure 4.9), we let it run for another 2500
epochs; the results are presented in figures C.3 and C.4. For this extended
experiment, we recorded the metrics MSE ~ 44.785 - 10°, u ~ —3.252 and
o = 6.746, which is better than all DL performances in table 4.2, but still does
not beat the analytical benchmarks.

As a final note we remark that the loss functions for the model (structure)
My, tend to converge smoother and faster for all feature spaces compared to
My, — compare figure 4.2 and 4.10 with 4.1 and 4.9.

5.2 Predicting Class Numbers

Evidently, our models struggle with separating discriminants based on explicit
3- or 5-divisibility of the class number. Yet, when relaxing the divisibility
requirements and instead considering the number of prime factors of i(d), the
models seem to perform better. In fact, our results indicate that the separation
of discriminants d based on Q(h(d)) = 1 vs Q(h(d)) > n gets successively
easier when n grows. What is interesting about this is that when we look
at figures 4.25, 4.28 and 4.31 we see that essentially only one feature is
responsible for these results — namely ¢, »(|d|). Below we discuss the reason
for the ¢y »(|d|)-imbalance in this context.

Given any negative fundamental prime discriminant d = —(... +
ca4(]d]))2* + ca3(|d])2® + c22(]d])2% + 2 + 1), the coefficients ¢y ;(|d|) are
either zero or one. If ¢o5(|d|) = 0 wehave d =5 mod 8 and if ¢y 5(|d|) =1
we have d = 1 mod 8. Intuitively for large discriminants (say |d| > 107),
we should have P(co;(|d|]) = 1) ~ 1/2 fori = 2,3,4,5,... up to some
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threshold. Indeed, this is supported by table 5.1. However, when we condition
the probabilities on €2(h(d)), deviant patterns emerge for co5(|d|) (see table
5.2). Though, these results can be explained by the class number formula
1.2.1. Recall that

h(d) = @L(l,xd) = @ H (1 B %Xd(p))_

and xq(p) € {—1,1}Vp # |d|. From this it is clear that the value of x,(p) for
p = 2 has the greatest impact on the size of h(d). Moreover we have

(d) _Jlifd=1 modS§,
2) | -lifd=5 mod S8,
which suggests that h(d) is typically larger when d = 1 mod 8 compared to

d =5 mod 8. This, in turn, would explain why for instance the ratios (see
table 5.2)

#{d: |d| € {10™,10™ +5-10°}, Q(h(d)) =7,d=1 mod 8}
H{d < Jd] € {10m,10m + 5 - 105}, Q(h(d)) = 7}

>1/2

for relatively small m. However, this effect naturally wears off when |d| — oc.
When we consider prime class numbers, this relation is reversed; larger class
numbers are primes with smaller probability.

For the sake of a more explicit, yet informal, argument in the case h(d) is
prime, let us fix our focus on some given range ® C R for the values of |d],
and suppose we have

P(h(dy) > h(d1) | ds = 1 mod 8,d; = 5 mod 8, |d1], |ds] € D) = 1. (5.1)

This implies the existence of a constant « such that |d| € © A h(|d|) < k =
d =5 mod8and |d € ©®Ah(|d]) >k = d=1 mod 8. From Bayes’
theorem it follows that

P(d=1 mod 8| h(d) prime, |d| € D) =
P(h(d) prime |d=1 mod 8,|d| € D)P(d=1 mod 8]|d| € D)
P(h(d) prime | |d| € D)
1 P(h(d) prime |d =1 mod 8,|d| € D)
2 P(h(d) prime | |d| € D) '

~
~
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We make use of the following approximations

P 1
log(x)’ "~ log(z)’
rlog(y) — ylog(x)
(z —y)log(x) log(y)’

P(q < x prime) ~

P(y < ¢ < x prime) ~

as well as the bounds

(1 +o(1))(r/12¢7)\/]d] / log(log(|d])) < h(d) < /|d|log(|d])

(see [7, p. 908]). * Call the LHS h(d) i, and the RHS A(d) .. From this we
get the following estimates:

P(h(d) prime | |d| € D) ~ P[h(—inf ®)min < ¢ < h(—sup D )max prime],
P(h(d) prime |d =1 mod 8,|d| € D) ~ P[k < ¢ < h(—sup D )max prime].

If we now suppose that £ = (h(—sup D) max — h(—inf D)npi,)/2 and we set
for instance ® = [10'2,10'2 + 5 - 10%], we get

P(h(d) prime | |d| € ®) ~ 0.058305,
P(h(d) prime |d =1 mod 8,|d| € ©) ~ 0.055903,

which yields
P(d=1 mod 8| h(d) prime, |d| € D) ~ 0.47940.

This agrees quite well with table 5.2. When we compute the actual probability
5.1, corresponding to this example, we get ~ 0.9535 instead of 1.0. If we
perform the estimation on © = [10'°,10'® + 5 - 10%] instead, we get

P(d=1 mod 8| h(d) prime, |d| € ®) ~ 0.48306

and corresponding 5.1-probability ~ 0.9535.

We remark that this explanatory model does not rest on rigorous
mathematical foundations, but rather aims to give the reader a rough idea of
what could be the cause of some of the results in table 5.2.

Let us use the above explanation to argue why we can expect the best
models from table 4.5 to reach an accuracy of ~ (.53 based only on the values
of ¢y5(|d|). With © = [10°, 65 - 10°] (which corresponds to the discriminant

*y & 0.57721566490153286060651209008240243 is the Euler-Mascheroni constant.
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range for our experiments) we get, by following the above explanation model,
P(d=1 mod 8| h(d) prime, |d| € D) ~ 0.47.

Thus, a model that predicts h(d) as being prime for all discrimiants with d = 5
mod 8 and as not being prime for all d =1 mod 8 would get an accuracy of
around 53/100 = 0.53.

We remark that the class number formula indicates that y,4(3) also has
significant impact on the size of h(d), and should therefore also be a useful
feature to the models. Recall that

{1 if there is an integer n € (0,3) : n? =d mod 3,
Xa(3) = :
—1 otherwise

and note that this means that d = 1 mod 3 < x4(3) = land d = 2
mod 3 < xq4(3) = —1. Thus the value of y4(3) is indirectly given to the
models through the feature c3o(|d|), which we indeed can see, from figures
4.25, 4.28 and 4.31, is of great importance. However, this impact is not as
noticeable as for o 5(|d|). Figure 4.31b clearly demonstrates that .2 is using
Xa(p) for p = 2,3,5,7 to (likely) estimate the size of h(d) and thereby get a
decent guess on Q(h(d)).

We have discussed that the reason for the success of the models when
it comes to separating discriminants based on §2(h(d)) is likely due to the
presence of features that enable the models to approximate the size of h(d).
In turn, this means that the better the approximation of the size of h(d), the
higher the classification accuracy. This is probably why we see that [.#p, D]
consistently outperforms [.#y, D7) and [.#, D7a] — having c(|d|) and
c3,0(]d]) together with ¢ 95(|d|) is better than only having many x4(p).

Table 5.1: This table presents some of the quantities
10* - [P(co4(|d]) = 1] |d] € [10™,10™ + 5 - 10%]) — 1/2].

m\i | 2 3 4 5 6 7
8 | 0.148 | 0.293 | -0.392 | -0.699 | 0.011 | 0.497
9 | 0327 | 0.258 | -0.153 | 0.886 | 0.064 | -0.525
10 | -0.366 | 0.498 | -0.191 | -0.285 | 0.099 | -1.675
11 | 0278 | 0.723 | -0.608 | -0.804 | 0.411 | -1.117
12 | 0.112 | 1.253 | 0.800 | -0.993 | -1.305 | 1.101
13 | 0.162 | -0.929 | 0.374 | 0.047 | -0.001 | 0.941
14 | -0.804 | -0.409 | 0.787 | 1.651 | -0.956 | -3.362
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Table 5.2: This table presents some of the conditional probabilities
P(d=1 mod 8| Q(h(d)) =n,|d| € [10™,10™ + 5 - 10%]).

m\n | 1 2 3 4 5 6 7
8 | 0470 | 0.487 | 0.507 | 0.529 | 0.550 | 0.580 | 0.603
9 | 0.472 | 0.487 | 0.505 | 0.524 | 0.542 | 0.566 | 0.593
10 | 0.473 | 0.487 | 0.503 | 0.520 | 0.536 | 0.554 | 0.574
11 | 0476 | 0.488 | 0.502 | 0.515 | 0.529 | 0.542 | 0.559
12 | 0479 [ 0.488 | 0.500 | 0.513 | 0.524 | 0.538 | 0.549
13 | 0.481 | 0.489 | 0.499 | 0.512 | 0.521 | 0.530 | 0.541
14 | 0482 0.489 | 0.499 | 0.508 | 0.519 | 0.528 | 0.532
15 | 0.483 [ 0.490 | 0.498 | 0.507 | 0.515 | 0.525 | 0.529
16 | 0.484 | 0.491 | 0.498 | 0.506 | 0.515 | 0.520 | 0.525
17 | 0.486 | 0.491 | 0.498 | 0.505 | 0.511 | 0.518 | 0.523
18 | 0.487 | 0.492 | 0.497 | 0.504 | 0.511 | 0.515 | 0.523
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Chapter 6

Conclusions and Future Work

We present conclusions to be drawn from the work as well as ideas for future
work, among other things.

6.1 Conclusions

Regarding question 1 we conclude that for the input range h € [1,10°],
elementary deep learning models show great potential in interpolating F(h).
Yet, it seems more difficult for these models to extrapolate to larger data points.
Whether we are concerned with interpolation or extrapolation, the feature c(h)
appears to be imperative for the relative success of the models.

As for question 2, there are weak indications that deep learning models
outperform linear models when it comes to predicting 3- and 5-divisibility of
a random class number based on discriminant information. Nevertheless, the
results from section 4.2 show that these are difficult problems to solve, even
for deep learning models. Our findings do not provide new theoretical insight
into these problems.

Better it went results-wise in the task of separating disciminants based on
the number of prime factors in the class numbers. However, discussion 5.2
reveals that one can reach similar classification accuracy through a simple if-
then decision rule based on the feature d mod 8.

6.2 Limitations

The experiments conducted in this report were run on a conventional laptop
(a MacBook Pro with M1 chip). Naturally, this entails limitations on the scale
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and complexity of the experiments undertaken.

In regards to data availability, we limited the scope of the (h, F(h))-dataset
by only including h-values in the range [1,10°]. The reason for this is that
the production of F(h) for large h involves time-consuming computations
and since 5 - 10° data points are readily available in [20], we chose to settle
for these. Moreover, the CyPari2 package allows for fast computations of
class numbers /. (d) through the function quadclassunit. Although, these
computations slow down as |d| grows. The quadclassunit implements
McCurley’s sub-exponential algorithm for computing the class number h(d)
of negative discriminant d [5]. This algorithm has an expected asymptotic
average running time of O(L(|d|)V?), where

L(|d]) = eV/los(ld) loglogd)

(see [4, p. 256-259] and [24]).

6.3 Future Work

In regards to predicting the quantity 7 (h) based on A, it would be interesting to
repeat the training on the feature space DT{;, but with the feature ¢(h) changed
to cso(h). This would give us performance results of models which do not
know ¢(h), but have explicit knowledge regarding whether £ is divisible by 3
or not. Likely, this would not yield better results than those we saw in tables
4.1 and 4.2. However, this would still be interesting from an efficiency point
of view since computing ¢(h) requires factorisation of h whereas computing
c30(h) does not. Thus if we could reach comparable results by including
¢30(h) instead of ¢(h) we would have the same performance, but with less
computational expense.

The question whether ML models can accurately reveal 3-divisibility of
h(d) based on d remains unanswered. Our work, however, shows that a basic
setup of an MLP with meagre discriminant feature spaces fails in this task.
Further research on this problem is needed to provide a satisfactory answer to
the question. The same applies in the case of 5-divisibility.

6.4 Reflections

In this report we have considered tasks of the form: take an integer n as
input and predict label /. Bettering established mathematical predictions in
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problems of this type — that are known to be difficult — through machine
learning algorithms or deep learning, may seem hopeless at first. Indeed,
thinking that say a neural network should be able to extract useful and unknown
patterns merely from the size of n is pretty naive. However, this seemingly
barren area in the landscape of research reveals greater potential than meets
the eye. To illustrate the potential of this type of research, suppose that the
class number formula 1.2.1 had not yet been discovered. In this scenario,
our findings on the probability that d = 1 mod 8 given a certain value of
Q(h(d)) would imply that d mod 8 (which is either 1 or 5) has a significant
impact on the size of h(d). Thus, this discovery would have provided a deeper
understanding of class numbers.

When it comes to feature engineering and extracting attributes from
mathematical objects, it is important to be aware of the cost of these decisions.
The awareness necessity of course depends on the research objective. If the
primary goal is to analyze feature importance scores purely for the sake of
exploration, the cost of constructing feature vectors may be of lesser concern.
Conversely, if time efficiency is paramount, careful deliberation is warranted
before introducing additional features. For instance, the time complexity of
converting an integer n to its binary form is typically O(log(n)), whereas
factoring the integer n entails considerably higher computational expense.
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Appendix A

The Form Class Group

In this appendix we define the class group of binary quadratic forms.

Definition A.0.1. A binary quadratic form is a function in two variables of
the form f(z,y) = az? + bxy + cy?, where a, b, ¢ € Z. The discriminant of
f is defined as A := b*> — 4ac. For convience, we will sometimes denote f
simply by (a, b, c).

We only consider negative discriminants and forms (a, b, ¢) with a > 0
and ¢ > 0.

Definition A.0.2. Two binary quadratic forms f and g are said to be equivalent,

if there exists
a
(7 5) € SLy(Z)

such that g(x,y) = f(az + Py, vx + dy). If f and g are equivalent, we write
f~ug

Importantly, two equivalent binary quadratic forms have the same
discriminant (the converse is not true in general).

Definition A.0.3. We say that a binary quadratic form (a, b, ¢) is primitive if
ged(a,b,c) = 1.

Let A be a square-free integer such that A = 0,1 mod 4 and let C(A)
be the set of all equivalence classes of primitive binary quadratic forms of
discriminant A. The aim is to make C(A) into a group. For this, we need the
following result.
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Theorem A.0.1. Let (a, b, c) and (d, e, f) be two primitive binary quadratic
forms, both of discriminant A. Then there exists binary quadratic forms
(A,%¢,C) and (D,%,F) such that (a,b,c) ~ (A, %,C), (d,e, f) ~
(D, €. F)and gcd(A, D) = 1.

Proof. See [25, p. 245 - 246]. ]

For a primitive binary quadratic form (a,b,c), let (a,b,c) denote the
equivalence class that contains (a, b, ¢), i.e. (a, b, c) := [(a, b, c)].

Consider forms (a, b, ¢), (d, e, f), (A, €,C) and (D, %, F) as in theorem
A.0.1 and consider the operation * on C(A) defined by

{(a,b,c)y * (d,e, fy = (AD,€¢,C/D).

This operation makes C(A) into an abelian group — the class group of
primitive binary quadratic forms of discriminant A (see [25, p. 239 - 246]
for more details).
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Appendix B

Computing Coefficients

In this appendix we show how one can compute the coefficients discussed in
section 3.1.3 in an efficient manner. By simplifying and rewriting expressions,
we show how to compute ¢, for k = 1,2, 3, 4 by essentially using only one for-
loop over an arbitrary number of primes.

Recall that we set L, := 1 — Y(p)/p, and let

Upr =E (L2logF(L,)) =

() (o) () ()

Computing c,

=E <log (1;[ Lp1> UL3> -
E (— Xp:log(Lp) H Li) = - XP:E <10g(Lp) H Lg) —
_ ;E (Li log(Ly) HL?) ZE (L2 log(L (H L2>

rip rip

- S Ros(t) [TB0 = ~E0 3 =™ = 503 e

TF#p

L log

ThUS, Cl = — Zp ¢p71/¢p70 ~ —0.578072.

Computing co
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(log (HL ) HL;%) =" (; log(Ly,) glog(Lq) UL?) =

E(Zlog HL2>+E Zlog ) log( q)HLf =

dlstlnct
E (Z L2log(L HL2> +E Z L21og(Ly) L log(Ly) ] L2
P 7P dlstlnct sl

¢p 2 @Z’p I@Z’q 1
By L2 4 gy Yy Bt
zp: 2q: 7vbp,qu,O

distinct
By noting that
Z ¢p,1¢q,1 Z ¢p1 Z wa Z %1 (_ _ @) - cf _
:q d}p,Dd}q,O qu %,0
distinct

p

we finally get

ey = 3 +Z%2%0 Vi1 0.604050.

Computing c3
8 (Yt Stn(t) Sttt T[ 2] -
p q S T
E <Z L2log(L 3HL2> +3E Z L21og(L,)*Lylog(Ly) ] L2
p

r r#p,
7P dlbtll’lCt 7Pa

E| Y Lllog(L,)Llog(L,)L2log(Ls) [ L2 | =

b,q,s r s
distinct 7P

BT S et B 2 s

dlstlnct dlstlnct

2
p,1
2 b
p,0
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Moreover, we have

; ¢p,2¢q,1
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Using these results in combination with the fact that
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It remains to express cx(p) in terms of p for k = 1,2, 3. We have
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In regards to c3(p), we note that
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The last term in the above equalities can be written as

¢q, wq, . _ﬂ__ Yr2 _
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Furthermore we have that
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Now it follows that
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Implementing the above in code yields

cy = 0.618741.
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Appendix C

Supplementary Figures

This appendix presents supplementary figures.
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(a) Error histograms for [%gl(k),DT:‘z]. (b) Error histograms for [%QQ(k),DTX].
We observed @ = 0.26 & 0.62, 0 = We observed p = 0.30 =+ 0.41, 0 =
21.63 £ 0.72. 20.76 £ 0.15.

Figure C.1: (Interpolation experiment.) Histograms of scaled test errors
T'model(h) for the models [.#y, k), D] and [ Ay, k), Drs] for all folds k =
1,...,5. We only consider & such that 3 | h.
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(a) Error histograms for [///gl(k),DTg].
We observed u = —0.32 £ 0.34, o
16.88 + 0.45.
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(b) Error histograms for [%gz(k),DTg].
We observed u = —0.06 £ 0.45, o
16.30 4 0.18.

Figure C.2: (Interpolation experiment.) Histograms of scaled test errors
T'model(h) for the models [.#y, ), D] and [ Ay, k), Drs] for all folds k =
1,...,5. We only consider & such that 3 1 h.
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Figure C.3: (Extrapolation experiment.) Test loss for [,///91,177—13] over 5000

epochs.
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(a) Histogram of scaled testerrors r(h) := (b) Feature importance scores in
(F(h) — model(h)/+/model(h)) for the descending order for the
model [///91’1)’7}3]' [.//91,1)7%].

0.0002

1.75  2.00

model

Figure C.4: (Extrapolation experiment.) We extended the training for
[#s,, D7) to 5000 epochs and recorded the following evaluation metrics:

MSE = 44.785 - 10°, ;1 &~ —3.252 and o ~ 6.746. The above figures show the

corresponding 7,401 (h)-distribution and feature importance scores.
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Figure C.5: Top 20 mean feature importance scores for [.Zj, DTg] on the
classification task 3 | h(d) vs 3 1 h(d). The error bars indicate one standard

deviation over five folds of cross-validation.
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Figure C.6: Top 20 mean feature importance scores for [.#, DTB] on the
classification task 5 | h(d) vs 5 1 h(d). The error bars indicate one standard
deviation over five folds of cross-validation.
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Figure C.7: Top 20 mean feature importance scores for [.#), DTCd] on the
classification task Q(h(d)) = 1 vs Q(h(d)) > 2. The error bars indicate one
standard deviation over five folds of cross-validation.
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Figure C.8: Top 20 mean feature importance scores for [.#), DTCd] on the
classification task Q(h(d)) = 1 vs Q(h(d)) > 3. The error bars indicate one
standard deviation over five folds of cross-validation.
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Figure C.9: Top 20 mean feature importance scores for [.#, DTg] on the
classification task Q(h(d)) = 1 vs Q(h(d)) > 4. The error bars indicate one
standard deviation over five folds of cross-validation.
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