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Abstract

We expand on the Cohen-Lenstra heuristics by hypothesizing that there is a
second order term to its predictions of divisibility of the class number and
density of Sylow subgroups. This term is inspired by the second order term
found to the Davenport-Heilbronn Theorem by M. Bhargava, A. Shankar, J.
Tsimerman, T. Taniguchi and F. Thorne, as well as results by B. Hough. We
then perform empirical tests, which seem to support our hypotheses. This
paper also includes an introduction to class numbers and class groups.
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Chapter 1

Introduction

Class numbers and class groups are two important concepts in number theory.
Gauss introduced the concepts in Disquisitiones Arithmeticae, his ground-
breaking monograph in number theory from 1801. Since then it has been an
active area of research that intersect the development of both number theory
and abstract algebra.

In this paper we use a probabilistic model to analyze the 3-, 5-, and 7-divisibility
of the class number, as well as the 3-Sylow subgroups of the class group.

In chapter 2] we give some background and introduce the results that we will
base our analysis on. This includes the Cohen-Lenstra heuristics, which gives
an asymptotic prediction to the behavior of the class groups and class numbers.
In chapter 3} we form our probabilistic model, as well as construct a test of its
accuracy. In chapter 4] we use a computer to generate large amount of class
numbers, to test our hypotheses using this data. Finally, in Chapter [5 we
analyze the obtained results.

We discover that we can improve on the Cohen-Lenstra heuristics by intro-
ducing a second, higher order term inspired by a second order term to the
Davenport-Heilbronn Theorem found by M. Bhargava, A. Shankar, J. Tsimer-
man, T. Taniguchi and F. Thorne. The errors to this new model seems to be
normally distributed for both p-divisibility and 3-Sylow subgroups. We also
discover that the size of this higher order term do not have a easy to state rela-
tionship with the Cohen-Lenstra prediction.



Chapter 2

Background

We will begin by giving an introduction to class numbers and class groups.
There are two different, but equivalent, ways of constructing the class group.
In section[2.T], we construct it using quadratic forms, which is how class groups
first were discovered. In section [2.2] we construct them as the fractional ideal
group of a quadratic number field, modulo principal ideals. This is a more
modern way of looking at the class group. In section [2.3] and 2.4] we in-
troduce some important results about class numbers, including the Cohen-
Lenstra heuristics and the Davenport-Heilbronn Theorem.

2.1 Quadratic Forms

We will start by giving some definitions and terminology regarding quadratic
forms.

Definition 1. An integral quadratic form in two variables (henceforth simply
called form) is a function in two variables that can be written as

f(z,y) = ax® +bxy + cy®, a,b,c € Z.

A form is said to be primitive if gcd(a,b,c) = 1. The discriminant of f is
defined as d := b?> — 4ac. Note that we must have d = 0 mod 4 (if b is even)
ord =1 mod 4 (if b is odd).

Definition 2. Two forms f(z, y) and g(z, y) is said to be equivalent if f(z,y) =
g(pz + qy,rz + sz), where det (2 7) = 1.
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Definition 3. We say that a number m is represented by a form f(z,y) if
m = f(x,y) for some z,y € Z.

We now state some basic results. For proofs the reader should consult a text-
book on the topic, for example [1].

Theorem 1. Equivalent forms represent the same numbers, and the discrimi-
nant of equivalent forms are equal.

Theorem 2. If d < 0, f(x,y) only represent numbers of the same sign. If
d < 0anda > 0, f(z,y) only represents positive numbers and we call f(x,y)
positive definite. Similarly, if d < 0 and a < 0, then f(z,y) only represents
negative numbers and is called negative definite. If d < 0, then f(z,y) is
called indefinite.

We will mainly be concerned with primitive positive definite forms. Since
equivalent forms represent the same numbers, it is natural to look at the equiv-
alence classes.

Theorem 3. Equivalence of forms is an equivalence relation, and we denote
the equivalence class of f(z,y) as [f(z,y)]. Every primitive positive definite
form is equivalent to a unique reduced form, which is a primitive positive
definite form az? + bxy + cy? with |b| < a < ¢, and b > 0if |b| = aora = c.

Definition 4. For any integer d < 0, let h(d) denote the number of equivalence
classes of primitive positive definite forms of discriminant d. By the theorem
above, this is equal to the number of reduced forms of discriminant d. h(d) is
called the class number of d.

Since a reduced form az? + bzy + cy? fulfills |b| < a and ¢ > a we have

[—d
d="0—4ac< a®—4a®> = -3a®> = a < 3

Through this inequality, it is possible to find all the reduced forms of a certain

discriminant d < 0. Forevery 0 < a < \/—d/3, we can simply go through all
|b] < a and see if ¢ = 1724;(1[) turns out to be an integer larger or equal to a. We

also have to remember that for ax? + bxy + cy? to be a reduced form, we must
have ged(a,b,c¢) = 1 and b > 0if |b| = a or a = ¢. This argument makes it
clear that i(d) is finite for all d < 0. Below we see the class numbers and the
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d | h(d) | Reduced forms d | h(d) | Reduced forms

—4 1|22 +y? -3 1|22+ 2y +y?

-8 1| 22+ 2¢? -7 1| 22+ a2y +2¢°
—12| 1 | 22+3y? 11| 1 | 2?2 +ay+ 32
—16 | 1 |22 +4y? =15 | 2 | 2®+ay+4y% 227 + xy + 2y°
—20| 2 |2*+5y% 202 + 20y +3y% || —19| 1 | 2%+ 2y + 5y?
—24 | 2 | 2%+ 6y 227 + 332 —23 | 3 | 2%+ a2y + 612, 202 £y + 3y?
28| 1 | 2?47y’ =27 1 |2 +ay+Ty?
=32 2 | 22+8y% 322 +2zy+3y? || =31 | 3 | 2%+ a2y + 8% 222 £ ay + 4y°
=36 | 2 | 224+9y% 222 + 20y +5y? || =35 | 2 | 2?4 zy+ 9%, 322 + ay + 3y°
—40 | 2 | 2%+ 1092, 222 + 5y =39 | 4 |22+ azy+ 1092 222 £ 2y + 592, 322 + 3wy + 4y?

Table 2.1: Class numbers for small d < 0

reduced forms for the first few negative discriminants. Note that h(d) = 0 if
d=2,3 mod 4.

Let us look at the reduced forms of discriminant d = —20, 2? + 5y* and
222 + 22y + 3y?. One might notice that two numbers represented by the form
2?2 + 5y* (for example 6 = 12 +5-12 and 9 = 2% + 5 - 1?) will have their
product represented by the same form. (6 -9 = 54 = 72 + 5 - 1?) This will
always be the case, as

(2% + 5y2) (2% + bw?) = (xz + Syw)* + 5(aw — yz)*.

One might also notice that the product of any two numbers represented by
222 + 22y + 3y? is on the form 2% + 5y2. This can also be shown to always
hold:

(22° + 22y +3y°) (22° + 22w+ 3w?) = (vz+aw+yz+3yw)? +5(rw —yz)>.

Furthermore, a number represented by 222+ 22y -+ 3y? multiplied by a number
represented by 2% +5y? gives a number represented by 222 +2xy+3y?, namely

(222 + 2zy + 3y°) (2% + bw?) = 2X% + 2XY + 3Y?
where X =22 — 2w — 3yw and Y = 22w + yz + yw.

These observations hint at it being possible to define a Abelian group structure
on the set {[z% + 5y?], [22? + 2zy + 3y?]} as follows:

[2? + 5y°] % [2% + 5y’ = [2* + 5y?],
(2% + 5y°] * [22° + 2zy + 3y%] = [22% + 22y + 3¢7,
[227 + 22y + 3y?] * [20% + 22y + 3y?] = [2* + 5y?].
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It also seems like this group is isomorphic to Z,. Although not obvious, it
is always possible to define a group structure for any discriminant d < 0 in
this manner, which is called the class group. It is however complicated by the
fact that the product of two forms can sometimes be written as different, non-
equivalent forms, which makes it necessary to somehow restrict the definition
of composition of two forms presented above.

Gauss was the first to successfully construct the class group in Disquisitiones
Arithmeticae from 1801. Writing Gauss’s composition law explicitly is rather
complicated, which is why we present a definition due to Dirichlet, who sim-
plified and streamlined Gauss’s method at the end of the 19th century.

Definition 5. To find the composition of two forms [a;2? + byzy + ¢1y?] and
[as1? + bowy + coy?] of discriminant d, first make sure that ged(ay, az, (b +
by)/2) = 1, finding fitting equivalences to a;7? + byzy + c1y* and axz? +
byxy + coy? if needed. Then let A = a,ay, B be a solution to the system of
congruences

B=b mod 2a;

= bQ mod 2@2
B? = mod 4a;as
(which can be shown to always have solutions), and C' = Bigd. The com-

position of [a12? + bixy + c19?] and [ayx? + bowy + coy?] is then defined
as

[a12? + biwy + c19?] * [apa?® + boxy + coy?] = [Ax? + Bay + Cy?).

It is then possible to show that this definition induces a group structure on
the equivalence classes of primitive positive definite forms of discriminant d,
summarized in theorem 4l

Theorem 4. Letd < O withd = 0,1 mod 4, and let H (d) be the set of equiv-
alence classes of primitive positive definite forms of discriminant d. Then
composition * is a well-defined binary operation on H(d), and it makes H (d)
a finite Abelian group of order h(d), with identity element

(22 + ny? ifd=—4n
(22 + 2y +ny?] ifd=—4n+1

and inverses [az? + bry + cy?| ! = [axz® — bry + cy?]. We call H(d) the class
group
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Table 2.2|list h(d) and H

—~

d) for some small values of d. It might look like all

d | h(d) | H)|[ d [hd) [ H)
4 1 |z 3 1 |z,
8| 1 |z 711 |z
12 1 |z, ||-11| 1 |z
—16] 1 |z, || -15| 2 |z,
20| 2 |z, ||-19| 1 |74
24| 2 |z, ||-23| 3 |z,
28| 1 |z, ||-271| 1 |z,
32| 2 |z, || -31] 3 |7z
36| 2 |z, ||-35| 2 |z,
40| 2 |z, ||-39| 4 |z,

Table 2.2: Class groups for small d < 0

class groups are cyclic. This is indeed most common case, but there are also
examples like H(—84) = Zy X Zs.

2.2 The Ideal Class Group

It was through quadratic forms the theory of class groups originally took form,
but a modern treatise of the subject usually constructs the class group using
the tools of abstract algebra. This way of seeing the group might feel more ab-
stract, but the proofs using this construction tend to be more straightforward
than the corresponding proofs with quadratic forms. For completeness, we
also include this way of defining class groups, with theorem [5] giving the iso-
morphism to the quadratic forms construction. The only part of this section
that is referenced in the rest of the paper is the definition of a fundamental dis-
criminant. We omit the proofs, and again refer interested readers to a textbook
like [[1]].

Definition 6. A number field K is, for our purposes, a subset of C that is a
finite-dimensional vector space over Q. An algebraic integer is a complex
number which is the root of some monic polynomial with integer coefficients.
We denote the set of algebraic integers in K as Ok.

Definition 7. A quadratic number field is a field on the form K = Q(v/N)
where N # 0,1 is a squarefree integer. The discriminant of K is defined to
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be

B N ifN=1 mod4
ke 4N else '

Definition 8. A fundamental discriminant is an integer d that is the discrimi-
nant of some quadratic field. That is, d # 1 and either d = 1 mod 4 and d is
squarefree, or d = 4N where N = 2 or 3 mod 4 and N is squarefree.

Definition 9. A fractional ideal is an ideal on the form aZ were o € K
and 7 is an ideal of Of. The set of fractional ideals [ is a group under the
multiplication (aZ)(5J) = (aB)(ZJ ), where the product of ideals is defined
as ZJ = {> _, ik - ik € I, ji, € J,n € N}. A principal fractional ideal
is defined to be a fractional ideal on the form aOf with « being a unit in K.
The set of principal fractional ideals Py forms a subgroup of /.

Definition 10. The ideal class group of K is the quotient I/ Pk, denoted
H(Ox).

Theorem 5. Let d < 0 be a fundamental discriminant. The class group H (d)
and the ideal class group of K = Q(\/E) are isomorphic, using the isomor-
phism

¢: H(d) — H(Og),
o(laz® + bry + cy’]) = [{a, (~b+ Vd)/2)],

where (a, (—b+ V/d)/2) = {ma + n(—b++/d)/2: m,n € Z} € O.

2.3 The Cohen-Lenstra Heuristics

The connection between a discriminant d < 0, its class number /(d) and the
class group H (d) turns out to be quite complicated. In this section we will list
some conjectures and results that will be relevant for this paper.

The Cohen-Lenstra Heuristics, published 1984 by H. Cohen and H.W. Lensta,
gives a probabilistic model for the behavior of H (d).

Conjecture 1. (Cohen-Lenstra Heuristics)[2] For an odd prime p and d < 0,

Pr(plh(d)) = 1 — ﬁ (1 - ik) |

k=1 p
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and

Pr(Syl, (H(d)) = G) = Autl( 11 <1 _ ik) |

k=1 p

The p-Sylow subgroup of a group G is defined as follows. If G is a finite group
and |G| = kp™ where p { k, a p-Sylow subgroup of G is a subgroup of order
pk. The Sylow theorems show that there always exists a p-Sylow subgroup,
and that if there are more than one, they are isomorphic. We can thus talk
about the p-Sylow subgroup of (7, and we denote it as Syl (G).

In Conjecture (1, Pr(p|h(d)) should be understood as

. #{—X <d < 0:d fundamental, p|h(d)}
P =1
tpIr(d) = lim 2 0+ d fundamental]

and similarly for Pr(Syl,(H(d)) = G). For example, the Cohen-Lenstra
heuristics predicts that

Pr(3|h(d)) = 1 — ﬁ (1 _ 3%) ~ 044,

k=1

not 1/3, as one might guess. Another interesting consequence of the Cohen-
Lenstra heuristics is that the probability that the odd part of the class group is
cyclic, is approximately equal to 98%.

Theorem 6. [2, p.57] Assuming the Cohen-Lenstra heuristics, we have the
following asymptotic equivalence

Y. H@PI~2 ) L

—X<d<0 —X<d<0
d fund. d fund.
where G[k] denotes the k-torsion subgroup of the group G, i.e. Glk| = {g €
G:g" =0}

One of the few results that can bee seen as evidence for the Cohen-Lenstra
heuristics is the Davenport-Heilbronn Theorem, proved by H. Davenport and
H. Heilbronn in 1971, which says that theorem[6]holds for p = 3. We can also
rewrite the right side using the standard result

#{—X < d < 0: d fundamental} ~ 3X/7°.
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Theorem 7. (Davenport-Heilbronn Theorem)[3]

S H@B=2 Y 1+0X)=C X+o(X)

—X<d<0 —X<d<0
d fund. d fund.

where C' = 6/72 ~ 0.6079.

A higher order term of size X°/ to the Davenport-Heilbronn Theorem was
independently found and proved by M. Bhargava, A. Shankar and J. Tsimerman
in 2012 and by T. Taniguchi and F. Thorne in 2013.

Theorem 8. [4][5] Let H(d)[3] denote the p-torsion subgroup of G.

> H()B)=C- X+ D- X% 4 o(X/°)

—X<d<0
d fund.

— _ 8V3((1/3) V1Y o
where C' = 6/7%, D = S T, (1 - 224 ) ~ —0.4140.

Finally, we note that

Z 1]- (Pr(3 th(d)) + 3Pr(H(d)[3] = Z3) + 9Pr(H(d)[3] = Z3) + - - -

—X<d<0
d fund.

Since ) |H(d)[3]| has a second term, it is not unreasonable to suspect that
there could be a secondary main term to Pr(3 { h(d)), and thus Pr(3|h(d)), as
well. We will investigate this in the next chapter.

2.4 Other results

The Cohen-Lenstra Heuristics only concern odd primes. The reason for this
is that the prime 2 behaves in a quite special way in the class group. The
following result is important in this regard.

).
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Theorem 9. [1, Prop. 3.11] Let d < 0 be a fundamental discriminant and ¢
be the number of prime divisors of d. Then |H (d)[2]| = 2!

This shows that the 2-part of the class group is in a way "almost deterministic",
which means that the probabilistic model of the Cohen-Lenstra heuristics is not
suitable to analyze it.

Since —4 and —8 are the only negative fundamental determinants of the form
—2", and thus the only two even negative fundamental determinants with only
one prime divisor, we get the following corollary.

Corollary 1. For fundamental discriminants d < —8,

h(d) odd <= —d prime.

Lastly, to compute |Aut(G)| in conjecture|l, we need the following theorem.

Theorem 10. [6] If G = Z/p“7Z X --- X Z/pZ withe; < ey < -+ < e,
then

n

|Aut(G)| = H (pdk — pkfl) H(pej)n*dj H(perl)nfciﬂ.

k=1 j=1 i=1

where ¢, := min{l : ¢, = e;} and dj, := max{l : e, = e }.

In particular, we find that:

|Aut(Zs)| = 2,
|Aut(Zy)| = 6,
|Aut(Zs x Zs3)| = 48,
|Aut(Zq7)| = 18,
|Aut(Zg x Z3)| = 108,
|Aut(Zs x Zs x Z3)| = 11 232.

If G = Z, then |Aut(G)| can also be found by the fact Aut(G) = GL,.(F,).



Chapter 3

Method

To sidestep the points about the even part of the class group laid forward in
section [2.4] we will focus on odd class numbers, which according to corollary
[T)is the same thing as only looking at negative prime discriminants.

For the data used in this paper, we calculated h(—d) for all primes d = 3
mod 4 satisfying 0 < d < 34 576 772 507. The number 3.4 - 10'? is simply
a consequence of how many class numbers it was possible to compute in 60
hours with the computing resources we had at hand. This resulted in N; =
744 582 042 class numbers.

Furthermore, for all d for which 9||h(—d) or 27||h(—d), we also calculated the
full group structure of H (—d)]]

The computations were made using the computer algebra system PARI/GP,
with gfbclassno computing class numbers, and quadclassunit com-
puting class groups. The data analysis and figures were made with Python.

I'The notation p"||k means that p" |k, but p"~1 { k.

11
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3.1 3-divisibility

Our goal is to find a probabilistic model that predict the 3-divisibility of h(—d).

Let X = {X(d) : d prime} be a collection random variables defined as

{1 with probability f(d)

X(d) :=
0 with probability 1 — f(d)

i.e. as Bernoulli distributions with parameters f(d), for some function f(d).
For each d, the random variable X(d) models whether h(—d) is divisible by
three (X(d) = 1) or not (X(d) = 0). Whether 3|h(—d) or not is of course
deterministic, but we model this behavior with a random variable X(d). Our
goal is now to find a choice of the function f(d) that fit our data.

If we assume that this probability does not depend on d, the Cohen-Lenstra
heuristics suggests that f(d) = 1 — [];2, (1 — 35) ~ 0.43987 would be a
good choice. Let us call this model the constant Cohen-Lenstra model.

However, as to be seen in chapter @, this model do not fit the data for small
d. The error does however shrink as we look at negative discriminants of
larger magnitudes. This suggests that there might be a second, higher order
correction to f(d).

We will now form our hypothesis for f(d), and then explain the theoretical
reasoning behind it.

Hypothesis 1. A good choice for f(d) is

B
fald) = As + 7

where A; = 1 — Hzozl (1 — Sik) ~ 0.43987, for some B3. We will compare
this to the constant Cohen-Lenstra model f$*(d) = As.

Hypothesis |1|is inspired by theorem [§| since under this hypothesis,E]

Z/ . Ay X 3By X5/6

~ = . 3.1
2 logX+ 5 log X G-I

—X<—d<0
3|h(=d)

2The notation E/ is to be understood as taking the sum over all prime d = 3 mod 4
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The details can be found in appendix[6.1] This form is very similar to theorem
but with both terms divided by log X, which is a remnant from us taking
our sum over all prime discriminants, instead of all fundamental discriminants.
The exponent d—/% in hypothesis|[1| was chosen to get the exponent X/ in this
calculation. As is shown in appendix [6.1], this was done by simply subtracting
1 from 5/6.

To test a model f(d), we group the N, data points into sets of size N, denoted
(Gi)1<i<ng> Where N = | Ng/N |. This is done in such a way that GG; con-
tains the /N smallest discriminants, G5 contains the next N discriminants, and

so on. For each G, we calculate

C #{deGii3lh(—d)}  #{de Gy 3lh(—d)}
- #Gi B N '
Since the magnitude of d does not change much within a specific G;, the
value P; should be a good approximation of f(d}), where d, := (minG; +
max ;) /2, assuming that f(d) is continuous.

P, :=Pr(3|h(—d) : d € G})

Furthermore, assuming that f(d) is the right model, P, can be seen as an ob-
servation of the variable

N
1 1 _
N X(d) ~ = Y X(d) = X
N 2 (d) N 2 (d3)

The expectation and variance of X; are as follows:
E[X;] = f(d))

Var[X,) = 1 F(d)(1 — F(d).

In hypothesis |1} Bs is left unspecified. Ideally, we would want to find this
value using analytically, maybe by comparing equation (3.1) to theorem|§] but
since the latter is summing over the 3-torsion subgroups this is quite hard to
do. Instead, we will use the least square method to try to find an approximation
of B3.

From the data points (d;, P;), we can then use the least square method to find
the coefficient B3 that makes the model P, = Az + B—?{/G best fit our data.

(d;)
Through a standard regression calculation, this coefficient is calculated to be
P —A dy)=¢
B . 2) here YV 1 : 3 dZz o
= -——, where Y = : and Z =
Tzzy” -

Prng — A3 (dye)~1°
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Finally, the normalized random variables

X; — E[X]

Var|[X]

Yi =

should, according to the central limit theorem, approximately have the stan-
dard normal distribution A/ (0, 1). We will thus also make a histogram of the

values
v P i)
e Ta)

to see if this holds. We will do this for both f3(d) and f$L(d) in place of f(d).
If the histogram is close to a standard bell curve, our model would seem to fit
the data well.

Y

3.2 5-and 7-divisibility

We will repeat the method for 3-divisibility for 5- and 7-divisibility as well,
where we model the p-divisibility of h(—d) as

X(d) :=

1 with probability f,(d)
0 with probability 1 — f,(d)

Inspired by 3-divisibility, it would be natural to use the model

B
fk(d) - Ap + d_‘f

for some a, where A, =1 —[],; <1 — #)
Unfortunately, there is no corresponding result to theorem [ for p = 5 or 7,
so we don’t know what a choose. However, in the paper "Equidistribution of
bounded torsion CM points"[7] from 2019, B. Hough finds some theoretical
indications of a higher order term of X/?*1/% to the right side of conjecture
6l By a similar analysis as for the & = 3 case, a good choice for a might be
a=—(1/24+1/5—-1)=3/10fork=5anda = —(1/24+1/7—1) =5/14
for k = 7. Our hypotheses will thus be:
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Hypothesis 2. For some Bs,

Bs
fs(d) = A5 + /10
where A5 = 1 — [[;2, (1 — 2F) =~ 0.23967 is a good model of 5-divisibility
of h(—d).

Hypothesis 3. For some B,

where A7 = 1 — [[;2, (1 — =) = 0.16320 is a good model of 7-divisibility
of h(—d).

We will also be comparing to the the constant Cohen-Lenstra models f$7(d) =
As and f€F(d) = As.

3.3 3-Sylow subgroups

Lastly, we will also look at the 3-Sylow subgroups of H (—d), specifically on
the cases 9||h(—d) and 27||h(—d).

In this case of 9||h(—d), the 3-Sylow subgroup Syl,(H (—d)) can take on the
form Zg or Z3 x Z;. According to conjecture|[I] the probabilities for these are
Pr(Syly(H(—d)) = Zy) ~ 0.56/6, Pr(Syly;(H(—d)) = Zs x Zs3) ~ 0.56/48,
respectively.

Similarly, if 27||h(—d), then Syl,(H (—d)) must be on the form Zy7, Zg X Zs
or Zg X Zg X Zg.

Alsonote thatif Syl,(H (—d)) = Zg or Zaz, then H(—d)[3] = Zs, if Syl;(H (—d)) =
73 or Zgx Zs, then H(—d)[3] = Z3, andif Syl,(H (—d)) = Z3, then H(—d)[3] =
Z3.

But as was seen at the end of section 2.3 the cases when H(—d)|[3] = Z%, has
different contributions to the sum > _,_,|H(d)[3]| for different n. So it
could be worth looking into if Pr(Syl,(H(—d)) = G) also has a d~'/5-term.
These will be our last hypotheses.
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Hypotheses 4-8. Let G = Zqg, Z3, Z7, Zg X Z3 or Z3. Then for some Bg,

B
fG(d) = AG + dl_/GG

where Ag = m [Tr2, (1 — 3¢), is a good model of weather the 3-Sylow

subgroup of H(—d) is congruent to GG or not. Using theorem |10, we have

Az, ~ 0.093354
Ags ~ 0.011669
Az, ~ 0.031118
Agyxz, ~ 0.005186
Ags ~ 0.000050.

We will also compare against the constant Cohen-Lenstra model f5%(d) =
Ac.



Chapter 4

Results

4.1 3-divisibility

As a first experiment we have chosen a partition of N = 107 points in each set
G, which gives us N = 74 data points of the form (d}, P;). In figure[4.1] we
see these data points plotted against the regression Az + %, where the least
square approximation of the coefficient B3 was found to be —0.2198. For ref-
erence, the Cohen-Lenstra prediction of 0.43987 . .. is also shown. Visually,
it seems to be a good fit.

Figure shows the density histogram for (Y;);<;<74. We have also calculated
the mean and standard deviation of these values, iy and oy, and overlaid a
normal distribution with these parameters. In this case, our calculated 1y and
oy are quite close to 0 and 1, but the data points are to few to see if they are
normally distributed.

By choosing a smaller value of N, we get more data points (d;, P;). Figure
show the same plot with N' = 10%. This time, we find B; to be —0.2188,
which is very close to the N = 107 case. Since the sets G; have fewer data
points, the variation in P; is bigger. But as figure [4.4] shows, the data points
Y; are very close to being normally distributed. In appendix histograms
for other values of NV can be found.

Table shows the estimate of B3 for various values of V. We can see that
the estimate does not vary significantly around B; ~ —0.219.

17
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N N¢ B3

107 74 —0.21980
106 744 —0.21908
10° | 7445 | —0.21891
10 | 74458 | —0.21888
103 | 744582 | —0.21888

Table 4.1: Estimate of Bj for various values of V.
4.2 5- and 7-divisibility

We repeat the calculations for 5-divisibility and 7-divisibility.

Starting with 5-divisibility, figure shows the plot for N = 107, which
results in the estimate B = —0.3026 in the equation f5(d) = A5 + dfﬁ.

As seen in ﬁgure with N = 10%, (Y;) seems to be normally distributed. In
appendix histograms for other values of N can be found.

With 7-divisibility, figure[4.7|shows the plot for N = 107, which results in the
estimate B; = —(.2684 in the equation f(d) = A; + dfﬁ.

In figure with N = 10%, we can see that (Y;) seem to be normally dis-
tributed in this case as well. In appendix [6.2.3] histograms for other values of
N can be found.

Table [4.2] shows the estimates of B and By for various values of N.

N Bs By

107 | —0.30261 | —0.26844
10% | —0.29796 | —0.25398
10° | —0.29437 | —0.25039
10% | —0.29357 | —0.24359

Table 4.2: Estimates of Bs and By for different V.
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4.3 3-Sylow: Zy and Z3 x Z;

We now turn to the 3-Sylow subgroup. We first focus on the case where
9||h(—d), i.e. where the possible 3-Sylow subgroups are Zg and Z3 X Zs.

Starting with Syl;(H(—d)) = Z,, figure shows the plot for N = 107,

which results in the estimate Bz, = —0.0353 in the equation f7,(d) = Az, +
By,
T

In figure [4.10) with N = 10*, we can see that (Y;) seem to be normally dis-
tributed. In appendix [6.2.4] histograms for other values of /N can be found.

With Syl,(H (—d)) = Z3 X Zs, figure shows the plot for N = 107, which

B
results in the estimate Bz = —0.0361 in the equation fz2(d) = Az + dl—Z/%.

In figure |4.12] with N = 10%, we can see that (Y;) looks to be normally dis-
tributed in this case too. In appendix histograms for other values of N
can be found.

Table [4.3] shows the estimates of Bz, and By for various values of V.

N [ By By

107 | —0.03532 | —0.03608
106 | —0.03525 | —0.03598
10° | —0.03524 | —0.03595
10* | —0.03523 | —0.03594

Table 4.3: Estimate of By, and By for different N.
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4.4 3'Sy|OW: Liory Lig X L3 and L3 X Lz X 13

Finally, we turn to the case 27||h(—d), where the 3-Sylow subgroup can take
the form G = Zy;, Zg X Zs or Zs3 X Zs3 X Zs. The calculated value of Bg
for various /N is presented in table the graphs using N = 107 is shown
in figures and the histograms of (Y;) can be found in appendices
6.2.6H6.2.8

N BZz7 BZg X L3 BZ§
107 | —0.01201 | —0.01612 | —0.000628
10% | —0.01197 | —0.01607 | —0.000625
10° | —0.01195 | —0.01606 | —0.000624
10* | —0.01196 | —0.01606 | —0.000624
Table 4.4: Estimate of Bz, and By for different V.
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Discussion

In this section we discuss the results obtained in chapter @ First we present a
table of the values of a., A. and B. for our models
B.
fld)y=A +—.
da4
For B., we have written down the number of decimals that seem to be unchang-
ing when varying N between different powers of 10, as seen in tables i.1}4.4]

. a. A. B.
3 1/6 | 0.43987 | —0.229
5 3/10 | 0.23967 | —0.29
7 5/14 0.16320 —0.24
Zig 1/6 | 0.09335 | —0.0352
Z% 1/6 | 0.01167 | —0.0359
Zor | 1/6 | 0.03112 | —0.0120
Zg xZs | 1/6 | 0.00519 | —0.0161
Z% 1/6 | 0.00005 | —0.00062

Table 5.1: Summary of our results

28
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5.1 3-divisibility

Looking at figure [4.2] the model

Bs
with A3 = 1 -], (1 — 3%) ~ 0.43987 and B3 = —0.219, seem to visually
fit the data very well. In figure the data fluctuate far wider, but this is

expected, since N is smaller and Var[X;] o< 1/N.

Looking at histograms@.2]and[4.4] as well as those in appendix[6.2.1] it seems
like the data points (Y;) follow a standard normal distribution, since the fit gets
better with more data points.

This means the errors from this model are normally distributed around 0, and
with the same standard deviation as we calculated theoretically in section

On the other side, if we instead compute the errors to the constant Cohen-
Lenstra prediction fgo L (d) = As, our errors are no longer centered around 0,
and are not normally distributed, as seen in the plots to the right in appendix
6.2. 1]

As N gets smaller (and thus N gets bigger), the constant Cohen-Lenstra his-
tograms does however seem to get closer to a normal distribution. The rea-
son for this is that when N gets smaller, the standard deviation of X; gets
bigger, which means that after normalizing, the difference between A3 and
As+ Bs/d"/® gets smaller. But note that the plots on the left in appendixm
all have iy ~ 0 and oy ~ 1 for all N.

This is to say that the constant Cohen-Lenstra prediction f{'*(d) = Asis a
bad fit for our data, but adding the term Bs/d"/® does seem to fit the data well.

5.2 5-and 7 divisibility

We now turn to 5-divisibility and figure Visually, it is not as clear that we
have found the right fit. Comparing it to the 3-divisibility plot in figure it
might look like the variations are larger in the 5-divisibility case. However, if
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one takes a closer look at the y-axis, the variations are actually smaller, as we
would expect from the form of Var[X;]. The difference is that for 5-divisibility
our model is closer to the Cohen-Lenstra prediction, since 1/d/'° diminishes

faster than 1/d"/°.

Looking at the histograms in appendix [6.2.2] the normalized errors does seem
to follow a standard normal distribution, as opposed to the errors to the con-
stant Cohen-Lenstra model. The deviations are smaller that in the 3-divisibility
case, for the reasons given above, but is nevertheless clear that the model
with the higher-degree term follows the data better, compared to the constant
Cohen-Lenstra model.

Another difference from the 3-divisibility histograms is that it is hard to notice
deviations from a normal distribution for the constant Cohen-Lenstra predic-
tion errors. The relatively large shifts in 11y do however make it clear that these
do not follow a standard normal distribution.

Therefore, hypothesis[2] seem to be compatible with our data, and the constant
Cohen-Lenstra model does not seem to be.

For 7-divisibility, the observations from 3- and 5-divisibility seem to continue
to hold, but here the deviation between the two models are even smaller. This
gives a dismissal of the constant Cohen-Lenstra prediction a lower confidence
than for the 3- and 5-divisibility cases. However, comparing the histograms
on the right and the left side in appendix [6.2.2] the improvement does seem
significant enough to warrant skepticism around the constant Cohen-Lenstra
model.

5.3 3-Sylow: Zy and Z3 x Z;

The results for the 3-Sylow subgroups are similar to the ones for 3-divisibility.
The differences in the histograms on the right and left side in appendix [6.2.1]
are larger than the ones for 5- and 7-divisibility, which could be explained by
these terms being proportional to d~'/%, which diminishes slower than d—3/1°
and d—°/14,

Itis interesting that the coeflicients By, and By; are so close to each other. This
means that the higher order term in Pr(Syl;(H (—d)) = Zg) and Pr(Syl;(H(—d)) =
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Zs3 x Z3) is almost identical, even though the former is around 8 times larger
then the latter.

It is worth noting that since the probability Pr(Syl;(H(—d)) = Zs x Zs) is
much lower than the other ones we have looked at, around 1.1%. This means
that if N = 10%, there will only be around 110 positive results in each group,
which will mean that our data becomes discretized in a more obvious way.
This is the reason the constant Cohen-Lenstra prediction histogram looks a bit
weird for N = 10%; the height of the histogram bars also depends on how many
of these discrete numbers lie in their bin. The same effect can be observed in
some of the histograms of the 3-sylow groups of order 27.

54 3'Sy|OW: Liory Ly X Zig and L3 X Lg X L3

From figures and the histograms in appendices itis clear

that the behavior observed in section [5.3| continue to hold for the 3-Sylow
subgroups of order 27.

However, this time By,., Bz,xz, and Bzg are not close to each other. This
might point at the observation made in section @ that Bz, and By are
approximately equal, might have been a coincidence.

It is however interesting that By, 7, is around 30% larger than By,., even
though the Cohen-Lensta prediction Ay, 7, is just a sixth of Ayz,.. It seems to
be hard to predict the size of the higher degree term B /d'/® solely from the
size of |Aut(G)].
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Appendices

6.1 Thesum ), ,1

Here we calculate the sum

/ / / 1

> 1:A3< > 1>+Bg< > W)

—X<—d<0 —X<—d<0 —X<—d<0
3|h(—d)

under hypothesis [I]

The first sum on the right hand side can, according to the Dirichlet’s theorem
on arithmetic progressions, be approximated as:

o 1 _ m(X) X
Z 1= Z 1N§Zl_ 2 N2logX

—X<—d<0 0<d<X 0<d<X
d prime d prime
d=3 mod 4

We now move to the second sum. First, according to Dirichlet’s theorem on
arithmetic progressions,

1 1 1 1
Y am= X anvy X aw

—X<—d<0 0<d<X 0<d<X
d prime d prime
d=3 mod 4

Now we use Abel’s summation formula, stated below.

32
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Theorem 11. (Abel’s summation formula) If (a,,),en+ is a sequence and f(z)
is a continuously differentiable function on [1, 00), then:

Zanf(n): / Alt

n<x
where A(x) =}, _, an.
If we let f(x) = 1/2'/5 and

1 if n is prime
a, =
0 else

Y

we get A(z) = >, a, = m(x). Applying Abel’s summation formula, we

get:
1 an  w(X) 1 [*7(t)
Z qie Z nife =~ X1+ 6/ £5/6 d.
0<d<X n<X 2
d prime

To calculate the integral, we use the prime number theorem,

_,,6/5
X (t) X 1 t =u
W~ | eieay ¢ 6 1
2 1 o t'/%logt dt :gu /5 du
X5/6 5/6 5/6
1 X 6 X
= / du ~ Li(X®/%) ~ = :
956 logu log X5/6  5log X

Thus we have:

Z 1 X +1<6X5/6) 6 X°/6
1/6 ~ 1/6 = T R P

0d<d<Xd/ X1/6log X 6 \Hlog X 5log X
prime

and subsequently

Z/ 1 3 X5/6
16 & :
X ueo dv/ 5log X

Thus, under hypothesis [I] we have

Z/ . Ay X +333 X5/6
2 log X 5 log X'

—X<—d<0
3|h(—d)

Note that the exponent 5/6 arose from adding one to the exponent —1/6 in the
sum we started with.
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6.2 Histograms

In this section, the complete collection of the histograms of (Y;) are presented.
The definition of Y; is

v R f(d)
NEOTA)

Y

and for a good model f(d), Y; should be normally distributed with a mean of
0 and standard deviation of 1.

For each conjecture, we present two histograms for N = 107,105 105 and
104[] For each N, the left histogram use the Cohen-Lenstra heuristc f¢L(d) =
A., and for the right histogram we include our higher order term, f.(d) =

A + %, where B. is our least square estimate, documented in tables 4.4

Below each figure, the mean and standard deviation of (Y;) (uy and oy) is
presented, and a normal distribution with these parameters, N (uy,oy), is
drawn in orange.

ISince class groups with Syl (H (—d)) 2 Z3 x Z3 x Z3 are so uncommon, we only present
histograms for N = 107 and N = 10° in section
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6.2.1 3-divisibility
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6.2.2 5-divisibility
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6.2.3 7-divisibility
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6.2.4 3-Sylow subgroup 7Z,
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Figure 6.15: N = 10°
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6.2.5 3-Sylow subgroup 7Z; x Z;

08
020

06

04
-l || | ﬁlr‘l““ﬂ || il
N v v o malhIWIAHHE W i .

Ly = —22.470, 0y = 4.942 Ly = 0.059, 0y = 1.094
Figure 6.17: N = 107
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Figure 6.18: N = 10°
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Figure 6.19: N = 10°
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Figure 6.20: N = 10*
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6.2.6 3-Sylow subgroup 7Z,;
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Figure 6.22: N = 10°
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Figure 6.23: N = 10°
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Figure 6.24: N = 10*



CHAPTER 6. APPENDICES 41

6.2.7 3-Sylow subgroup Zg x Z;
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Figure 6.27: N = 10°
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Figure 6.28: N = 10*
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6.2.8 3-Sylow subgroup 73 x Z3 x Zs
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