ON THE AVERAGE EXPONENT OF ELLIPTIC CURVES MODULO p

TRISTAN FREIBERG AND PAR KURLBERG

ABSTRACT. Given an elliptic curve F defined over Q and a prime p of good reduction, let
E (F,) denote the group of Fy-points of the reduction of E modulo p, and let e, denote the
exponent of said group. Assuming a certain form of the Generalized Riemann Hypothesis
(GRH), we study the average of e, as p < X ranges over primes of good reduction, and find
that the average exponent essentially equals p - ¢cg, where the constant cg > 0 depends on
E. For E without complex multiplication (CM), ¢g can be written as a rational number

(depending on E) times a universal constant, ¢ := ], (1 — m), the product being

a
over all primes q. Without assuming GRH, we can determine the average exponent when E

has CM, as well as give an upper bound on the average in the non-CM case.

1. INTRODUCTION

Given an elliptic curve E defined over QQ, and a prime p for which E has good reduction,
let E (F,) denote the group of F,-points of the reduction of £ modulo p. The behavior of
E (F,) as p varies over the primes has received considerable attention — the oscillations of
the cardinalities |F(F,)| is a central question in modern number theory, and the structure of
E (F,) as a group, for example, the existence of large cyclic subgroups, especially of prime
order, is of interest because of applications to elliptic curve cryptography [10,12].

If p is a prime of good reduction then E(F ») = Z/d,Z x Z]eyZ for uniquely determined
integers d,, e,, with d,, | e,. The size of the maximal cyclic subgroup, that is the exponent,
of E (F,) is therefore e,. For primes p of bad reduction we set e, = 0. The purpose of
this paper, motivated by a question of Joseph Silverman (personal communication), is to
investigate the average of e, as p varies. Conditional on a certain form of the Generalized
Riemann Hypothesis (GRH), we will show that there exists cg € (0, 1) such that

Zepch-Li(XQ) as X — 00,

p<X

where Li (X?) : f2 dt/(logt) is the logarithmic integral of X?. Since 37y p ~ Li(X?)
(by partial summation and the prime number theorem), we may interpret thls as the average
value of e, being p - cp.

Before stating our main theorem we explain what we mean by GRH. Given a positive
integer k, let L, denote the k-division field of E, that is, the number field obtained by
adjoining to Q the coordinates of all points in E[k], the subgroup of k-torsion of points of E.
Let (z, (s) denote the Dedekind zeta function associated with Lg. We say that (, (s) satisfies
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the Riemann Hypothesis (RH) if all zeros with positive real part lie on the line Re(s) = 1/2.
By GRH we will here, and in what follows, mean that the Riemann Hypothesis holds for (y,,
for all positive integers k.

Theorem 1.1. Given an elliptic curve E defined over Q, there exists a number cg € (0,1)
such that on GRH we have

> ey =cp-Li(X?) + Op (X(log X)°/)
p<X

for X > 2. The implied constant depends on E at most.
Settling for a weaker error term, we can remove the GRH assumption for CM-curves.

Theorem 1.2. Let E be an elliptic curve defined over Q with complex multiplication, and
let cg be as in Theorem 1.1. For X > 3, we have

Zep:cE-Li(Xz)-{1+OE ((ll(;ggl%)}.

p<X

The implied constant depends on E at most.

(Note added in proof: The error terms in Theorems 1.1 and 1.2 have recently been improved
by Wu [22] and Kim [9]. See Section 8 for details.)

For non-CM curves we can give an unconditional upper bound of the correct order of
magnitude. In the following theorem, we use the notation F(X) < G(X), which means that

limsupy_, F(X)/G(X) <1

Theorem 1.3. Let E be an elliptic curve defined over Q, and let cg as in Theorem 1.1. As
X tends to infinity, we have

Zep - Li (X )

p<X

We will now describe c¢g in more detail. With ny, = [L; : Q] denoting the degree of
the extension Lj/Q, w(k) the number of distinct prime factors of k, ¢(k) the Euler totient
function of k, and rad(k) the largest squarefree divisor of k, we have (whether or not E has

CM)

= (—1D)* R p(ra
Z d(k) (1.1)

1 lmLk

In Lemma 3.5 below, we will show that this sum is absolutely convergent, and that cg € (0, 1).
If £ does not have CM, there exists a universal constant

3

c=]] (1 v 1§(q5 — 1)) = 0.8992282528 . . ., (1.2)

q

such that cg/c is a rational number depending only on E. If E has CM by an order O
in a imaginary quadratic number field K, cg can similarly be written as a rational number
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(depending on E) times an Euler product, depending only on K, of the form

[ (1_612(1—1/(5(1—1/613))' ] (1_612(1+1/c$(1—1/q3)>'

q splits in K q inert in K

We will indicate how to prove the last two statements in Section 7.

1.1. Background and discussion. The multiplicative order of a number modulo p. Given a
rational number g # 0, £1 and a prime p, let [,(p) denote the multiplicative order of g modulo
p (unless p divides ab, where g = a/b, a,b coprime, in which case set l;(p) = 0). In [11],
the second author and Pomerance, on assuming the Riemann hypothesis for Dedekind zeta
functions associated with certain Kummer extensions, determined the average of [,(p) as
p < X ranges over primes by showing that

. X?
Z lg(p) = Og -Li (X2) + O ((logX)3/2—2/logloglogX> ?

p<X

where C, can be expressed in terms of the degrees of certain Kummer extensions, namely

(D We(krad(k) o~ (=1)*Wo(rad(k))
Cg T Z k2 . [Q(gl/k’e%m’/k) . @] - Z k- [Q(gl/k’ehﬁ/k) . Q}'

Thus, even though we consider two rather different quantities associated with groups
modulo p, namely the multiplicative order of a fixed element modulo p and the exponent of
an elliptic curve modulo p, the sums defining C, and cg are very similar; the only difference
is that degrees of Kummer fields replace degrees of k-divison fields. (Note that the exponent
fluctuations for (Z/pZ)* are essentially trivial since the group is cyclic.) Further, C; can also
be written as the product of a rational number (depending on ¢) times a universal constant,
namely C':= [] (1 —¢/(¢’ — 1)) = 0.5759599689 . .. (the product being over all primes g).

Upper and lower bounds on e,. As p — oo, Hasse’s bound implies that |E(Fp)|/p ~ 1
which, together with the rank of E(F,) being at most two, implies that VP K e, L p. For E
any non-CM curve, Schoof [15] improved the lower bound to e, > |/p - log p/loglog p, and
noted that this is unlikely to hold for CM curves since the curve E defined by 3% = 22 — z
has exponent e, = y/p — 1 for any prime of the form p = (4n)* + 1.

If one removes zero density subsets of the primes, Duke [5] has significantly improved
the lower bound. Namely, if f : Rt — R is any increasing function tending to infinity,
e, > p/ f(p) holds for ‘almost all’ primes, in the sense that it holds for all but o(7 (X)) primes
p < X. (As usual, 7(X) denotes the number of primes up to X.) For CM curves the result
is unconditional, whereas for non-CM curves GRH is assumed. (For the latter he also shows
that the weaker bound e, > p**/log p holds unconditionally for almost all primes.)

Finally we mention that Shparlinski [20] has shown that for any ¢ > 0 and p large,
e, = p'~¢ holds for almost all elliptic curves F in the family {E,}}p, where E,, denotes the
curve y? = 2% + ax + b.

The proportion of primes for which E(Fp) s cyclic. A question closely related to the
size of the exponent is cyclicity — how often does the equality |E (F,)| = e, hold? Borosh,

k=1 k=1

Moreno and Porta [1] conjectured that E(F,) is cyclic for infinitely many primes p, except in
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certain cases where this cannot be so for ‘trivial reasons’. Serre later proved [19], on GRH,
that

i~ as X — o0,
7(X) g{ E

E(F,) is cyclic

(1.3)

where Y * denotes a sum restricted to p at which E has good reduction, and, with (k)
denoting the Mdbius function of k, ¢, = > 7, pu(k)/ng,. Furthermore, ¢ > 0 unless all
2-torsion points on E are defined over Q, an obvious obstruction! to E(F,) being cyclic.

Cojocaru and Murty [4] obtained versions of (1.3) with effective error terms, and in the
special case in which E has CM, Murty [13] was quite remarkably able to establish (1.3)
unconditionally (the proofs were later significantly simplified by Cojocaru [2]).

For more background on this and related topics, we recommend the nice survey article [3]
by Cojocaru.

2. OUTLINE OF THE PROOF OF THEOREM 1.1

We begin by noting that our approach is in spirit a synthesis of the ideas in [11,19],
together with refinements by Murty [13] and Cojacaru [2].

As for notation, in this outline we shall use ‘~’ to indicate equality with an implied error
term, and p shall always denote a prime of good reduction. Recall that e, = |E(F,)|/d,, so
if | E( F,)| =: p+ 1 — a,, then, since |a,| < 2,/p by Hasse’s inequality, we have

> e Z i (2.1)

p<X p<X

We can treat the sum Zp <x P/dp by using partial summation and the prime number theorem,

1
p<X dp”

Since d,, | e, we have d2 < |E(F,)| < (y/p+1)? by Hasse’s inequality, hence d,, < 2v/X for
< X. Asin [11], we use the elementary identity ; = Zhﬂk %h) to write

IFED IDBE D DI D D! (22)

p<X dp p<X hjldy, hj<2vX ’15:<|§(
J

once we have evaluated the sum >

Now, by Lemma 3.1, a positive integer £ divides d, if and only if p splits completely in Ly,
and the Chebotarev density theorem (cf. Lemma 3.3) then gives

Zl% Z 1%M.

p<X p<X k
kldp p splits completely
in Lk/Q

IThe only way for E(Q) to have a rationally defined subgroup isomorphic to Z/¢Z x Z/{Z is if £ = 2; this
easily follows from the fact that E(R) is isomorphic to either R/Z or Z/2Z x R/Z.



ON THE AVERAGE EXPONENT OF ELLIPTIC CURVES MODULO p 5
Thus,
1u(h) — (—1)*®g(rad(k))
IECLD SEPSHECE) SRS 3 CHedl) g

s <X vy ! ”Lha' k=1
hj<2 P hj<2vVX
hjldp

The last error term in (2.3), and indeed showing that the last sum is absolutely convergent,
involves bounding a sum of the type Zk>Y o . We do this in Lemma 3.4, but here lower

bounds for ny, are crucial.

To give lower bounds on n, , we use Serre’s open image theorem [16,17]. If £ is a non-CM
curve, compactness together with the image being open gives that the image of the absolute
Galois group has finite index inside GLy(Z), hence ny, >p ¢(k)k3. If E is a CM curve, a
similar open image result of Serre gives that ny, > ¢(k)?. (For more details, see Proposition
3.2.)

Now, combining (2.1), (2.2), and (2.3), we obtain, via partial summation and the prime
number theorem, that

S d(k))
Z ep, ~ Li X2 Z /{:nLZa 5

p<X k=1

which is the claimed main term.

As for estimating the error terms, a slight complication arises — even assuming GRH,
we cannot directly bound the sum of the error terms in the Chebotarev density theorem for
Qarge’ k, that is, k € (v X /(log X)?,2v/X]. To deal with this range Serre used the fact that
the cyclotomic field Q(e?"/9) is contained in L,; the sum can thus be restricted to primes
p = 1 mod ¢, and Brun’s sieve is then enough to bound the errors arising from the large
k. However, to make an exponent saving in the error term we use a refinement of Serre’s
approach due to Cojacaru and Murty [4] (see Lemma 3.6 for further details.)

3. PRELIMINARIES

In this section we collect some needed results on elliptic curves.

Notation. Throughout, p, ¢, and ¢ denote (rational) primes; h, j, k, and m denote positive
integers. The arithmetic functions w, ¢, rad, and p have already been introduced; also, 7(k)
is the number of divisors of k, and o(k) is the sum of the divisors of k.

Whenever we write F = O (G), F < G, or G > F, we mean that |F| < ¢ - G where ¢ is
an absolute positive constant. By F' < G we mean that ' < G < F.

The logarithmic integral is defined for numbers ¢ > 2 by Li (¢) := 2t 10‘;“u.

We fix an elliptic curve E, defined over Q, of conductor N. The results in this section
relate to E. For primes p of good reduction (that is, p { N), d, and e, are the unique positive
integers such that we have E(F,) = Z/d,Z x Z/e,Z with d, | e,. Thus e, is the exponent
of E(F,) if pt N, and we set e, = 0 if p | N. Also, if pt N, a, := p+ 1 — |E(F,)|, and =,
denotes a root of the polynomial X? — a,X + p € Z[X].

The k-division field of E is denoted Ly; ny, denotes the degree of the extension Lj/Q,
and Ay, denotes its discriminant.
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Lemma 3.1. If p1 kN then the following statements are equivalent.
(1) E(F,) contains a subgroup isomorphic to Z/kZ x 7./ k7.
(2) p splits completely in Ly,.
(3) ””k_l is an algebraic integer.

Proof. For the equivalence of (1) and (2), see [13, Lemma 2]. For the equivalence of (2) and
(3), see [2, Lemma 2.2]. O

We now give some estimates on the degree of the k-division field of E.

Proposition 3.2. (a) L, contains Q(e*™/*) (the k-th cyclotomic field), hence p splits com-
pletely in Ly only if p=1mod k. Also, ¢(k) divides np,, .

(b) nr, divides |GLy(Z/KZ)| = k* [T (1=1/g) (1 =1/¢%).

(c) If E is a non-CM curve, then there exists a constant Bg > 1, depending only on E, such
that |GLy(Z/KZ)| < Bg - ny, for every k.

(d) If E has CM, then ¢(k)* < np, <k

Proof. (a) See [21, Corollary 8.1.1, Chapter III].

(b) First of all note that ny, = |Gal (Lx/Q) | as L,/Q is a Galois extension. The action
of the absolute Galois group Gal (@/Q) on the k-torsion subgroup E[k] of E induces a
representation ppy, : Gal (Q/Q) — Aut(E[k]) & GLy(Z/kZ), which is injective.

(c) With T,(E) denoting the f-adic Tate module of E, the action of Gal (Q/Q) on
[T, Aut(Ty(E)) = [], GLa(Z¢) induces a representation pg : Gal (Q/Q) — [], GLa(Z,). By
Serre’s open image theorem [17, Theorem 3], the image of pg is open, and since [ [, GL2(Z)
is compact, the image is of finite index. Since Gal (L;/Q) is isomorphic to the projection of
Im(pg), by the map [, GL2(Z;) — GLo(Z/kZ), the result follows.

(d) If E has CM, Serre’s open image result for the CM case [17, Corollaire, Théoreme 5,
p.302] gives that ny, > ¢(k)®. (If E has CM by an order O, the image is open in [, O/,
where O, = O ® Z,.) The upper bound follows from [(O/kO)*| < k2. O

Lemma 3.3. (a) There exist absolute constants ¢y, B > 0, such that the following statements
hold. (i) If ¢k N? < log X, then, whether or not E has CM,

Li(X
{p< X :p{Nandk|dy}| = ;( ) + 0 (X exp (—B(log X)*/1)) . (3.1)
Ly
(ii) If c;k®N? < log X and E has CM, then
Li(X
Hp< X :ptNand k| dy}| = 1(X) +0 (X exp (—B(log X)*¥)) . (3.2)
Ly,

(b) For X > 2 we have, on GRH, that
Li (X)

nLk

{p< X :ptN andk|d,}| = +0 (XY?1log(XN)) . (3.3)
Proof. Note that if p < X and p t N, then a priori we have k < 2v/X for k | d,, because
dy | €y and so d2 < |E(F,)| < (/p + 1)* by Hasse’s inequality. Since p { d,, (cf. [21, Exercise
5.6(a), p.145]), the conditions p { N and k | d,, are equivalent to p { kN and k | d,, that is
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pt kN and E (F,) contains a subgroup isomorphic to Z/kZ x Z/kZ. Therefore, by Lemma
3.1,

> 1=|{p<X:pf{Nandk|d,}|+ O (log(XN)), (3.4)

p<X
p splits completely
in Ly,/Q
where the O (log(XN)) term is the negligible contribution from the primes p dividing kN:
w(kN) < log(kN) < log(XN).
(a) (i) As L/Q is a Galois extension, an effective form of the Chebotarev density theorem
(for example, see [14, Lemma 2]) gives

Li(X
> 1= 0 (xen (-8 /EY)). (5.5)
nr, MLy
p<X
p splits completely

in Ly /Q

where B is an absolute positive constant, provided
¢ - max {nLk|ALk]2/”Lk,nLk (log |ALk])2} < log X, (3.6)

for a certain absolute positive constant c. We claim that there is an absolute positive constant
c1 such that if ¢; k' N? < log X, then (3.6) does indeed hold. In that case, Proposition 3.2(b)
gives \/nz, < k* < (log X)"" (we may suppose that ¢; > 1), so applying this to the error
term in (3.5) and combining with (3.4) gives (3.1).

We now prove our claim. The first of the following sequence of inequalities holds with any
Galois extension L/Q in place of L;/Q [18, Proposition 6, p.130]; the second holds because
the ramified primes of L;/Q are divisors of kN [21, Proposition 4.1(a), Chapter VIIJ:

log |A
log | A, <logny, + Z logp < logng, + Z logp < logng, +log(kN). (3.7)
Ny, p rami/ﬁés in plkN
Ly

Our claim follows straightforwardly using this and the inequality ny, < k*.
(ii) Similar, but in the CM case we use the fact that ny, < k?, by Proposition 3.2(d).
(b) By [18, Théoreme 4, p.133], on GRH we have

Li(X log |A
nr nr

p<X k k
p splits completely
in Ly, /Q

Applying (3.7) and the inequality n;, < k* < X?, we obtain (3.3) by putting this into
(34). O

Lemma 3.4. With Bg as in Proposition 3.2(c), we have

ZL<<{1/Y if E has CM, (38)

= Bg/Y? if E is a non-CM curve,
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and
Z o(k)r(k) < (logY)/Y if E has CM, (3.9)
= ko Br(logY)/Y? if E is a non-CM curve. '
Proof. In the CM case we have, by Proposition 3.2(d), that
1 1 1
— <K — <L (3.10)
,;, N, ,;, o(k)? Y

The last bound holds because ¢(k) ~ k ‘on average’. It can be proved by entirely elementary

means, the key being the identity ﬁ =D ik |; Dl We spare the reader the details. Similarly,

since |GLy(Z/kZ)| = k* [Ty (1 —1/q) (1 - 1/¢* ) > k3¢(k), Proposition 3.2(c) gives

> o

1
B Ej— —=
S 55m S Y
k>Y k>Y

nLk

in the non-CM case.
Again if E has CM, we have

o(k)r(k) o(k)r(k) logY
2. ko, <2 ko2 S Y

k>Y

One way to obtain the last bound is to establish that »_,_, o(k)7(k) < Y?logY’, then

apply partial summation to show that >, , o(k)7(k)/k* < (logY)/Y, and use the identity

ko — D ik ‘gg ;l two more times. Similarly, if £ is a non-CM curve, then

(k)

k>Y

o(k)t(k olk)t(k BrlogY
Z ()()<<BEZ ]{(;4;(2))« Y3g .

Lemma 3.5. The sum in (1.1) defining cg is absolutely convergent, and cg € (0,1).
Proof. Absolute convergence of the sum in (1.1) follows at once from (3.8). To show that
cg € (0,1), first note that for every j > 1, Zh>1 <g 1 by (3.8), because nr,, < ng,.
Next, we claim that
Z alh (J=1). (3.11)
h>1  Lhs

To see this, fix any j > 1 and any Y > j. Let Q =[] 4<v ¢ and let X be large enough in
terms of Y and N so that log X > cl(QY)14N2 where ¢; is the constant of Lemma 3.3(a).
Also assume that ), o [(h)| = 2Y < log X. An inclusion-exclusion argument gives

S )y > L

p<X hlQ p<X
pJ(Nvdp:J pJ[N7h]|dp
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Applying Lemma 3.3(a)(i), we obtain

Z Z Il?flL 2YX exp (—B(log X)5/14)) )
p<X hl@ M
PIN,dp=3j

Dividing by Li (X) and letting X tend to infinity, we find that

0 < limsup F (lX) Z Z plh

n
X—o00 p<X A h‘Q th
piN,dp=3j

Letting Y tend to infinity (cf. (3.8)), we obtain (3.11).
Now, for any Y > 1,

)LD WIES WO IR poree 3ii}
G<Y h>1 Lng E>1 k};j<y <y ULk g E>Y UE b=k

Since » ;. p1(h) vanishes unless k = 1, the main term here is just 1/nr, = 1. Applying (3.9)
to the O-term (note that 3, ., 1 = 7(k) < o(k)7(k)/k), then letting Y tend to infinity, we

obtain
>yt p(h (3.12)

j=1 h>1 Lnj

Now since >, u(h) - h = (—1)“’(’“ o(rad(k)), we have

=y - Z“ Z Z“ (3.13)

o1 Lk i 17 w1

convergence being assured by (3.8), (3.11) and (3.12). In view of (3.11), (3.12) and (3.13),

we see that 0 < cg < 1. In fact recalling that ¢, = >, % is the cyclicity constant, we
= h

can deduce from (3.11) — (3.13) that ¢g € (0,1] N [¢};, 5(c + 1)], with ¢g = 1 if and only if
¢t = 1. However, that ¢ < 1 can be seen by considering {p < X : p{1 N and ¢ > t}. By the
Chebotarev density theorem (cf. Lemma 3.3(a)(i)) we have, for ¢ > 2 and sufficiently large
X,

1 1
— Up< X:ptN,qld N <le—— {p< X :ptNand2|d 1—
0 {p pIN,q|d, = q>t}| ) {p p{ N and 2 |d,}| <

On the other hand, using inclusion-exclusion, followed by Lemma 3.3(a)(i) and (3.8), one can
show that

2nL2 .

1 X 1 5/14
w00 s XeptNgldy =5 g> 8] =+ Op (;) +Op (2" exp (= B(log X)¥)) .
For suitable t = ¢(X) and sufficiently large X, comparing gives ¢}, < 1. OJ

Lemma 3.6. (a) For X,Y > 2 we have
3/2

X
{p< X :ptN andd, > Y} <

v+ X'%1og X. (3.14)
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(b) If E has CM and 2 <Y < log X, then
X loglog X
Ylog X

Proof. (a) First of all note that since d,, | e,, we have d < |E(F,)| < (/P + 1) by Hasse’s

inequality. Thus, if p f N and d, > Y then d, = k for some Y < k < 2v/X. But d, = k
implies % | (p +1 — a,), and also k | p — 1 by Lemma 3.1 and Proposition 3.2(a); hence
k| a, — 2. Since a, < 2,/p by Hasse’s inequality, we therefore have

P NP DV DL D DD B

Hp< X :ptNandd, >Y}| < (3.15)

p<X Y<k<2vX |al<2vX ~ p<X Y <k<2vVX PSX
prv dp >Y a#2 ap=a ap=2
a=2mod k K*|p+1-a k2|p—1
X
< E + 1)+ E 2 +1
Y<k<2f Y<k<2f

(Here we have used the elementary bound Zk>Y Emm < Y- m, > 2.)

(b) Suppose E has complex multiplication by an order in the imaginary quadratic field
K = Q(v/—D), D a squarefree positive integer. We begin with the following observation.
Since p 1 d,, the statement ‘p { N and k | d,” is equivalent to the statement ‘p { kN and p
splits completely in L’ (Lemma 3.1). In that case p = 1 mod k by Proposition 3.2(a). If
a, = 0, then we also have p = —1 mod k, because k* | dye, = (p + 1 — a,). But we can only
have both p=—1modkand p =1 mod k if k = 1 or 2. Therefore, we necessarily have

ap 7# 0 when k | d, and k > 3. Moreover, ™2 L is an algebraic integer (Lemma 3.1), and since

Q(m,) = K when a, # 0 (see [2, Lemma 2.3]), we have that ﬂpk—1 c O
Now,

{p<X:pftNandd,>Y} C P2 (X)UP(X,Y)U P5(Y), (3.16)
where
P(X):={p< X :ptNand q|d, for some q € (log X,2vX]},
Py X,)Y) ={p< X :ptNandq|d, for some q € (Y,log X},
DY) ={p< X :pIN,d,>Y,and ¢ |d,=q <Y}
C{p< X :ptN,kld,for some k € [Y,Y?]}.

Since 2 <Y < log X we have, by our initial observation, that

20X = )] Yoo Y dooL (3.17)

log X<q<2vX  P<X log X<q<2vX  pSX
p)(NvQ‘dP ﬁp];lGDK
ap#0
Since 7, has norm p in K/Q, it follows that
AX)< ) 1S(X;D,q)l, (3.18)

log X<q<2v X
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with

2 2
S;(X; D, k) = {ng:p: (3—?/@4—1) —|—D<§) k? forsomeu,vEZ},

and j =1if =D =2,3mod 4; j =2 if —D =1 mod 4. A trivial bound for |S;(X; D, q)| will
suffice here:

YISl > vX (E—l—l)

log X <q<2vV'X log X <q<2vV'X qv D q
Z 1 — Z 1

g>log X q<2vX

X

X loglog X.
< (log X)(loglog X) + VX loglog

[0 obtain the last bou (]7 apply partial summation and the prilne number theorem to each
Sum.)

We bound |Z%5(X,Y)| and | Z5(Y)| similarly, but we need the following non-trivial bound
[2, Lemma 2.5]:

X X loglog X
|sj<X;D,k>|<<<f+1> VXloglog X
k kVDlog (V)

provided k < v/ X — 1. Thus,

PAXY) < D 1S(X:iD,qg)
Y <g<log X

E VX loglog X
< (q “)wmg(@)

< X loglog X Z% n VX loglog X Z 1
log (%) >Y q log <%> q<log X q
Xloglog X
(log X)Y logY’

Y <g<log X

(3.20)




ON THE AVERAGE EXPONENT OF ELLIPTIC CURVES MODULO p 12

and
25V < D [S(X; D k)l
Y <k<Y?
X Xloglog X
o3 () e
Y<k<Y?2 k\/ﬁlog (%)
(3.21)
< X loglog X Z 1 VX loglog X Z 1
it =Tt =Sl — -
log (ﬁ_l) Y<k<Y? ki log (@> Y <k<Y? k
Xloglog X  vX(loglog X)(log Y)
(log X)Y log X
Since Y < log X, putting (3.17) — (3.21) into (3.16), we obtain (3.15). O
4. PROOF OF THEOREM 1.1
Let X > 2 and set
X1/5
Y=Y(X) = —.
X)= g x27
We proceed on GRH, so that partial summation applied to (3.3) gives
S op=x Y 1_/ per 1)
pX <X ptNk|dp
ptN, k|dp pIN, k|dp
XLi(X 1 4.1
_ ALY / Li (£) dt + O (X*2log(XN)) (4.1)
nr, nL, J2
~Li (X?)

+ 0 (X3?log(XN)).

nLk

Here we have used that f2 Li(t) dt = XLi(X) —Li(X?) +0(1).
Now, e, = |E(F,)|/d, = (p+1 a,,)/d if pt N, and by definition e, = 0 otherwise, hence

> e, = +Z d = To+ &. (4.2)
p<X p<X dy p<X
PIN PIN
Since |ap| < 2,/p by Hasse’s mequahty, we have
— Oy 1/2 3/2
50_2 T <Y KXY 1<X (4.3)
p<X p<X p<X
PIN
We write
ReY Lo Y Loy femes
p<X P p<X P p<X p
PIN pIN,dy <Y piIN,dy>Y
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To bound &, we apply (3.14), and then use the definition of Y:

p X X5/ X3/210gX 19/10 6/5
= Y <z Y I<D/+ < X19/10(log X)6/5,
= d, Y = Y Y
p*NvdP>Y pJ(N7dP>Y

We partition 77, using the identity % = Ehﬂk @, as follows:

, u(h) u(h) u(h)
T = g E E E - E g =T —
p<X hjldp p<X  hjldy p<X hjldyp
piN,dp <Y PN hj<Y piN,dp>Y hjY

We now consider &7, making yet another partition:

511 = Z Z ’LL + Z Z M :512 +(€13.

p<X  hjldp ps<X hjldp
PN hj<Y PN hj<Y
dp>Y? Y<dp<Y?

Next, we note that

>t wh) o Z Yy Z S <Y
}f;]|d{; ]<Y h<Y/j _7<Y
J<

Thus, by (3.14) (with Y2 in place of Y'), and by the definition of Y, we have

Ep = Z ZM <<XY21

p<X hjldp p<X
PIN  hj<Y PN
dp>Y? dp>Y?
5/2
<35+ XY log X < X'/%(log X)5/5.

For &3, we use

d, 7(d,)o(d,
ZM <<ZZ j: (C){p( )

hjldp hldp J‘dp Jjldp
hj<Y

Thus,

&3 = Z PZMT

p<X hjldp
N hji<Y

Y <d,<Y?
7(dp)o(dy) 7(k)o (k)
< ¥ o leGe v S
p<X Y <k<Y?2 <X
pIN ptN, k|dp

Y <dp<Y?

511

13

(4.4)

(4.5)
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We apply (4.1) to the last sum, noting that Li(X?) < X?/log X. Then we use (3.9), as

well as the bound Zk<y2 7( )a(k < f2 logtdt < Y?logY. (Apply partial summation to
> ket T(K)o(k ) < t?logt.) Thus

T(k)o(k
3 ()k() S

Y <k<Y?2 p<X
p*Nr k | dp
X? T(k)o(k) T(k)o(k)
< + X3 log(XN —
log X Z knr, 8 )k;; k

- @i})‘g + X3/2(log(X N))Y2log Y if £ has CM,

10);2){ Brloe¥ 4 X3/2(log(XN))Y?2logY. if E is a non-CM curve.

Combining and using the definition of Y, we obtain
X 1910 (log(X N))®/5 if £ has CM,
SERS 7/5 6/5 19/10 6/5 : (4.6)
BrX™*(log X)%° + X?/10(log(X N)) if £ is a non-CM curve.
Finally we consider 7q;. By (4.1), and since
u u u o(k)
<y
2Tl T S P <Y
hj<y k<Y hj= k<Y |hj= k<Y
we have
u p(h
EEDVDIE LDV D IR
p<X  hjldp hj<Y J p<X
PN hj<Y PN, hj|dp (4.7)
=Li(X?) 3 5 i) L0 (X52Y log(XN)).
nL
hj<Y hj

Now, for prime powers ¢"* we have

Z“ o1 1-g
qul ’
hj=q™

and so by multiplicativity we have

plh) _ppl=a _ (=1 _ () Wg(rad(h))
CERET T

(Here, ¢™||k means that ¢™ | k but ¢ t k.) Therefore, setting cg as in (1.1), and using
(3.8), we obtain

ph) 1~ (ED*Wg(rad(k)) 1
ZT__Z T +O<Z—>

n
>y Lk
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et O(1/Y) if £ has CM,
- O (Bg/Y?3) if E is a non-CM curve.

Putting this into (4.7), then using the definition of Y, we obtain

4 0 ((1o§;)53/o> + O (X'10(log (X N))?/) if F has CM,
O (BeX™?(log X)'/%) + O (X*"/1°(log(XN))*/*) if E is a non-CM curve.

(4.8)

(4.6), (4.5), (4.4), (4.3), and (4.2), the largest error term
/5), we obtain

Gathering the estimates (4.8),
being of size O (X'¥/1%(log(X N))S

> ey =Tir = (€ + i) + & + & = cp - L (X2) + O (X1 (log(X N))*F%)

p<X
plus O (BEX7/5(log X)6/5) if £/ is a non-CM curve, this term being dominated by the other
O-term once X > B3, O]

5. PROOF OF THEOREM 1.2

We now fix an elliptic curve F defined over Q, of conductor N. We suppose that E has
complex multiplication by an order in the imaginary quadratic field K = Q(v/—D). We
know that there are only nine possibilities for D, namely D € {1,2,3,7,11,19,43,67,163}.
(See [21, Appendix C, §11].)

Let ¢; be the absolute positive constant of Lemma 3.3(a), and let ¢g, co be positive con-
stants to be specified presently. Suppose X > exp (coN?) and set

1
log X\ 4
Y =Y(X,N) ::cg( IE )

We choose ¢ and ¢, so that 2 < Y < (log X)'? and 2¢,; Y N? < log X.
Similarly to (4.1), partial summation and Lemma 3.3(a)(ii) give

Cx2
Z p= Li (X7) +0 (X2exp (—B(logX)3/8)) , (5.1)
p<X MLy

pIN, k|dp

provided c;k®N? < log X. One of the error terms involved is

X
2 pJva k ‘ dP Lk

We can apply (5.1) to fexp(c 28 NQ)( -)dt, but we can only apply a trivial bound to the rest

of the integral:

exp(c1k8N?) ) exp(c1k8N?)
/ (Z p<t 1 — L‘—(t)> dt < / tdt < exp (201k8N2) .
2 2

PN kldy Tk
This is O (X) if K < Y3, because 2¢;Y3N? < log X.
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We now proceed as in the proof of Theorem 1.1. The differences are as follows. Analogous
with (4.4) and (4.5) we have, by (3.15), that

p X X?  loglogX
&= — < = 1 . , 5.2
! 2. oSy 2 Sigxw (5:2)
p<X p<X
PptN,dp>Y PtN,dp>Y
and
X2
,u log log X
= E E — KXY E 1 ) .
&2 << < logX V2 (5.3)
p<X hjldp
ptN hj<Y
dp>Y3 dp>Y3

Analogous with (4.6) we have

T(k)o(k
N

p<X hjldp Y <k<Y3 p<X
MN ) h]<Y pJ(N7k|dP
Y <dp<Y?

Since (5.1) holds uniformly for & < Y3, we may apply it to the last sum to obtain

X 7(k)o (k) 2 3/8 7(k)o(k)
i3 < log X ,; fne, + X exp (—B(log X)*'®) k;g —

We use (3.9) to bound the second last sum and an elementary bound for the last sum. Thus,
we have

X% logY X? logY
& X? —B(log X)*#) - Y?logY : : 5.4
13<<ng v T exp (—B(log X)”*) og <<logX v (5.4)
Analogous with (4.8), we have, by (5.1),
: u 1
T = g E = L1 ) <0E +0 (?>> +YX%exp (—B(log X)3/8)
p<X  hj|d,
PIN  hj<Y (5.5)

o X?
:cE-Ll(X)—i—O(YlOgX).

Gathering the estimates (5.5), (5.4), (5.3), (5.2), and (4.2), we obtain

ZGpZﬂl—(512+513)+51+50

p<X
X? [loglog X N logY
log X \ V2 Yy ))

:cE-Li(X2)+O(

Since Y = (N~%log X)'/?*  the theorem follows. O
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6. PROOF OF THEOREM 1.3

Let E be an elliptic curve defined over Q, of conductor N. We make no assumptions as
to whether or not £ has CM. Let ¢; be the absolute positive constant of Lemma 3.3(a), and

let cg, ¢y be positive constants to be specified presently. Suppose X > exp (cgN?) and set
1

log X | %

Y =Y (X,N) :=cylog [W] :

We choose ¢y and ¢y so that 2¢; exp (42Y) N2 < log X.
As in the proofs of the first two theorems, we have

o p p 1—a, . 3/2
Eep_ E s E T y =Ti+&+0(X?). (6.1)
p<X p<X p p<X Popgx TP

pIN,dpy <Y pIN,dy>Y PIN

Since d, < 2,/p, and since p = 1 mod j if d, = j by Proposition 3.2(a), we have

1 1 1
PO D DD DR D DD DR
p<X P yojcovx p<X Y <j<2vX p<X
piN,dp>Y piN,dp=j p=1mod j

By the Brun-Titchmarsh inequality [6, Theorem 3.7,

X 5T T S e Sk 20 < T
' ' ) log(X/7 log X 107 Y log X
vaove? X vaovx? (i) log(X/5) ~ log X £ jo(j) og

(cf. (3.10) for the last bound). Hence

a= Y T<x ¥ e X (6.2)
b dy, d,  YlogX '
p<X p<X
piN,dp,>Y piN,dp>Y

We claim that, with cg as in (1.1) and Bg as in Proposition 3.2(c), we have

Y log X

cp - Li(X2) + 0 X—) if £ has CM,
e - Li(X2) +0 (=5 BpX® > if F is a non-CM curve.

T. <

1 XX

(6.3)

Ylog X + Y3log X

Here and in the next two instances, by F' < G + O (H), we mean that either F' — G < 0 or
0 < F — G < H. The theorem follows by combining (6.3) and (6.2) with (6.1).

Let us prove our claim. By an inclusion-exclusion argument, the following inequality holds
for any number X > 2 and any integer ):

Yoo op<y ph) Y »p

p<X hl@Q p<X
ptN,dp=3j PN, hjl|dp
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Thus, applying partial summation and (3.1) to the last sum (as we did to obtain (5.1)), and
noting that 3, o [u(h)| = 2¢(@Q) we obtain

S (x2S j’;L 0 (2D X2 exp (—B(log X)*/))
p<X h|Q hi
pTN7 dP:]

provided 2¢;(hj)*N? < log X for every h | Q.

We set @ = QYY) = Hqu g. Then logQQ ~ Y as Y — oo by the prime number
theorem, and we may suppose that X and Y are large enough so that QY < exp (3Y), that
is 2¢1 (QY ) N? < 2¢; exp (42Y) N2 < log X (by definition of Y and our choice of constants).

Thus, since 2(@) = 2¥ <« (log X)'/*?, and since > i<y % < logY < logloglog X, we have

SRS =D S "

p<X ]<Y p<X
< _
pJfN:dp\Y ptN,dp=3j (64)

(XYY ulh X?exp (—1B(log X)¥/14)) .

i o " Lh]

Letting S ={hj : h| @ and j < Y}, we have

Sy oy Z“ =3 o Sl

n
i<y mg IMhs es Mok s kes Lk

We complete the sum over k, noting that k ¢ S implies either £ > Y or k = hj with u(h) =0,
and that >, u(h) - h = (—=1)*® ¢ (rad(k)), obtaining

oy 4 5 el o (5 )

n
J<Y h|Q Jn L Ly

O(1/Y) if £ has CM,
=c
O (Bg/Y?) if E is a non-CM curve.

by (3.8). Combining this with (6.4) gives (6.3). O

7. FURTHER REMARKS ON THE CONSTANT cg
Notation in this section is as in the proof of Proposition 3.2. Let us first assume that E' is
a non-CM curve. Let G = @GLQ(Z/nZ) = 1], GL2(Z,), the product being over all primes
¢, and let H denote the image of Gal (Q/ Q) in G under pg. For n > 1 an integer, there is a
natural projection map from G to GLy(Z/nZ); let
I, :==ker (G — GLy(Z/nZ)) .

By Serre’s open image theorem, the index (G : H) is finite, hence there exist n such that
I, < H; let m denote the smallest such n. (In order to show that the growth of ny, is
“regular”, it is convenient to work with a large subgroup [[, K, C H, with each K, having
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simple structure.) Now, the image of Gal (Q/Q) in GLy(Z/kZ) can be obtained by composing
the maps

H— G — G/T, = GL(Z/KZ),

and hence
nr, = Ly : Q] = |H/H Nyl
Write m = [,,,, p™ and let k =[], p™ be given.
Claim: If k, > m,, for some p and a > 1, then
|\H/H N Tpa| = [H/H N k|- [T pry /T patny |-
Moreover, if k, = 0, we have T' s, /T jotr, = 't /Tpe = GLo(Z/p*Z), and if k, > 0 then
T /T | = .
Proof of claim: We note that
|H/HNTpag| =|H/HNT,| - |(HNTk)/(HNT pary)]
and
(HNLg) /(T N Tw)| - [T N Tk) /(T N Cpage) |
|(H A Fp“k)/(rm n Fp“k)|
Let N =T,, NIy and S = H NTpay. Since I',, < H and (trivially) Ipe, < I'y, we find that
SNAN=(HNTpp) N (L NTy) =1 N T pa.

Moreover, since k, = m,, given any h; € H NIy we can find hy € H N ['pay such that
hi=hy(1,1,...,1,7,1,1,...), where v, = [ +p*» M and M € Maty(Z,), and consequently

S N =(HNTpy) TpnnTy)=HNT,.
Now, by the second isomorphism theorem of group theory, SN/N = S/S N N, hence
(HNTy)/(TmnTy) =SN/N=S/SOAN = (HNTpay)/ (T N Tpar),
which, together with (7.1), implies that
[(H N T)/(H A Tyo)| = [T A1) /(T O Ty

With [a, b] denoting the least common multiple of two integers a, b, we have 'y NI'y = I'lq y.
Further, if a | b and (ab,c¢) = 1, then I'y./Ty. = ', /T. Thus, again using that k, > m,, we
find that

((H ATy /(H N Tper)| = . (7.1)

(Fm N Fk,)/(l“m N Fpak) = F[m,k}/l“[m,pak] = Fpkp /Fpkp+a.
Hence
|\H/H N Tpay| = |H/HNTy|- [(HNTg)/(HNTpar)| = [H/HOTy| - |Uprp [T ppal,
and the first part of the claim is proved. The latter part of the claim follows from
a+kp—1

Ty /Tyt =[] 1Ty /T

j:kp

together with T /Ty 2 T,/Tp, and [T, /Tpe| = p.
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Now, let (m) be the set containing 1 and the positive integers composed only of primes
dividing m. For any k we have k = hj with h € (m) and (j,m) = 1. We can further write
h = hyhs in a unique way with hy | m, (hy, ho) = 1, and v, > m,, for every p | hg, where p"?||hy
and p™?||m. From the above claim it follows that ny, = nr, -ng,;, that ny, = |GLy(Z/;jZ)|,
and that

h

ng, =re(h) Hp4(up—mp)’

plha

where rg(hy) is a rational number depending only on E and hy, p*?||hg, and p™»||m.
We therefore have

—1)*M p(rad(h =

. F (>>H<1—Zqin
R AP Ty D 6(ad(n)
() 2

1
he(m) gtm k>1 Lk
qlm he(m)

with ¢ as defined in (1.2). Using the fact that ny, = rg(hi) [[,, p*@r=ms) it is a straight-
forward matter to show that the sum over h € (m) is equal to the rational number

(- ) S iy (- )

qlm hi|lm qlh1

The CM case is similar, except that n, (for all but finitely many ¢ and k£ > 1) equals

(¢ — 1)? - ¢**=Y if ¢ splits in K, and is equal to (¢* — 1) - ¢**~Y if ¢ is inert in K. (Recall
that K denotes the quadratic imaginary field that contains the order by which £ has CM.)

8. FURTHER REMARKS ON THE ERROR TERMS

Wu [22] has simplified the calculations involved in the proofs of Theorems 1.1 and 1.2, and
improved on the error terms given by us. In the unconditional CM case, Kim [9] has made
further improvements by using a different approach, namely using class field theory and a
Bombieri-Vinogradov type theorem for number fields due to Huxley [8]. More precisely, in
the case where E has CM, Wu obtained an error term of size Oy ((log X)~/14)), improving
on our original error term Og(logloglog X/loglog X); in fact his method, on noting that
ny, < k?holds in the CM case (cf. (3.2)), gives an error term of size Op((log X)~*/%). In [9]
Kim greatly improved on the error term in the CM case, by showing that for any A > 0 we

have, unconditionally, 37 _ e, = cg-Li (X?)- {1 +Og.a (W) } . Regarding conditional
results, Wu [22] has shown that on GRH,

> ey =cp-Li(X?) + Op (X"/%(log X)'/?) |

p<X
whether or not £ has CM. It is worth noting that on GRH, Wu’s treatment, together with

separating out supersingular primes, gives an improved error term in the case where F has
CM, namely Y _y e, = g - Li (X?) + Op (X7*(log X)'/2) .
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We will now outline Wu’s argument by sketching a proof of this GRH-conditional CM
result. As in the proofs of Theorems 1.1 and 1.2, the problem reduces, via partial summation
and the Hasse bound, to showing that

Zd = Li(X) - {1405 (X105 X)1) | (3.1)

p<X

Briefly, we set Y Y(X):= XZ (log X)~z. As in the proofs of Theorems 1.1 and 1.2, we use
the fact that d Zhﬂd 7 ) to obtain

1
it X Z“ 2., L
p<X P kY y<k<2vX ) hi= p<X
ptN piN, k|dp

In considering the sum over Y < k < 2/ X, we note, as we did in the proof of Lemma 3.6(b),
that only the primes of ordinary reduction contribute Then, again as in the proof of Lemma
3.6(b), we use the trivial estimate |S;(X; D, k)| < 25 + \ﬁ . Thus,

> Z“ Yoo Y Y 1<<?+\/YlogX.

Y <k<2vX hi= p<X y<k<2vX  psX
pJ(Nukldp pTNak‘dP
ap#0

We use Lemma 3. 3(b) to handle the sum over k£ < Y, obtaining

> Z LU > Z Z ”— +0 <Y\/_log(XN)>

k<Y hj— p<X <y Lk pi
p Jf N7 k I dp

We complete the sum, applying Lemma 3.4 to bound the error that arises. Combining every-

thing, we obtain ) _p<x 7 = cp-Li (X) (1 +Op <Y(135YX)2 + loéX)) _Since Y = Xi(log X) "2,
pIN

this gives (8.1).
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