
ON THE AVERAGE EXPONENT OF ELLIPTIC CURVES MODULO p

TRISTAN FREIBERG AND PÄR KURLBERG

Abstract. Given an elliptic curve E defined over Q and a prime p of good reduction, let
Ẽ(Fp) denote the group of Fp-points of the reduction of E modulo p, and let ep denote the
exponent of said group. Assuming a certain form of the Generalized Riemann Hypothesis
(GRH), we study the average of ep as p 6 X ranges over primes of good reduction, and find
that the average exponent essentially equals p · cE , where the constant cE > 0 depends on
E. For E without complex multiplication (CM), cE can be written as a rational number

(depending on E) times a universal constant, c :=
∏

q

(
1− q3

(q2−1)(q5−1)

)
, the product being

over all primes q. Without assuming GRH, we can determine the average exponent when E
has CM, as well as give an upper bound on the average in the non-CM case.

1. Introduction

Given an elliptic curve E defined over Q, and a prime p for which E has good reduction,
let Ẽ(Fp) denote the group of Fp-points of the reduction of E modulo p. The behavior of

Ẽ(Fp) as p varies over the primes has received considerable attention — the oscillations of

the cardinalities |Ẽ(Fp)| is a central question in modern number theory, and the structure of

Ẽ(Fp) as a group, for example, the existence of large cyclic subgroups, especially of prime
order, is of interest because of applications to elliptic curve cryptography [10,12].

If p is a prime of good reduction then Ẽ(Fp) ∼= Z/dpZ × Z/epZ for uniquely determined
integers dp, ep, with dp | ep. The size of the maximal cyclic subgroup, that is the exponent,

of Ẽ(Fp) is therefore ep. For primes p of bad reduction we set ep = 0. The purpose of
this paper, motivated by a question of Joseph Silverman (personal communication), is to
investigate the average of ep as p varies. Conditional on a certain form of the Generalized
Riemann Hypothesis (GRH), we will show that there exists cE ∈ (0, 1) such that∑

p6X

ep ∼ cE · Li
(
X2
)

as X →∞,

where Li (X2) :=
∫ X2

2
dt/(log t) is the logarithmic integral of X2. Since

∑
p6X p ∼ Li (X2)

(by partial summation and the prime number theorem), we may interpret this as the average
value of ep being p · cE.

Before stating our main theorem we explain what we mean by GRH. Given a positive
integer k, let Lk denote the k-division field of E, that is, the number field obtained by
adjoining to Q the coordinates of all points in E[k], the subgroup of k-torsion of points of E.
Let ζLk(s) denote the Dedekind zeta function associated with Lk. We say that ζLk(s) satisfies
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the Riemann Hypothesis (RH) if all zeros with positive real part lie on the line Re(s) = 1/2.
By GRH we will here, and in what follows, mean that the Riemann Hypothesis holds for ζLk
for all positive integers k.

Theorem 1.1. Given an elliptic curve E defined over Q, there exists a number cE ∈ (0, 1)
such that on GRH we have∑

p6X

ep = cE · Li
(
X2
)

+OE

(
X19/10(logX)6/5

)
for X > 2. The implied constant depends on E at most.

Settling for a weaker error term, we can remove the GRH assumption for CM-curves.

Theorem 1.2. Let E be an elliptic curve defined over Q with complex multiplication, and
let cE be as in Theorem 1.1. For X > 3, we have∑

p6X

ep = cE · Li
(
X2
)
·
{

1 +OE

(
log logX

(logX)1/8

)}
.

The implied constant depends on E at most.

(Note added in proof: The error terms in Theorems 1.1 and 1.2 have recently been improved
by Wu [22] and Kim [9]. See Section 8 for details.)

For non-CM curves we can give an unconditional upper bound of the correct order of
magnitude. In the following theorem, we use the notation F (X) . G(X), which means that
lim supX→∞ F (X)/G(X) 6 1.

Theorem 1.3. Let E be an elliptic curve defined over Q, and let cE as in Theorem 1.1. As
X tends to infinity, we have ∑

p6X

ep . cE · Li
(
X2
)
.

We will now describe cE in more detail. With nLk := [Lk : Q] denoting the degree of
the extension Lk/Q, ω(k) the number of distinct prime factors of k, φ(k) the Euler totient
function of k, and rad(k) the largest squarefree divisor of k, we have (whether or not E has
CM)

cE :=
∞∑
k=1

(−1)ω(k)φ(rad(k))

knLk
. (1.1)

In Lemma 3.5 below, we will show that this sum is absolutely convergent, and that cE ∈ (0, 1).
If E does not have CM, there exists a universal constant

c :=
∏
q

(
1− q3

(q2 − 1)(q5 − 1)

)
= 0.8992282528 . . . , (1.2)

such that cE/c is a rational number depending only on E. If E has CM by an order O
in a imaginary quadratic number field K, cE can similarly be written as a rational number
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(depending on E) times an Euler product, depending only on K, of the form∏
q splits in K

(
1− 1

q2(1− 1/q)(1− 1/q3)

)
·

∏
q inert in K

(
1− 1

q2(1 + 1/q)(1− 1/q3)

)
.

We will indicate how to prove the last two statements in Section 7.

1.1. Background and discussion. The multiplicative order of a number modulo p. Given a
rational number g 6= 0,±1 and a prime p, let lg(p) denote the multiplicative order of g modulo
p (unless p divides ab, where g = a/b, a, b coprime, in which case set lg(p) = 0). In [11],
the second author and Pomerance, on assuming the Riemann hypothesis for Dedekind zeta
functions associated with certain Kummer extensions, determined the average of lg(p) as
p 6 X ranges over primes by showing that∑

p6X

lg(p) = Cg · Li
(
X2
)

+O

(
X2

(logX)3/2−2/ log log logX

)
,

where Cg can be expressed in terms of the degrees of certain Kummer extensions, namely

Cg :=
∞∑
k=1

(−1)ω(k)φ(k)rad(k)

k2 · [Q(g1/k, e2πi/k) : Q]
=
∞∑
k=1

(−1)ω(k)φ(rad(k))

k · [Q(g1/k, e2πi/k) : Q]
.

Thus, even though we consider two rather different quantities associated with groups
modulo p, namely the multiplicative order of a fixed element modulo p and the exponent of
an elliptic curve modulo p, the sums defining Cg and cE are very similar; the only difference
is that degrees of Kummer fields replace degrees of k-divison fields. (Note that the exponent
fluctuations for (Z/pZ)× are essentially trivial since the group is cyclic.) Further, Cg can also
be written as the product of a rational number (depending on g) times a universal constant,
namely C :=

∏
q(1− q/(q3 − 1)) = 0.5759599689 . . . (the product being over all primes q).

Upper and lower bounds on ep. As p → ∞, Hasse’s bound implies that |Ẽ(Fp)|/p ∼ 1

which, together with the rank of Ẽ(Fp) being at most two, implies that
√
p� ep � p. For E

any non-CM curve, Schoof [15] improved the lower bound to ep �
√
p · log p/ log log p, and

noted that this is unlikely to hold for CM curves since the curve E defined by y2 = x3 − x
has exponent ep =

√
p− 1 for any prime of the form p = (4n)2 + 1.

If one removes zero density subsets of the primes, Duke [5] has significantly improved
the lower bound. Namely, if f : R+ → R+ is any increasing function tending to infinity,
ep > p/f(p) holds for ‘almost all’ primes, in the sense that it holds for all but o(π(X)) primes
p 6 X. (As usual, π(X) denotes the number of primes up to X.) For CM curves the result
is unconditional, whereas for non-CM curves GRH is assumed. (For the latter he also shows
that the weaker bound ep > p3/4/ log p holds unconditionally for almost all primes.)

Finally we mention that Shparlinski [20] has shown that for any ε > 0 and p large,
ep > p1−ε holds for almost all elliptic curves E in the family {Ea,b}a,b, where Ea,b denotes the
curve y2 = x3 + ax+ b.

The proportion of primes for which Ẽ(Fp) is cyclic. A question closely related to the

size of the exponent is cyclicity — how often does the equality |Ẽ(Fp)| = ep hold? Borosh,

Moreno and Porta [1] conjectured that Ẽ(Fp) is cyclic for infinitely many primes p, except in
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certain cases where this cannot be so for ‘trivial reasons’. Serre later proved [19], on GRH,
that

1

π(X)

∑∗

p6X
Ẽ(Fp) is cyclic

1 ∼ c∗E as X →∞,
(1.3)

where
∑∗ denotes a sum restricted to p at which E has good reduction, and, with µ(k)

denoting the Möbius function of k, c∗E =
∑∞

k=1 µ(k)/nLk . Furthermore, c∗E > 0 unless all

2-torsion points on E are defined over Q, an obvious obstruction1 to Ẽ(Fp) being cyclic.
Cojocaru and Murty [4] obtained versions of (1.3) with effective error terms, and in the

special case in which E has CM, Murty [13] was quite remarkably able to establish (1.3)
unconditionally (the proofs were later significantly simplified by Cojocaru [2]).

For more background on this and related topics, we recommend the nice survey article [3]
by Cojocaru.

2. Outline of the proof of Theorem 1.1

We begin by noting that our approach is in spirit a synthesis of the ideas in [11, 19],
together with refinements by Murty [13] and Cojacaru [2].

As for notation, in this outline we shall use ‘≈’ to indicate equality with an implied error
term, and p shall always denote a prime of good reduction. Recall that ep = |Ẽ(Fp)|/dp, so

if |Ẽ(Fp)| =: p+ 1− ap, then, since |ap| 6 2
√
p by Hasse’s inequality, we have∑

p6X

ep ≈
∑
p6X

p

dp
. (2.1)

We can treat the sum
∑

p6X p/dp by using partial summation and the prime number theorem,

once we have evaluated the sum
∑

p6X
1
dp

.

Since dp | ep we have d2
p 6 |Ẽ(Fp)| 6 (

√
p+ 1)2 by Hasse’s inequality, hence dp < 2

√
X for

p 6 X. As in [11], we use the elementary identity 1
k

=
∑

hj|k
µ(h)
j

to write∑
p6X

1

dp
=
∑
p6X

∑
hj|dp

µ(h)

j
=

∑
hj62

√
X

µ(h)

j

∑
p6X
hj|dp

1. (2.2)

Now, by Lemma 3.1, a positive integer k divides dp if and only if p splits completely in Lk,
and the Chebotarev density theorem (cf. Lemma 3.3) then gives∑

p6X
k|dp

1 ≈
∑
p6X

p splits completely
in Lk/Q

1 ≈ Li (X)

nLk
.

1The only way for E(Q) to have a rationally defined subgroup isomorphic to Z/`Z × Z/`Z is if ` = 2; this
easily follows from the fact that E(R) is isomorphic to either R/Z or Z/2Z× R/Z.
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Thus,∑
hj62

√
X

µ(h)

j

∑
p6X
hj|dp

1 ≈ Li (X)
∑

hj62
√
X

µ(h)

j
· 1

nLhj
≈ Li (X)

∞∑
k=1

(−1)ω(k)φ(rad(k))

knLk
. (2.3)

The last error term in (2.3), and indeed showing that the last sum is absolutely convergent,
involves bounding a sum of the type

∑
k>Y

1
nLk

. We do this in Lemma 3.4, but here lower

bounds for nLk are crucial.
To give lower bounds on nLk , we use Serre’s open image theorem [16,17]. If E is a non-CM

curve, compactness together with the image being open gives that the image of the absolute
Galois group has finite index inside GL2(Ẑ), hence nLk �E φ(k)k3. If E is a CM curve, a
similar open image result of Serre gives that nLk � φ(k)2. (For more details, see Proposition
3.2.)

Now, combining (2.1), (2.2), and (2.3), we obtain, via partial summation and the prime
number theorem, that ∑

p6X

ep ≈ Li
(
X2
)
·
∞∑
k=1

(−1)ω(k)φ(rad(k))

knLk
,

which is the claimed main term.
As for estimating the error terms, a slight complication arises — even assuming GRH,

we cannot directly bound the sum of the error terms in the Chebotarev density theorem for
‘large’ k, that is, k ∈ (

√
X/(logX)2, 2

√
X]. To deal with this range Serre used the fact that

the cyclotomic field Q(e2πi/q) is contained in Lq; the sum can thus be restricted to primes
p ≡ 1 mod q, and Brun’s sieve is then enough to bound the errors arising from the large
k. However, to make an exponent saving in the error term we use a refinement of Serre’s
approach due to Cojacaru and Murty [4] (see Lemma 3.6 for further details.)

3. Preliminaries

In this section we collect some needed results on elliptic curves.

Notation. Throughout, p, q, and ` denote (rational) primes; h, j, k, and m denote positive
integers. The arithmetic functions ω, φ, rad, and µ have already been introduced; also, τ(k)
is the number of divisors of k, and σ(k) is the sum of the divisors of k.

Whenever we write F = O (G), F � G, or G � F , we mean that |F | 6 c · G where c is
an absolute positive constant. By F � G we mean that F � G� F .

The logarithmic integral is defined for numbers t > 2 by Li (t) :=
∫ t

2
du

log u
.

We fix an elliptic curve E, defined over Q, of conductor N . The results in this section
relate to E. For primes p of good reduction (that is, p - N), dp and ep are the unique positive

integers such that we have Ẽ(Fp) ∼= Z/dpZ × Z/epZ with dp | ep. Thus ep is the exponent

of Ẽ(Fp) if p - N , and we set ep = 0 if p | N . Also, if p - N , ap := p + 1 − |Ẽ(Fp)|, and πp
denotes a root of the polynomial X2 − apX + p ∈ Z[X].

The k-division field of E is denoted Lk; nLk denotes the degree of the extension Lk/Q,
and ∆Lk denotes its discriminant.
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Lemma 3.1. If p - kN then the following statements are equivalent.

(1) Ẽ(Fp) contains a subgroup isomorphic to Z/kZ× Z/kZ.
(2) p splits completely in Lk.

(3) πp−1

k
is an algebraic integer.

Proof. For the equivalence of (1) and (2), see [13, Lemma 2]. For the equivalence of (2) and
(3), see [2, Lemma 2.2]. �

We now give some estimates on the degree of the k-division field of E.

Proposition 3.2. (a) Lk contains Q(e2πi/k) (the k-th cyclotomic field), hence p splits com-
pletely in Lk only if p ≡ 1 mod k. Also, φ(k) divides nLk .
(b) nLk divides |GL2(Z/kZ)| = k4

∏
q|k (1− 1/q) (1− 1/q2).

(c) If E is a non-CM curve, then there exists a constant BE > 1, depending only on E, such
that |GL2(Z/kZ)| 6 BE · nLk for every k.
(d) If E has CM, then φ(k)2 � nLk 6 k2.

Proof. (a) See [21, Corollary 8.1.1, Chapter III].
(b) First of all note that nLk = |Gal (Lk/Q) | as Lk/Q is a Galois extension. The action

of the absolute Galois group Gal
(
Q/Q

)
on the k-torsion subgroup E[k] of E induces a

representation ρE,k : Gal
(
Q/Q

)
→ Aut(E[k]) ∼= GL2(Z/kZ), which is injective.

(c) With T`(E) denoting the `-adic Tate module of E, the action of Gal
(
Q/Q

)
on∏

` Aut(T`(E)) ∼=
∏

` GL2(Z`) induces a representation ρE : Gal
(
Q/Q

)
→
∏

` GL2(Z`). By
Serre’s open image theorem [17, Theorem 3], the image of ρE is open, and since

∏
` GL2(Z`)

is compact, the image is of finite index. Since Gal (Lk/Q) is isomorphic to the projection of
Im(ρE), by the map

∏
` GL2(Z`)→ GL2(Z/kZ), the result follows.

(d) If E has CM, Serre’s open image result for the CM case [17, Corollaire, Théorème 5,
p.302] gives that nLk � φ(k)2. (If E has CM by an order O, the image is open in

∏
`O
×
` ,

where O` = O⊗ Z`.) The upper bound follows from |(O/kO)×| 6 k2. �

Lemma 3.3. (a) There exist absolute constants c1, B > 0, such that the following statements
hold. (i) If c1k

14N2 6 logX, then, whether or not E has CM,

|{p 6 X : p - N and k | dp}| =
Li (X)

nLk
+O

(
X exp

(
−B(logX)5/14

))
. (3.1)

(ii) If c1k
8N2 6 logX and E has CM, then

|{p 6 X : p - N and k | dp}| =
Li (X)

nLk
+O

(
X exp

(
−B(logX)3/8

))
. (3.2)

(b) For X > 2 we have, on GRH, that

|{p 6 X : p - N and k | dp}| =
Li (X)

nLk
+O

(
X1/2 log(XN)

)
. (3.3)

Proof. Note that if p 6 X and p - N , then a priori we have k 6 2
√
X for k | dp, because

dp | ep and so d2
p 6 |Ẽ(Fp)| 6 (

√
p+ 1)2 by Hasse’s inequality. Since p - dp (cf. [21, Exercise

5.6(a), p.145]), the conditions p - N and k | dp are equivalent to p - kN and k | dp, that is
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p - kN and Ẽ(Fp) contains a subgroup isomorphic to Z/kZ × Z/kZ. Therefore, by Lemma
3.1, ∑

p6X
p splits completely

in Lk/Q

1 = |{p 6 X : p - N and k | dp}|+O (log(XN)) , (3.4)

where the O (log(XN)) term is the negligible contribution from the primes p dividing kN :
ω(kN)� log(kN)� log(XN).

(a) (i) As Lk/Q is a Galois extension, an effective form of the Chebotarev density theorem
(for example, see [14, Lemma 2]) gives∑

p6X
p splits completely

in Lk/Q

1 =
Li (X)

nLk
+O

(
X exp

(
−B
√

logX
nLk

))
, (3.5)

where B is an absolute positive constant, provided

c ·max
{
nLk |∆Lk |2/nLk , nLk (log |∆Lk |)

2} 6 logX, (3.6)

for a certain absolute positive constant c. We claim that there is an absolute positive constant
c1 such that if c1k

14N2 6 logX, then (3.6) does indeed hold. In that case, Proposition 3.2(b)
gives

√
nLk 6 k2 6 (logX)1/7 (we may suppose that c1 > 1), so applying this to the error

term in (3.5) and combining with (3.4) gives (3.1).
We now prove our claim. The first of the following sequence of inequalities holds with any

Galois extension L/Q in place of Lk/Q [18, Proposition 6, p.130]; the second holds because
the ramified primes of Lk/Q are divisors of kN [21, Proposition 4.1(a), Chapter VII]:

log |∆Lk |
nLk

6 log nLk +
∑

p ramifies in
Lk/Q

log p 6 log nLk +
∑
p|kN

log p 6 log nLk + log(kN). (3.7)

Our claim follows straightforwardly using this and the inequality nLk 6 k4.
(ii) Similar, but in the CM case we use the fact that nLk 6 k2, by Proposition 3.2(d).
(b) By [18, Théorème 4, p.133], on GRH we have∑

p6X
p splits completely

in Lk/Q

1 =
Li (X)

nLk
+O

(
X1/2

(
log |∆Lk |
nLk

+ logX

))
.

Applying (3.7) and the inequality nLk 6 k4 � X2, we obtain (3.3) by putting this into
(3.4). �

Lemma 3.4. With BE as in Proposition 3.2(c), we have∑
k>Y

1

nLk
�

{
1/Y if E has CM,

BE/Y
3 if E is a non-CM curve,

(3.8)
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and ∑
k>Y

σ(k)τ(k)

knLk
�

{
(log Y )/Y if E has CM,

BE(log Y )/Y 3 if E is a non-CM curve.
(3.9)

Proof. In the CM case we have, by Proposition 3.2(d), that∑
k>Y

1

nLk
�
∑
k>Y

1

φ(k)2
� 1

Y
. (3.10)

The last bound holds because φ(k) ≈ k ‘on average’. It can be proved by entirely elementary

means, the key being the identity k
φ(k)

=
∑

j|k
|µ(j)|
φ(j)

. We spare the reader the details. Similarly,

since |GL2(Z/kZ)| = k4
∏

q|k (1− 1/q) (1− 1/q2)� k3φ(k), Proposition 3.2(c) gives∑
k>Y

1

nLk
� BE

∑
k>Y

1

k3φ(k)
� BE

Y 3

in the non-CM case.
Again if E has CM, we have∑

k>Y

σ(k)τ(k)

knLk
�
∑
k>Y

σ(k)τ(k)

kφ(k)2
� log Y

Y
.

One way to obtain the last bound is to establish that
∑

k6Y σ(k)τ(k) � Y 2 log Y , then

apply partial summation to show that
∑

k>Y σ(k)τ(k)/k3 � (log Y )/Y , and use the identity
k

φ(k)
=
∑

j|k
|µ(j)|
φ(j)

two more times. Similarly, if E is a non-CM curve, then∑
k>Y

σ(k)τ(k)

knLk
� BE

∑
k>Y

σ(k)τ(k)

k4φ(k)
� BE log Y

Y 3
.

�

Lemma 3.5. The sum in (1.1) defining cE is absolutely convergent, and cE ∈ (0, 1).

Proof. Absolute convergence of the sum in (1.1) follows at once from (3.8). To show that

cE ∈ (0, 1), first note that for every j > 1,
∑

h>1
µ(h)
nLhj

�E 1 by (3.8), because nLhj 6 nLh .

Next, we claim that ∑
h>1

µ(h)

nLhj
> 0 (j > 1). (3.11)

To see this, fix any j > 1 and any Y > j. Let Q =
∏

q6Y q and let X be large enough in

terms of Y and N so that logX > c1(QY )14N2, where c1 is the constant of Lemma 3.3(a).
Also assume that

∑
h|Q |µ(h)| = 2Y � logX. An inclusion-exclusion argument gives∑

p6X
p - N , dp = j

1 6
∑
h|Q

µ(h)
∑
p6X

p - N , hj | dp

1.
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Applying Lemma 3.3(a)(i), we obtain∑
p6X

p - N , dp = j

1 6 Li (X)
∑
h|Q

µ(h)

nLhj
+O

(
2YX exp

(
−B(logX)5/14

))
.

Dividing by Li (X) and letting X tend to infinity, we find that

0 6 lim sup
X→∞

1

Li (X)

∑
p6X

p - N , dp = j

1 6
∑
h|Q

µ(h)

nLhj
.

Letting Y tend to infinity (cf. (3.8)), we obtain (3.11).
Now, for any Y > 1,∑

j6Y

∑
h>1

µ(h)

nLhj
=
∑
k>1

1

nLk

∑
hj=k
j6Y

µ(h) =
∑
k6Y

1

nLk

∑
hj=k

µ(h) +O

(∑
k>Y

1

nLk

∑
hj=k

1

)
.

Since
∑

hj=k µ(h) vanishes unless k = 1, the main term here is just 1/nL1 = 1. Applying (3.9)

to the O-term (note that
∑

hj=k 1 = τ(k) 6 σ(k)τ(k)/k), then letting Y tend to infinity, we
obtain ∑

j>1

∑
h>1

µ(h)

nLhj
= 1. (3.12)

Now since
∑

h|k µ(h) · h = (−1)ω(k)φ(rad(k)), we have

cE =
∑
k>1

1

nLk

∑
hj=k

µ(h)

j
=
∑
j>1

1

j

∑
h>1

µ(h)

nLhj
, (3.13)

convergence being assured by (3.8), (3.11) and (3.12). In view of (3.11), (3.12) and (3.13),

we see that 0 < cE 6 1. In fact recalling that c∗E =
∑

h>1
µ(h)
nLh

is the cyclicity constant, we

can deduce from (3.11) — (3.13) that cE ∈ (0, 1] ∩ [c∗E,
1
2
(c∗E + 1)], with cE = 1 if and only if

c∗E = 1. However, that c∗E < 1 can be seen by considering {p 6 X : p - N and q > t}. By the
Chebotarev density theorem (cf. Lemma 3.3(a)(i)) we have, for t > 2 and sufficiently large
X,

1

π(X)
· |{p 6 X : p - N, q | dp ⇒ q > t}| 6 1− 1

π(X)
· |{p 6 X : p - N and 2 | dp}| < 1− 1

2nL2

.

On the other hand, using inclusion-exclusion, followed by Lemma 3.3(a)(i) and (3.8), one can
show that

1

π(X)
· |{p 6 X : p - N, q | dp ⇒ q > t}| = c∗E +OE

(
1

t

)
+OE

(
2t exp

(
−B(logX)5/14

))
.

For suitable t = t(X) and sufficiently large X, comparing gives c∗E < 1. �

Lemma 3.6. (a) For X, Y > 2 we have

|{p 6 X : p - N and dp > Y }| � X3/2

Y 2
+X1/2 logX. (3.14)



ON THE AVERAGE EXPONENT OF ELLIPTIC CURVES MODULO p 10

(b) If E has CM and 2 < Y 6 logX, then

|{p 6 X : p - N and dp > Y }| � X log logX

Y logX
. (3.15)

Proof. (a) First of all note that since dp | ep, we have d2
p 6 |Ẽ(Fp)| 6 (

√
p + 1)2 by Hasse’s

inequality. Thus, if p - N and dp > Y then dp = k for some Y < k 6 2
√
X. But dp = k

implies k2 | (p + 1 − ap), and also k | p − 1 by Lemma 3.1 and Proposition 3.2(a); hence
k | ap − 2. Since ap 6 2

√
p by Hasse’s inequality, we therefore have∑

p6X
p - N , dp > Y

1 6
∑

Y <k62
√
X

∑
|a|62

√
X

a6=2
a≡2 mod k

∑
p6X
ap=a

k2|p+1−a

1 +
∑

Y <k62
√
X

∑
p6X
ap=2
k2|p−1

1

�
∑

Y <k62
√
X

√
X

k

(
X

k2
+ 1

)
+

∑
Y <k62

√
X

(
X

k2
+ 1

)

� X3/2

Y 2
+
√
X logX +

X

Y
+
√
X � X3/2

Y 2
+
√
X logX.

(Here we have used the elementary bound
∑

k>Y k
−m � Y 1−m, m > 2.)

(b) Suppose E has complex multiplication by an order in the imaginary quadratic field
K = Q(

√
−D), D a squarefree positive integer. We begin with the following observation.

Since p - dp, the statement ‘p - N and k | dp’ is equivalent to the statement ‘p - kN and p
splits completely in Lk’ (Lemma 3.1). In that case p ≡ 1 mod k by Proposition 3.2(a). If
ap = 0, then we also have p ≡ −1 mod k, because k2 | dpep = (p+ 1− ap). But we can only
have both p ≡ −1 mod k and p ≡ 1 mod k if k = 1 or 2. Therefore, we necessarily have
ap 6= 0 when k | dp and k > 3. Moreover, πp−1

k
is an algebraic integer (Lemma 3.1), and since

Q(πp) = K when ap 6= 0 (see [2, Lemma 2.3]), we have that πp−1

k
∈ OK .

Now,

{p 6 X : p - N and dp > Y } ⊆P1(X) ∪P2(X, Y ) ∪P3(Y ), (3.16)

where

P1(X) := {p 6 X : p - N and q | dp for some q ∈ (logX, 2
√
X]},

P2(X, Y ) := {p 6 X : p - N and q | dp for some q ∈ (Y, logX]},
P3(Y ) := {p 6 X : p - N , dp > Y , and q | dp ⇒ q 6 Y }

⊆ {p 6 X : p - N , k | dp for some k ∈ [Y, Y 2]}.
Since 2 < Y 6 logX we have, by our initial observation, that

|P1(X)| =
∑

logX<q62
√
X

∑
p6X

p - N , q | dp
ap 6=0

1 6
∑

logX<q62
√
X

∑
p6X

πp−1

k
∈OK

1. (3.17)

Since πp has norm p in K/Q, it follows that

|P1(X)| 6
∑

logX<q62
√
X

|Sj(X;D, q)|, (3.18)
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with

Sj(X;D, k) :=

{
p 6 X : p =

(
u
j
k + 1

)2

+D
(
v
j

)2

k2 for some u, v ∈ Z
}
,

and j = 1 if −D ≡ 2, 3 mod 4; j = 2 if −D ≡ 1 mod 4. A trivial bound for |Si(X;D, q)| will
suffice here:

∑
logX<q62

√
X

|Sj(X;D, q)| �
∑

logX<q62
√
X

√
X

q
√
D

(√
X

q
+ 1

)

� X
∑

q>logX

1

q2
+
√
X
∑

q62
√
X

1

q

� X

(logX)(log logX)
+
√
X log logX.

(3.19)

(To obtain the last bound, apply partial summation and the prime number theorem to each
sum.)

We bound |P2(X, Y )| and |P3(Y )| similarly, but we need the following non-trivial bound
[2, Lemma 2.5]:

|Sj(X;D, k)| �

(√
X

k
+ 1

) √
X log logX

k
√
D log

(√
X−1
k

) ,

provided k <
√
X − 1. Thus,

|P2(X, Y )| 6
∑

Y <q6logX

|Sj(X;D, q)|

�
∑

Y <q6logX

(√
X

q
+ 1

) √
X log logX

q
√
D log

(√
X−1
q

)
� X log logX

log
(√

X−1
logX

)∑
q>Y

1

q2
+

√
X log logX

log
(√

X−1
logX

) ∑
q6logX

1

q

� X log logX

(logX)Y log Y
,

(3.20)
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and

|P3(Y )| 6
∑

Y <k6Y 2

|Si(X;D, k)|

�
∑

Y 6k6Y 2

(√
X

k
+ 1

) √
X log logX

k
√
D log

(√
X−1
k

)
� X log logX

log
(√

X−1
Y

) ∑
Y 6k6Y 2

1

k2
+

√
X log logX

log
(√

X−1
Y

) ∑
Y 6k6Y 2

1

k

� X log logX

(logX)Y
+

√
X(log logX)(log Y )

logX
.

(3.21)

Since Y 6 logX, putting (3.17) — (3.21) into (3.16), we obtain (3.15). �

4. Proof of Theorem 1.1

Let X > 2 and set

Y = Y (X) :=
X1/5

(logX)2/5
.

We proceed on GRH, so that partial summation applied to (3.3) gives∑
p6X

p - N , k | dp

p = X
∑
p6X

p - N , k | dp

1−
∫ X

2

(∑
p6t

p - N ,k | dp
1
)

dt

=
XLi (X)

nLk
− 1

nLk

∫ X

2

Li (t) dt+O
(
X3/2 log(XN)

)
=

Li (X2)

nLk
+O

(
X3/2 log(XN)

)
.

(4.1)

Here we have used that
∫ X

2
Li (t) dt = XLi (X)− Li (X2) +O (1).

Now, ep = |Ẽ(Fp)|/dp = (p+ 1− ap)/dp if p - N , and by definition ep = 0 otherwise, hence∑
p6X

ep =
∑
p6X
p-N

p

dp
+
∑
p6X
p-N

1− ap
dp

=: T0 + E0. (4.2)

Since |ap| 6 2
√
p by Hasse’s inequality, we have

E0 :=
∑
p6X
p-N

1− ap
dp

�
∑
p6X

√
p 6 X1/2

∑
p6X

1 6 X3/2. (4.3)

We write

T0 :=
∑
p6X
p-N

p

dp
=

∑
p6X

p - N , dp 6 Y

p

dp
+

∑
p6X

p - N , dp > Y

p

dp
=: T1 + E1.
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To bound E1, we apply (3.14), and then use the definition of Y :

E1 :=
∑
p6X

p - N , dp > Y

p

dp
6
X

Y

∑
p6X

p - N , dp > Y

1� X5/2

Y 3
+
X3/2 logX

Y
� X19/10(logX)6/5. (4.4)

We partition T1, using the identity 1
k

=
∑

hj|k
µ(h)
j

, as follows:

T1 :=
∑
p6X

p - N , dp 6 Y

p
∑
hj|dp

µ(h)

j
=
∑
p6X
p-N

p
∑
hj|dp
hj6Y

µ(h)

j
−

∑
p6X

p - N , dp > Y

p
∑
hj|dp
hj6Y

µ(h)

j
=: T11 − E11.

We now consider E11, making yet another partition:

E11 :=
∑
p6X
p-N

dp>Y 2

p
∑
hj|dp
hj6Y

µ(h)

j
+

∑
p6X
p-N

Y <dp6Y 2

p
∑
hj|dp
hj6Y

µ(h)

j
=: E12 + E13.

Next, we note that ∑
hj|dp
hj6Y

µ(h)

j
�
∑
j6Y

1

j

∑
h6Y/j

1 6 Y
∑
j6Y

1

j2
� Y.

Thus, by (3.14) (with Y 2 in place of Y ), and by the definition of Y , we have

E12 :=
∑
p6X
p-N

dp>Y 2

p
∑
hj|dp
hj6Y

µ(h)

j
� XY

∑
p6X
p-N

dp>Y 2

1

� X5/2

Y 3
+X3/2Y logX � X19/10(logX)6/5.

(4.5)

For E13, we use ∑
hj|dp
hj6Y

µ(h)

j
�
∑
h|dp

1
∑
j|dp

1

j
=
τ(dp)

dp

∑
j|dp

dp
j

=
τ(dp)σ(dp)

dp
.

Thus,

E13 :=
∑
p6X
p-N

Y <dp6Y 2

p
∑
hj|dp
hj6Y

µ(h)

j

�
∑
p6X
p-N

Y <dp6Y 2

p · τ(dp)σ(dp)

dp
6

∑
Y <k6Y 2

τ(k)σ(k)

k

∑
p6X

p - N , k | dp

p.
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We apply (4.1) to the last sum, noting that Li (X2) � X2/ logX. Then we use (3.9), as

well as the bound
∑

k6Y 2
τ(k)σ(k)

k
�
∫ Y 2

2
log t dt � Y 2 log Y . (Apply partial summation to∑

k6t τ(k)σ(k)� t2 log t.) Thus,∑
Y <k6Y 2

τ(k)σ(k)

k

∑
p6X

p - N , k | dp

p

� X2

logX

∑
k>Y

τ(k)σ(k)

knLk
+X3/2 log(XN)

∑
k6Y 2

τ(k)σ(k)

k

�

{
X2 log Y
Y logX

+X3/2(log(XN))Y 2 log Y if E has CM,
X2

logX
· BE log Y

Y 3 +X3/2(log(XN))Y 2 log Y. if E is a non-CM curve.

Combining and using the definition of Y , we obtain

E13 �

{
X19/10(log(XN))6/5 if E has CM,

BEX
7/5(logX)6/5 +X19/10(log(XN))6/5 if E is a non-CM curve.

(4.6)

Finally we consider T11. By (4.1), and since∣∣∣∣∣∑
hj6Y

µ(h)

j

∣∣∣∣∣ =

∣∣∣∣∣∑
k6Y

∑
hj=k

µ(h)

j

∣∣∣∣∣ 6∑
k6Y

∣∣∣∣∣∑
hj=k

µ(h)

j

∣∣∣∣∣ 6∑
k6Y

φ(k)

k
6 Y,

we have

T11 :=
∑
p6X
p-N

p
∑
hj|dp
hj6Y

µ(h)

j
=
∑
hj6Y

µ(h)

j

∑
p6X

p - N , hj | dp

p

= Li
(
X2
) ∑
hj6Y

µ(h)

j
· 1

nLhj
+O

(
X3/2Y log(XN)

)
.

(4.7)

Now, for prime powers qm we have∑
hj=qm

µ(h)

j
=

1

qm
− 1

qm−1
=

1− q
qm

,

and so by multiplicativity we have∑
hj=k

µ(h)

j
=
∏
qm‖k

1− q
qm

=
(−1)ω(k)

k

∏
q|k

(q − 1) =
(−1)ω(k)φ(rad(k))

k
.

(Here, qm‖k means that qm | k but qm+1 - k.) Therefore, setting cE as in (1.1), and using
(3.8), we obtain∑

hj6Y

µ(h)

j
· 1

nLhj
=
∞∑
k=1

(−1)ω(k)φ(rad(k))

knLk
+O

(∑
k>Y

1

nLk

)
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= cE +

{
O (1/Y ) if E has CM,

O (BE/Y
3) if E is a non-CM curve.

Putting this into (4.7), then using the definition of Y , we obtain

T11 = cE · Li
(
X2
)

+

{
O
(

X9/5

(logX)3/5

)
+O

(
X17/10(log(XN))3/5

)
if E has CM,

O
(
BEX

7/5(logX)1/5
)

+O
(
X17/10(log(XN))3/5

)
if E is a non-CM curve.

(4.8)

Gathering the estimates (4.8), (4.6), (4.5), (4.4), (4.3), and (4.2), the largest error term
being of size O

(
X19/10(log(XN))6/5

)
, we obtain∑

p6X

ep = T11 − (E12 + E13) + E1 + E0 = cE · Li
(
X2
)

+O
(
X19/10(log(XN))6/5

)
,

plus O
(
BEX

7/5(logX)6/5
)

if E is a non-CM curve, this term being dominated by the other
O-term once X > B2

E. �

5. Proof of Theorem 1.2

We now fix an elliptic curve E defined over Q, of conductor N . We suppose that E has
complex multiplication by an order in the imaginary quadratic field K = Q(

√
−D). We

know that there are only nine possibilities for D, namely D ∈ {1, 2, 3, 7, 11, 19, 43, 67, 163}.
(See [21, Appendix C, §11].)

Let c1 be the absolute positive constant of Lemma 3.3(a), and let c0, c2 be positive con-
stants to be specified presently. Suppose X > exp (c0N

2) and set

Y = Y (X,N) := c2

(
logX

N2

) 1
24

.

We choose c0 and c2 so that 2 < Y 6 (logX)1/3 and 2c1Y
24N2 6 logX.

Similarly to (4.1), partial summation and Lemma 3.3(a)(ii) give∑
p6X

p - N , k | dp

p =
Li (X2)

nLk
+O

(
X2 exp

(
−B(logX)3/8

))
, (5.1)

provided c1k
8N2 6 logX. One of the error terms involved is∫ X

2

(∑
p6t

p - N , k | dp
1− Li(t)

nLk

)
dt.

We can apply (5.1) to
∫ X

exp(c1k8N2)
(· · · ) dt, but we can only apply a trivial bound to the rest

of the integral:∫ exp(c1k8N2)

2

(∑
p6t

p - N , k | dp
1− Li(t)

nLk

)
dt�

∫ exp(c1k8N2)

2

t dt� exp
(
2c1k

8N2
)
.

This is O (X) if k 6 Y 3, because 2c1Y
8N2 6 logX.
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We now proceed as in the proof of Theorem 1.1. The differences are as follows. Analogous
with (4.4) and (4.5) we have, by (3.15), that

E1 :=
∑
p6X

p - N , dp > Y

p

dp
6
X

Y

∑
p6X

p - N , dp > Y

1� X2

logX
· log logX

Y 2
, (5.2)

and

E12 :=
∑
p6X
p-N

dp>Y 3

p
∑
hj|dp
hj6Y

µ(h)

j
� XY

∑
p6X
p-N

dp>Y 3

1� X2

logX
· log logX

Y 2
. (5.3)

Analogous with (4.6) we have

E13 :=
∑
p6X
p-N

Y <dp6Y 3

p
∑
hj|dp
hj6Y

µ(h)

j
6

∑
Y <k6Y 3

τ(k)σ(k)

k

∑
p6X

p - N , k | dp

p.

Since (5.1) holds uniformly for k 6 Y 3, we may apply it to the last sum to obtain

E13 �
X2

logX

∑
k>Y

τ(k)σ(k)

knLk
+X2 exp

(
−B(logX)3/8

) ∑
k6Y 3

τ(k)σ(k)

k
.

We use (3.9) to bound the second last sum and an elementary bound for the last sum. Thus,
we have

E13 �
X2

logX
· log Y

Y
+X2 exp

(
−B(logX)3/8

)
· Y 3 log Y � X2

logX
· log Y

Y
. (5.4)

Analogous with (4.8), we have, by (5.1),

T11 :=
∑
p6X
p-N

p
∑
hj|dp
hj6Y

µ(h)

j
= Li

(
X2
)(

cE +O

(
1

Y

))
+ Y X2 exp

(
−B(logX)3/8

)

= cE · Li
(
X2
)

+O

(
X2

Y logX

)
.

(5.5)

Gathering the estimates (5.5), (5.4), (5.3), (5.2), and (4.2), we obtain∑
p6X

ep = T11 − (E12 + E13) + E1 + E0

= cE · Li
(
X2
)

+O

(
X2

logX

(
log logX

Y 2
+

log Y

Y

))
.

Since Y = (N−2 logX)1/24, the theorem follows. �
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6. Proof of Theorem 1.3

Let E be an elliptic curve defined over Q, of conductor N . We make no assumptions as
to whether or not E has CM. Let c1 be the absolute positive constant of Lemma 3.3(a), and
let c0, c2 be positive constants to be specified presently. Suppose X > exp (c0N

2) and set

Y = Y (X,N) := c2 log

[
logX

N2

] 1
42

.

We choose c0 and c2 so that 2c1 exp (42Y )N2 6 logX.
As in the proofs of the first two theorems, we have∑

p6X

ep =
∑
p6X

p - N , dp 6 Y

p

dp
+

∑
p6X

p - N , dp > Y

p

dp
+
∑
p6X
p-N

1− ap
dp

=: T1 + E1 +O
(
X3/2

)
. (6.1)

Since dp 6 2
√
p, and since p ≡ 1 mod j if dp = j by Proposition 3.2(a), we have∑

p6X
p - N , dp > Y

1

dp
=

∑
Y <j62

√
X

1

k

∑
p6X

p - N , dp = j

1 6
∑

Y <j62
√
X

1

j

∑
p6X

p≡1 mod j

1.

By the Brun-Titchmarsh inequality [6, Theorem 3.7],∑
Y <j62

√
X

1

j

∑
p6X

p≡1 mod j

1�
∑

Y <j62
√
X

1

j
· X

φ(j) log(X/j)
� X

logX

∑
j>Y

1

jφ(j)
� X

Y logX

(cf. (3.10) for the last bound). Hence

E1 :=
∑
p6X

p - N , dp > Y

p

dp
6 X

∑
p6X

p - N , dp > Y

1

dp
� X2

Y logX
. (6.2)

We claim that, with cE as in (1.1) and BE as in Proposition 3.2(c), we have

T1 6

cE · Li (X2) +O
(

X2

Y logX

)
if E has CM,

cE · Li (X2) +O
(

X2

Y logX
+ BEX

2

Y 3 logX

)
if E is a non-CM curve.

(6.3)

Here and in the next two instances, by F 6 G + O (H), we mean that either F − G < 0 or
0 6 F −G� H. The theorem follows by combining (6.3) and (6.2) with (6.1).

Let us prove our claim. By an inclusion-exclusion argument, the following inequality holds
for any number X > 2 and any integer Q:∑

p6X
p - N , dp = j

p 6
∑
h|Q

µ(h)
∑
p6X

p - N , hj | dp

p.
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Thus, applying partial summation and (3.1) to the last sum (as we did to obtain (5.1)), and
noting that

∑
h|Q |µ(h)| = 2ω(Q), we obtain∑
p6X

p - N , dp = j

p 6 Li
(
X2
)∑
h|Q

µ(h)

nLhj
+O

(
2ω(Q)X2 exp

(
−B(logX)5/14

))
,

provided 2c1(hj)14N2 6 logX for every h | Q.
We set Q = Q(Y ) :=

∏
q6Y q. Then logQ ∼ Y as Y → ∞ by the prime number

theorem, and we may suppose that X and Y are large enough so that QY 6 exp (3Y ), that
is 2c1(QY )14N2 6 2c1 exp (42Y )N2 6 logX (by definition of Y and our choice of constants).

Thus, since 2ω(Q) = 2Y � (logX)1/42, and since
∑

j6Y
1
j
� log Y � log log logX, we have

T1 :=
∑
p6X

p - N , dp 6 Y

p

dp
=
∑
j6Y

1

j

∑
p6X

p - N , dp = j

p

6 Li
(
X2
)∑
j6Y

∑
h|Q

µ(h)

jnLhj
+O

(
X2 exp

(
−1

2
B(logX)5/14

))
.

(6.4)

Letting S = {hj : h | Q and j 6 Y }, we have∑
j6Y

∑
h|Q

µ(h)

jnLhj
=
∑
k∈S

1

nLk

∑
hj=k

µ(h)

j
=
∑
k∈S

1

knLk

∑
h|k

µ(h) · h.

We complete the sum over k, noting that k 6∈ S implies either k > Y or k = hj with µ(h) = 0,
and that

∑
h|k µ(h) · h = (−1)ω(k)φ(rad(k)), obtaining

∑
j6Y

∑
h|Q

µ(h)

jnLhj
=
∞∑
k=1

(−1)ω(k)φ(rad(k))

knLk
+O

(∑
k>Y

1

nLk

)

= cE +

{
O (1/Y ) if E has CM,

O (BE/Y
3) if E is a non-CM curve.

by (3.8). Combining this with (6.4) gives (6.3). �

7. Further remarks on the constant cE

Notation in this section is as in the proof of Proposition 3.2. Let us first assume that E is
a non-CM curve. Let G = lim←−GL2(Z/nZ) ∼=

∏
` GL2(Z`), the product being over all primes

`, and let H denote the image of Gal
(
Q/Q

)
in G under ρE. For n > 1 an integer, there is a

natural projection map from G to GL2(Z/nZ); let

Γn := ker (G→ GL2(Z/nZ)) .

By Serre’s open image theorem, the index (G : H) is finite, hence there exist n such that
Γn < H; let m denote the smallest such n. (In order to show that the growth of nLk is
“regular”, it is convenient to work with a large subgroup

∏
`K` ⊂ H, with each K` having
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simple structure.) Now, the image of Gal
(
Q/Q

)
in GL2(Z/kZ) can be obtained by composing

the maps

H ↪→ G� G/Γk ∼= GL2(Z/kZ),

and hence

nLk = [Lk : Q] = |H/H ∩ Γk|.

Write m =
∏

p|m p
mp and let k =

∏
p|k p

kp be given.
Claim: If kp > mp for some p and a > 1, then

|H/H ∩ Γpa·k| = |H/H ∩ Γk| · |Γpkp/Γpa+kp |.
Moreover, if kp = 0, we have Γpkp/Γpa+kp = Γ1/Γpa ∼= GL2(Z/paZ), and if kp > 0 then

|Γpkp/Γpa+kp | = p4a.

Proof of claim: We note that

|H/H ∩ Γpa·k| = |H/H ∩ Γk| · |(H ∩ Γk)/(H ∩ Γpa·k)|
and

|(H ∩ Γk)/(H ∩ Γpa·k)| =
|(H ∩ Γk)/(Γm ∩ Γk)| · |(Γm ∩ Γk)/(Γm ∩ Γpak)|

|(H ∩ Γpak)/(Γm ∩ Γpak)|
. (7.1)

Let N = Γm ∩ Γk and S = H ∩ Γpak. Since Γm < H and (trivially) Γpak < Γk, we find that

S ∩N = (H ∩ Γpak) ∩ (Γm ∩ Γk) = Γm ∩ Γpak.

Moreover, since kp > mp, given any h1 ∈ H ∩ Γk we can find h2 ∈ H ∩ Γpak such that
h1 = h2 · (1, 1, . . . , 1, γp, 1, 1, . . .), where γp = I + pkpM and M ∈ Mat2(Zp), and consequently

S ·N = (H ∩ Γpak) · (Γm ∩ Γk) = H ∩ Γk.

Now, by the second isomorphism theorem of group theory, SN/N ∼= S/S ∩N , hence

(H ∩ Γk)/(Γm ∩ Γk) = SN/N ∼= S/S ∩N = (H ∩ Γpak)/(Γm ∩ Γpak),

which, together with (7.1), implies that

|(H ∩ Γk)/(H ∩ Γpa·k)| = |(Γm ∩ Γk)/(Γm ∩ Γpak)|.
With [a, b] denoting the least common multiple of two integers a, b, we have Γa∩Γb = Γ[a,b].

Further, if a | b and (ab, c) = 1, then Γac/Γbc ∼= Γa/Γb. Thus, again using that kp > mp, we
find that

(Γm ∩ Γk)/(Γm ∩ Γpak) = Γ[m,k]/Γ[m,pak]
∼= Γpkp/Γpkp+a .

Hence

|H/H ∩ Γpa·k| = |H/H ∩ Γk| · |(H ∩ Γk)/(H ∩ Γpa·k)| = |H/H ∩ Γk| · |Γpkp/Γpkp+a|,
and the first part of the claim is proved. The latter part of the claim follows from

|Γpkp/Γpa+kp | =
a+kp−1∏
j=kp

|Γpj/Γpj+1|

together with Γpj/Γpj+1
∼= Γp/Γp2 , and |Γp/Γp2| = p4.
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Now, let 〈m〉 be the set containing 1 and the positive integers composed only of primes
dividing m. For any k we have k = hj with h ∈ 〈m〉 and (j,m) = 1. We can further write
h = h1h2 in a unique way with h1 | m, (h1, h2) = 1, and νp > mp for every p | h2, where pνp‖h2

and pmp‖m. From the above claim it follows that nLk = nLh · nLj , that nLj = |GL2(Z/jZ)|,
and that

nLh = rE(h1)
∏
p|h2

p4(νp−mp),

where rE(h1) is a rational number depending only on E and h1, pνp‖h2, and pmp‖m.
We therefore have

cE =
∑
h∈〈m〉

(−1)ω(h)φ(rad(h))

hnLh

∏
q-m

(
1−

∑
k>1

q − 1

qknL
qk

)

= c ·
∏
q|m

(
1− q3

(q2 − 1)(q5 − 1)

)−1

·
∑
h∈〈m〉

(−1)ω(h)φ(rad(h))

hnLh
,

with c as defined in (1.2). Using the fact that nLh = rE(h1)
∏

p|h2 p
4(νp−mp), it is a straight-

forward matter to show that the sum over h ∈ 〈m〉 is equal to the rational number∏
q|m

(
1− q − 1

qmq(q5 − 1)

)∑
h1|m

(−1)ω(h1)φ(rad(h1))

h1rE(h1)

∏
q|h1

(
1− q − 1

qmq(q5 − 1)

)−1

.

The CM case is similar, except that nL
qk

(for all but finitely many q and k > 1) equals

(q − 1)2 · q2(k−1) if q splits in K, and is equal to (q2 − 1) · q2(k−1) if q is inert in K. (Recall
that K denotes the quadratic imaginary field that contains the order by which E has CM.)

8. Further remarks on the error terms

Wu [22] has simplified the calculations involved in the proofs of Theorems 1.1 and 1.2, and
improved on the error terms given by us. In the unconditional CM case, Kim [9] has made
further improvements by using a different approach, namely using class field theory and a
Bombieri-Vinogradov type theorem for number fields due to Huxley [8]. More precisely, in
the case where E has CM, Wu obtained an error term of size OE((logX)−1/14)), improving
on our original error term OE(log log logX/ log logX); in fact his method, on noting that
nLk 6 k2 holds in the CM case (cf. (3.2)), gives an error term of size OE((logX)−1/8). In [9]
Kim greatly improved on the error term in the CM case, by showing that for any A > 0 we

have, unconditionally,
∑

p6X ep = cE ·Li (X2) ·
{

1 +OE,A

(
1

(logX)A

)}
. Regarding conditional

results, Wu [22] has shown that on GRH,∑
p6X

ep = cE · Li
(
X2
)

+OE

(
X11/6(logX)1/3

)
,

whether or not E has CM. It is worth noting that on GRH, Wu’s treatment, together with
separating out supersingular primes, gives an improved error term in the case where E has
CM, namely

∑
p6X ep = cE · Li (X2) +OE

(
X7/4(logX)1/2

)
.
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We will now outline Wu’s argument by sketching a proof of this GRH-conditional CM
result. As in the proofs of Theorems 1.1 and 1.2, the problem reduces, via partial summation
and the Hasse bound, to showing that∑

p6X
p-N

1

dp
= cE · Li (X) ·

{
1 +OE

(
X−

1
4 (logX)

3
2

)}
. (8.1)

Briefly, we set Y = Y (X) := X
1
4 (logX)−

1
2 . As in the proofs of Theorems 1.1 and 1.2, we use

the fact that 1
dp

=
∑

hj|dp
µ(h)
j

to obtain

∑
p6X
p-N

1

dp
=

∑
k6Y

+
∑

Y <k62
√
X

∑
hj=k

µ(h)

j

∑
p6X

p - N , k | dp

1.

In considering the sum over Y < k 6 2
√
X, we note, as we did in the proof of Lemma 3.6(b),

that only the primes of ordinary reduction contribute. Then, again as in the proof of Lemma

3.6(b), we use the trivial estimate |Sj(X;D, k)| � X
k2

+
√
X
k
. Thus,∑

Y <k62
√
X

∑
hj=k

µ(h)

j

∑
p6X

p - N , k | dp

1�
∑

y<k62
√
X

∑
p6X

p - N , k | dp
ap 6=0

1� X

Y
+
√
X logX.

We use Lemma 3.3(b) to handle the sum over k 6 Y , obtaining∑
k6Y

∑
hj=k

µ(h)

j

∑
p6X

p - N , k | dp

1 = Li (X)
∑
k6y

1

nLk

∑
hj=k

µ(h)

j
+O

(
Y
√
X log(XN)

)
.

We complete the sum, applying Lemma 3.4 to bound the error that arises. Combining every-

thing, we obtain
∑

p6X
p-N

1
dp

= cE ·Li (X)
(

1 +OE

(
Y (logX)2√

X
+ logX

Y

))
. Since Y = X

1
4 (logX)−

1
2 ,

this gives (8.1).
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