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ABSTRACT. Let K be a number field, let ¢ € K(¢) be a rational map
of degree at least 2, and let o, 8 € K. We show that if « is not in the
forward orbit of 3, then there is a positive proportion of primes p of
K such that amodyp is not in the forward orbit of S modp. Moreover,
we show that a similar result holds for several maps and several points.
We also present heuristic and numerical evidence that a higher dimen-
sional analog of this result is unlikely to be true if we replace o by a
hypersurface, such as the ramification locus of a morphism ¢ : P — P".

1. INTRODUCTION

Let K be a number field, and let ¢ : P}, — P}, be a rational map of
degree at least 2. For any integer m > 0, write ¢"™ = poypo---o¢p for the m-
th iterate of ¢ under composition. The forward orbit of a point o € P}(K)
under ¢ is the set {¢™(a) : m > 0}. Similarly, the backward orbit of « is the
set {8 € PH(K) : ¢™(B) = a for some m > 0}. We say « is ¢-periodic if
¢ () = « for some m > 1; the smallest such m is called the (ezact) period
of a. More generally, we say « is @-preperiodic if its forward orbit is finite;
if the backward orbit of « is finite, we say « is exceptional for ¢.

Given two points a, 3 € P!(K) such that 3 is not @-preperiodic and «
is not in the forward orbit of 8 under ¢, one might ask how many primes
p of K there are such that « is in the forward orbit of 8 under ¢ modulo
p. It follows from [BGKT11, Lemma 4.1] that there are infinitely many
such p unless « is exceptional for ¢. The same techniques (essentially, an
application of [Sil93, Theorem 2.2]) can be used to show that there are
infinitely many p such that « is not in the forward orbit of 8 modulo p.

Odoni [0do85], Jones [Jon08], and others have shown that the set S of
primes p such that « is in the forward orbit of § modulo p has density zero
in some cases. However, there are cases when S has positive density. For
example, if K = Q and ¢(x) = 23 + 1, then a = 0 is in the forward orbit
of 8 =1 modulo any prime congruent to 2 mod 3. More generally, one may
expect such examples for ezceptional maps; for more details, see [GTZ07].

The following is a simplified version of the main result of this paper.
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Theorem 1.1. Let K be a number field, and let ¢1,...,pq : IP)}( — Pl
be rational maps of degree at least 2. Let Ai,..., Ay be finite subsets of
PY(K) such that for each i = 1,...g, every point in A; is p;-preperiodic.
Let Ti,..., T, be finite subsets of P1(K) such that no T; contains any ;-
preperiodic points. Then there is a positive integer M and a set of primes
P of K having positive density such that for any i =1,...,qg, any v € T,
any o € A;, any p € P, and any m > M,

¢i"(7) #a  (mod p).

Theorem 1.1 is a special case of our main result, Theorem 3.1, which
features a weaker hypothesis: one of the sets A; is allowed to contain a
single non-preperiodic point. We will prove Theorem 3.1, and hence also
Theorem 1.1, in Section 3. The technique is to find a prime p at which, for
each i =1,..., g, the expression <pf\/[(x) — « does not have a root modulo p
for any a € A;. One then applies the Chebotarev density theorem to obtain
a positive density set of primes with the desired property.

Theorem 3.1 has a number of applications to arithmetic dynamics and to
elliptic curves. We present two such corollaries here. The first involves the
notion of good reduction of a rational function; see Definition 2.1.

Corollary 1.2. Let K be a number field, let ¢ : ]P’}{ — ]P’}{ be a rational
function of degree at least 2, and let o € P(K) be a non-periodic point of
. Then there is a positive density set of primes p of K at which ¢ has good
reduction ¢, and such that the reduction of a modulo p is not p,-periodic.

To state our second corollary, we fix some notation. If p is a prime of
a number field K, F is an elliptic curve defined over K of good reduction
at p, and @ € E(K) is a K-rational point on E, then k, = ox/p is the
residue field at p, E, is the reduction of E modulo p, and Q, € E,(k;) is the
reduction of () modulo p.

Corollary 1.3. Let K be a number field, let & be an elliptic curve defined
over K, let Q € E(K) be a non-torsion point, let q be a prime number, and
let n be a positive integer. Then there is a positive density set of primes p of
K at which E has good reduction and such that the order of Qy in the finite
group Ey(ky) is divisible by ¢".

Corollary 1.3 is in fact a weak version of a theorem of Pink, who showed
the following result in [Pin04, Corollary 4.3]: given an abelian variety A
over a number field K, a point @ € A(K) such that Z - Q) is Zariski dense
in A, and any prime power ¢", there is a positive density set of primes p of
K such that the g-primary part of the order of @, € Ay(ky) equals ¢".

This project originated in the summer of 2009, when four of the authors
(R.B., D.G., PK., and T.T.) were working to extend their results from
[BGKT11] to other cases of the Dynamical Mordell-Lang Conjecture. At
that time, T.S. suggested the general strategy for such an extension. The
details for the proposed strategy turned out to be more complicated than
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originally thought, and thus later, with the help of B.H., particularly with
respect to the computations in Section 5, the project was finalized.

The outline of the paper is as follows. After some background in Section 2,
we state and prove Theorem 3.1 in Section 3. In Section 4, we prove the two
above corollaries, and we present other applications of Theorem 3.1 to some
recent problems in arithmetic dynamics. In Section 5 we present evidence
that a result like Theorem 3.1 is unlikely to hold in higher dimensions. We
conclude by posing some related questions in Section 6.

2. NOTATION AND TERMINOLOGY

Let K be a number field with algebraic closure K and ring ox of algebraic
integers. Fix an isomorphism 7 from IP‘}( to the generic fibre of IP%K. By
standard abuse of language, we call a nonzero prime p of 0x simply a prime
of K, and we denote the corresponding residue field k, := ox /p. For each
prime p of K, and for each z € P!(K), we denote by ry(z) the intersection of
the Zariski closure of 7(z) with the fibre above p of Py, ; intuitively, ry(z) is «
modulo p. The resulting map 7, : P1(K) — PL(ky) is the reduction map at
p. Again by standard abuse of language, we say that o € P'(K) is congruent
to 8 € P(K) modulo p, and we write « = 3 (mod p), if ry(a) = rp(5).

If ¢ : P! — P! is a morphism defined over the field K, then (fixing a choice
of homogeneous coordinates) there are relatively prime homogeneous poly-
nomials F, G € K[X,Y] of the same degree d = deg ¢ such that p([X,Y]) =
[F(X,Y): G(X,Y)]; note that F' and G are uniquely defined up to a nonzero
constant multiple. (In affine coordinates, p(t) = F'(t,1)/G(t,1) € K(t) is a
rational function in one variable.) We can then define the following notion
of good reduction of ¢, first introduced by Morton and Silverman in [MS94].

Definition 2.1. Let K be a number field, let p be a prime of K, and let
o, € K be the corresponding local ring of integers. Let ¢ : Pt — P!
be a morphism over K, given by o([X,Y]) = [F(X,Y) : G(X,Y)], where
F,G € 0,[X,Y] are relatively prime homogeneous polynomials of the same
degree such that at least one coefficient of F' or G is a unit in oy,. Let
op = [Fp,Gyp), where F,,Gy, € ky[X,Y] are the reductions of F' and G
modulo p. We say that ¢ has good reduction at p if @y : PL(ky) — PL(ky)
is a morphism of the same degree as .

Intuitively, the map ¢y : P!(ky,) — P1(ky) in Definition 2.1 is the reduction
of ¢ modulo p. If p € K|[t] is a polynomial, there is an elementary criterion
for good reduction: ¢ has good reduction at p if and only if all coeflicients
of ¢ are p-adic integers, and its leading coefficient is a p-adic unit.

We will use the following definition in Section 4.

Definition 2.2. Let K be a field, let p € K(t) be a rational function, and
let z € PL(K) be p-periodic of period n > 1. Then X := (") (2) is called
the multiplier of z. If p is a prime of K with associated absolute value |- |y,
and if |Xy < 1, then z is said to be attracting with respect to the prime p.
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In Sections 5 and 6 we will consider morphisms of higher-dimensional
spaces. Therefore we note that the multiplier A in Definition 2.2 is the
unique number A such that the induced map d(¢") : T,P' — T,P! on the
tangent space at z is multiplication by the 1 x 1 matrix [)].

Multipliers are invariant under coordinate change. More precisely, if z is
a p-periodic point and ¢ = p = oo u, then p(z) is a 1p-periodic point, and
by the chain rule, it has the same multiplier as z does. In particular, we can
define the multiplier of a periodic point at z = co by changing coordinates.
Also by the chain rule, the multiplier of ¢!(2) is the same as that of z.

Whether or not z is periodic, we say z is a ramification point or critical
point of ¢ if ¢'(2) = 0. If ¢ = =1 o) oy, then z is a critical point of ¢ if
and only if u(z) is a critical point of v; in particular, coordinate change can
again be used to determine whether z = oo is a critical point.

We conclude this Section by recalling the statement of the Chebotarev
Density Theorem; for more details, see, for example, [SLIG].

Theorem 2.3. Let L/K be a Galois extension of number fields, and let
G :=Gal(L/K). Let C C G be closed under conjugation, and define

Ho(x, L/K) :==#{p : N(p) <z, p is unramified in L/K, and o, C C},
where N(p) is the (K/Q)-norm of the prime ideal p of K, and oy is the
Frobenius conjugacy class corresponding to p in Gal(L/K). Then

e L/K) _[C]

3. PROOF OF MAIN RESULT
We now state and prove our promised generalization of Theorem 1.1.

Theorem 3.1. Let K be a number field, and let p1,...,¢q : ]P’}( — IP’}( be
rational maps of degree at least 2. Let Ay, ..., Ay be finite subsets of P!(K)
such that at most one set A; contains a point that is not p;-preperiodic, and
such that there is at most one such point in that set A;. Let Ti,..., T4 be
finite subsets of PL(K) such that no T; contains any ;-preperiodic points.
Then there is a positive integer M and a set of primes P of K having positive
density such that for anyi=1,...,g9, any vy € T;, any a € A;, any p € P,
and any m > M,
F(7) #a  (mod p).

We will need the following standard ramification lemma over p-adic fields;
it says, roughly, that if the field of definition of a point in ¢~ " () ramifies
at p, then that point must be a ramification point of ™ modulo p.

Lemma 3.2. Let K be a number field, let p be a prime of o, and let
@ : PY — P! be a rational function defined over K and of good reduction
at p = pNog such that 2 < degyp < charky. Let a € PYK), let m > 1 be
an integer, let B € =™ (a) C PY(K), and let q := p N ox(p)- If q is ramified
over p, then 8 is congruent modulo p to a ramification point of ™.
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Proof. By induction, it suffices to show the lemma in the case m = 1. Let
|- | denote the p-adic absolute value on K, and let K, be the completion of
K with respect to |- [;. After a change of coordinates, we may assume that
a = 0 and that [f]; < 1.

Writing ¢ = f/g, where f,g € K|t] are relatively prime polynomials, we
have f() = 0. Since q is ramified over p, f must have at least one other
root congruent to § modulo p. Thus, the reduction f, of f has a multiple
root at . However, g,(8) # 0, since ¢ has good reduction. Therefore,
the reduction ¢, has a multiple root at 3, and hence 4,0; (8) = 0. On the
other hand, because deg < char ky, there must be some « € 0z such that
gog(fy) # 0. It follows that there is a root of ¢’ congruent to 8 modulo p. [

Next, we use the fact that our residue fields are finite to show that if « is
not periodic modulo a large enough prime p, then for large m, there can be no
roots of "™ () —a modulo p. We also obtain some extra information about
our fields of definition, which we will need in order to apply the Chebotarev
density theorem in our proof of Theorem 3.1.

Lemma 3.3. Let K be a number field, let p be a prime of oz, and let
¢ : PY — P! be a rational function defined over K and of good reduction
at p = pNog such that 2 < degp < chark,. Suppose that a € P1(K) is
not periodic modulo p. Then there exists a finite extension E of K with
the following property: for any finite extension L of E, there is an integer
M € N such that for all m > M and all 3 € PY(K) with ¢™(3) = a,

(i) t does not ramify over q, and
(i) [ors)/r:oL/al > 1,
where t:=pNopg, and q:=pNoy.

Proof. For any v € oy,
(3.3.1) there is at most one j > 0 such that ¢/(y) =« (mod p),

since « is not periodic modulo p. In particular, for each ramification point
v € PY(K) of o, there are only finitely many integers n > 0 and points
z € P}(K) such that ¢"(z) = @ and z = v (mod p). Let E be the finite
extension of K formed by adjoining all such points z.

Given any finite extension L of E, let q = pNoy. Since P!(0y/q) is finite,
(3.3.1) implies that for all sufficiently large M, the equation M (z) = a
has no solutions in P!(0/q). Fix any such M; note that M must be larger
than any of the integers n in the previous paragraph. Hence, given m > M
and 8 € P!(K) such that ¢"(8) = «, we must have [o7(g) /¢ : 0r/q] > 1,
where t = p N oyg), proving conclusion (ii). Furthermore, if 3 is a root of
©™(x) — «a, then there are two possibilities: either (1) 8 is not congruent
modulo p to a ramification point of ¢, or (2) ¢/(B) = z for some j > 0
and some point z € P!(L) from the previous paragraph. In case (1), t is
unramified over q by Lemma 3.2. In case (2), choosing a minimal such 57 > 0,
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and applying Lemma 3.2 with z in the role of o and j in the role of m, v is
again unramified over q. Thus, in either case, conclusion (i) holds. O

We now apply Lemma 3.3 to a set A of points.

Proposition 3.4. Let K be a number field, let p be a prime of o5, and let
@ : P — P! be a rational function defined over K and of good reduction at
p=pNog such that 2 < degy < charky,. Let A= {oq,..., 0o} be a finite
subset of P(K) such that for each o; € A,

e if a; is not periodic, then «; is not periodic modulo p; and

o if a; is periodic, then p(ay) = «a; (i.e., oy is fixred by ¢) and the

ramification index of ¢ at «; is the same modulo p as over K.

Then there is a finite extension E of K with the following property: for any
finite extension L of E, there is an integer M € N such that for all m > M
and all B € PY(K) with ¢"™(B) € A but ©'(B8) & A for all t < m,

(i) © does not ramify over q, and
(i) [or(g)/v:oL/a] > 1,
where t:=pNopg and q:=pNog.

Proof. For each «; € A that is not periodic, we apply Lemma 3.3 and obtain
a field E; with the property described in that Lemma. For each a; € A that
is periodic, we apply Lemma 3.3 to each point v, € ¢ («a;) \ {o;} and
obtain a field Ej; with the corresponding property. To do so, of course,
we must know that no v;; is periodic modulo p. To see that this is true,
first note that ;1 # o; (mod p); otherwise the ramification index of ¢ at
a;; would be greater modulo p than over K, contradicting our hypotheses.
Since « is fixed and vj; # a; (mod p), it follows that v;; is not periodic
modulo p, as desired.

Let E be the compositum of all the fields E; and Ej;,. Given any finite
extension L of E, then by our choice of E; and Ej, there are integers
M;, M, € N satisfying the conclusions of Lemma 3.3. Set

M = max(Mz, Mjk) + 1.
1,7,k
Then for any m > M and 8 € P1(K) such that ¢™(8) € A but ¢!(5) ¢ A
for all 0 < t < m, we have ™ 1(8) ¢ A. Hence, o™ 1() is either some
7Yjk Or is in ¢~ 1(a;) for some nonperiodic a;; that is, 8 is an element either
of some ¢~ (M1 (1) or of ¢~ (a;) for some nonperiodic o;. Thus, by the
conclusions of Lemma 3.3, /3 satisfies conditions (i) and (ii), as desired. O

We will now apply Proposition 3.4 to several maps 1, ..., ¢, at once to
obtain a proof of Theorem 3.1.

Proof of Theorem 3.1. We note first that it suffices to prove our result for
a finite extension of K. Indeed, if L/K is a finite extension and qNoxg =t
for a prime q C oy, then ¢!"(y) is congruent to a modulo q if and only if
() is congruent to ov modulo t. Moreover, given a positive density set of
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primes Q of L, the set P = {qNogx : q € Q} also has positive density as a
set of primes of K.

We may assume, for all ¢ = 1,...,g, that every @;-preperiodic point
a € A; is in fact fixed by ;. Indeed, for each such ¢ and «, choose integers
Jo > 0 and ¢, > 1 such that ¢}*(a) = @f“““(a}. Set j := max,{ja}, and
replace each o € A; by ¢! (). Similarly, set £ := lemy{ly}, and enlarge
each 7; = {7i1,...,%is,} to include ¢?(v;e) for all b =1,...,£ —1 and ¢ =
1,...,s;. Finally, replace each ¢; by gof, so that for the new data, all the
wi-preperiodic points in « € A; are fixed by ;. If the Theorem holds for
the new data, then it holds for the original data, since for any m > M and
any prime p at which every ¢; has good reduction, ¢}*(v;;) = a (mod p)
implies (¢£)%(¢?(7i)) = ¢l (a) (mod p), writing m + 5 as al + b with a > 0
and 0 < b < /.

We fix the following notation for the remainder of the proof. If there is
any index i such that 4; contains a nonperiodic point, we may assume that
this happens for 7 = 1, and we denote the nonperiodic point by o’. By
hypothesis, all points in A; \ {a'} are ¢1-preperiodic, and we denote them
by av;; similarly, for each 7 > 2, all points in A; are y;-preperiodic, and we
denote them by «;;. By the previous paragraph, we may assume that ¢;
fixes oy; for all ¢, j.

Note that there are only finitely many primes p of bad reduction for any
;, finitely many for which char k, < max;{degy;}, and finitely many such
that the ramification index of ¢; at some o;; € A; is greater modulo p
than over K. On the other hand, by [BGKT11, Lemma 4.3], there are
infinitely many primes p of K such that o' is not ¢j-periodic modulo p.
Hence, we may choose such a prime p, and then a prime p of o5 for which
p = pNog, that simultaneously satisfy, for each i = 1,..., g, the hypotheses
of Proposition 3.4 for ¢; and A;.

Applying Proposition 3.4, for each ¢ = 1,..., g we obtain finite extensions
E; of K satisfying the conclusions of that result. Let L be the compositum
of the fields E1,...,Ey, and let ¢ = pNoy. Then for alli =1,...,g, all
sufficiently large M, and all 8 € K such that ¢ (8) € A; but ¢t(8) ¢ A;
for 0 <t < M, we have

(i) © does not ramify over g, and

(i) [ors) /v :oL/a] > 1,
where t=pnNo () As noted at the start of this proof, it suffices to prove
the Theorem for the field L.

Fix such a sufficiently large integer M, and let F'/L be the finite extension
obtained by adjoining all points 3 € P!(L) such that for some i = 1,...,g
we have oM (B) € A; but ¢t(8) ¢ A; for all 0 < t < M. Note that F/L is
a Galois extension, since each A; and each ¢; is defined over L. Moreover,
by property (i) above, F'/L is unramified over q. By property (ii), then,
the Frobenius element of q belongs to a conjugacy class of Gal(F/L) whose
members do not fix any of the points 8. By the Chebotarev density theorem
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(Theorem 2.3), then, there is a positive density set of primes S of L whose
Frobenius conjugacy classes in Gal(F/L) do not fix any of the points 3.
Fix any prime v € §. We make the following claim.

Claim 3.5. Let m > 0, let 1 < i < g, and let z € P'(L) be a point such
that ¢"(z) is congruent modulo t to an element of A;. Then there is some
0 <t < M such that ¢f(z) is congruent modulo t to an element of A;.

To prove the claim, note first that the conclusion is vacuous if m < M,
thus, we may assume that m > M. In fact, given any index i and point z as
in the claim, we may assume that m is the minimal integer m > M satisfying
the hypothesis, namely that () = M (oM (2)) is congruent modulo v
to an element of A;. However, by the defining property of the set of primes
S, there cannot be any points w € P!(L) such that ¢ (w) is congruent
modulo t to an element of A; but ¢!(w) ¢ A; for all 0 <t < M. Choosing
w = ¢ M(z) € PY(L), then, there must be some 0 < ¢t < M such that
@l (M (2)) is congruent modulo t to an element of A;. Thus, ¢~ T(z)
is congruent modulo t to an element of A;; but 0 < m — M +¢ < m,
contradicting the minimality of m and proving Claim 3.5.

Let U be the subset of S consisting of primes v € S such that one or more
of the following holds:

(i) ¢i(7) = a;; (mod t) for some i = 1,...,g, some v € T;, some
@;-periodic a;; € A;, and some 0 < ¢ < M; or
(ii) ¢! (') = a (mod t) for some a € A; and some 1 <t < M.

Note, for each ¢;-periodic o;; € A;, we cannot have ¢} (v) = «;; for any
r > 0 and any v € 7T, since the elements of 7; are not ;-preperiodic.
(However, it is possible that ¢} () = o/ for some r and some v € T;.) Thus,
U is a finite subset of S, and hence S’ := &\ U has positive density. We will
now show that the Theorem holds for the field L, the integer M, and this
set of primes &'.

Suppose there exist a prime vt € &', an index 1 < i < g, points a € A; and
v € Ti, and an integer m > M such that ¢]*(y) = o (mod t). By Claim 3.5,
there is an integer 0 < ¢ < M and a point & € A; such that ¢l(y) = &
(mod t). By property (i) above, then, we must have i = 1 and & = «'.
Moreover, since ¢*"“"(p1(a/)) = a (mod t), and since m —t — 1 > 0,
Claim 3.5 tells us that there is some 0 < k < M such that ¢¥™(a/) is
congruent modulo t to an element of A;, contradicting property (ii) above,
and hence proving the Theorem. ([

4. APPLICATIONS

4.1. Proofs of the Corollaries. We are now prepared to prove the Corol-
laries of Theorem 3.1 stated in Section 1.

Proof of Corollary 1.2. We begin by noting that ¢ has good reduction at all
but finitely many primes p of K.
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If « is ¢-preperiodic but not ¢-periodic, then for all but finitely many
primes p of K, the reductions modulo p of the finitely many points in the
forward orbit of o are all distinct. Hence oy is @p-preperiodic but not ¢p-
periodic. Thus, we may assume that « is not p-preperiodic.

Applying Theorem 3.1 with g = 1, o1 = ¢, and 71 = A; = {«a}, there is
a positive density set of primes p of K for which

" (@) #a  (mod p)

for all sufficiently large m. Hence, y is not yp-periodic. O

Proof of Corollary 1.3. We begin by noting that E has good reduction at
all but finitely many primes p of K. (For more details on elliptic curves,
see [Sil86]). Write E in Weierstrass form, and let = : E — P! be the
morphism that takes a point P to the z-coordinate of P. Let [¢] : E — E
denote the multiplication-by-¢ map, and let ¢ € K(x) be the associated
Lattes map; that is, ¢ satisfies the identity x o [q] = ¢ o z.

Since @ is not torsion, the point [¢"~1]Q € E(K) is also not torsion, and
therefore its z-coordinate a := x([¢""1]Q) € P!(K) is not ¢-preperiodic.
Hence, by Corollary 1.2, there is a positive density set of primes p of K
such that the reduction oy, is not ¢p-periodic. Equivalently, [qm+"_1](Qp) #+
[¢" 1 Qy for all m > 1. However, if the g-primary part of the order of Q, were
at most ¢" !, then there would be some m > 1 such that [¢"~1T7"](Q,) =
[¢" 1 Qp. Thus, ¢" must divide the order of Q,. O

4.2. Dynamical Mordell-Lang problems. The following conjecture was
proposed in [GTZ08, GT09].

Conjecture 4.1 (The cyclic case of the Dynamical Mordell-Lang Conjec-
ture). Let X be a quasiprojective variety defined over C, let ® be an endo-
morphism of X, let V.C X be a closed subvariety, and let x € X (C) be an
arbitrary point. Then the set of integers n € N such that ®"(z) € V(C) is a
union of finitely many arithmetic progressions {nk + €},cn, where k, £ > 0
are monnegative integers.

Theorem 3.1 allows us to prove a few new cases of Conjecture 4.1 over
number fields.

Theorem 4.2. Let K be a number field, let V C (Pl)g be a subvariety
defined over K, let x = (z1,...,14) € (PHI(K), and let ® := (p1,...,¢,)
act on (Pl)g coordinatewise, where each @; € K(t) is a rational function
of degree at least 2. Suppose that at most one @; has a critical point «
that is not @;-preperiodic, and that all other critical points of that ¢; are
preperiodic. Then the set of integers n € N such that ®"(z) € V(K) is a
union of finitely many arithmetic progressions {nk + £},cn, where k, £ > 0
are monnegative integers.

Proof. If x4 is ¢4-preperiodic, we can absorb the first finitely many iterates
that may lie on V into trivial arithmetic progressions {nk + ¢},>¢ with
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k = 0. Thus, we may assume that z, is pg-periodic, of some period j > 1.
By restricting our attention to progressions {nk + {},>o with j|k, then,
it suffices to assume z,4 is fixed by ¢4, and hence the dimension may be
reduced to g — 1. By induction on ¢, then, we may assume that no z; is
p;-preperiodic.

By Theorem 3.1, there exist a constant M and a positive proportion of
primes p of K such that for each i« = 1,...,g, ¢; has good reduction at
p, degy; < charky, and ¢}"(z;) is not congruent modulo p to any critical
point of @; for all m > M. Fix any such p, and note that the derivative
of the reduction (y;,) is nontrivial, because ¢; has good reduction and
1 < degy; < charky,. Thus, ¢;(¢"(z;)), or its appropriate analogue if
" (x;) lies in the residue class at oo, is a p-adic unit for all m > M. It
follows that ¢ (x;) # v (mod p) for any attracting periodic point v of ¢;;
applying [BGKT11, Theorem 3.4] completes our proof. O

To state the following special case of Theorem 4.2, we recall that a rational

function is said to be post-critically finite if all of its critical points are
preperiodic.
Corollary 4.3. Let K be a number field, let V C (Pl)g be a subvariety
defined over K, let x = (z1,...,74) € (PH)I(K), and let ® := (p1,...,¢,)
act on (Pl)g coordinatewise, where each p; € K(t) is post-critically finite
and of degree at least 2. Then the set of integers n € N such that ®"(z) €
V(K) is a union of finitely many arithmetic progressions {nk+{},en, where
k,¢ > 0 are nonnegative integers.

In the case that ¢; = f for all ¢ for some quadratic polynomial f, we have
the following result.

Theorem 4.4. Let K be a number field, let V C (Pl)g be a subvariety
defined over K, let x = (21,...,24) € (PY)I(K), let f € K[t] be a quadratic
polynomial, and let ® := (f,..., f) act on (Pl)g coordinatewise. Then the

set of integers n € N such that ®"(z) € V(K) is a union of finitely many
arithmetic progressions {nk+£},en, where k, £ > 0 are nonnegative integers.

Proof. As in the proof of Theorem 4.2, we may assume that none of z1, ..., x4
is preperiodic. Let 7 = {z1,...,24}, and let A = {a/, 00}, where o € K is
the unique finite critical point of f. Then the map f, with the finite sets A
and T, satisfies the hypotheses of Theorem 3.1, and the rest of the proof is
exactly like that of Theorem 4.2. O

We obtain a similar result when each f; takes the form 2% + ¢; for ¢; € Z.

Theorem 4.5. Let K be a number field, let V C (Pl)g be a subvariety
defined over K, let x = (z1,...,24) € (PHI(K), let fi(z) = 2% + ¢; with
ci €Z fori=1,...q, and let ® := (fi,..., f) act on (P1)9 coordinatewise.
Then the set of integers n € N such that ®™(z) € V(Q) is a union of finitely
many arithmetic progressions {nk + €},en, where k,£ > 0 are nonnegative

integers.
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Proof. As before, we can assume that no z; is f;-preperiodic. By [Jon08,
Theorem 1.2], for each i = 1,...,g such that ¢; # 0,—1,—2, the set U; of
primes p for which 0 is not periodic modulo p has density 1. (The results in
[Jon08] are stated for = € Z, but the same proof works for arbitrary x € K.)
Intersecting U; over all such i gives a set of primes S; of density 1.

Foreachi=1,...,g, define A; = {o0} if ¢; # 0,—1,—2, and A; = {0, 00}
if ¢; = 0,—1,—2. Because 0 is f;-preperiodic if ¢; is 0, —1, or —2, and
because oo is exceptional and fixed for any c;, we may apply Theorem 3.1
and conclude that

Sy :={p : fi"(xi) ¢ A; modulo p for all m > M}

must have positive density, for some M > 0. Thus, the set S = S N Sz has
positive density; the rest of the proof is now like that of Theorem 4.2. [

4.3. Newton’s method at finite places. Consider a rational function
N(z) of the form N(z) = x — %, where f € K][x] is a polynomial of
degree at least 2. Given v € K, let § be the set of primes p of K such
that {N™(z)}>°_; converges p-adically to a root of f. In [FV11], Faber
and Voloch conjecture that S has density 0; that is, Newton’s method for
approximating roots of a polynomial “fails” at almost all finite places of K.
Although we cannot use our methods to prove this conjecture, we can prove
the following result, which says that given a finite set of nonpreperiodic
points and a finite set of rational functions N;(x) arising from Newton’s
method, the set of primes at which convergence fails has positive density.
In fact, we prove that for large enough m, the iterate N/™(z) is not even in
the same residue class modulo p as any of the roots of f;.

Theorem 4.6. Let f1,..., fq € K|[x] be polynomials of degree at least 2. Let

Ni(z) =x — ?,Eig fori=1,...qg, and let T; be finite subsets of K such that
no T; contains any N;-preperiodic points. Then there is a positive integer
M and a positive density set of primes P of K such that for anyi=1...g,

any v € T, any root « of fi(x), any m > M, and any p € P, we have
N{"(v) # a  (mod p).

Proof. The result is immediate from Theorem 3.1, since each root of f; is a
fixed point of NNV;. O

5. HEURISTICS AND HIGHER DIMENSIONS

We embarked on this project hoping to prove the cyclic case of the Dy-
namical Mordell-Lang Conjecture for endomorphisms ® of P? by the strategy
outlined in [BGKT11]. (For a more general variant of this conjecture, see
[GTZ11b, GTZ11a].) More precisely, assuming ® is defined over a number
field K, we had hoped to prove that for each o € P4(K), one can always find
a prime p of K such that for all sufficiently large n, ®"(«) is not congruent
modulo p to a point on the ramification divisor of ®. This is equivalent to
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saying that, modulo p, the intersection of the ramification divisor and the
“periodic part” of the forward orbit is empty. (Since any point is prepe-
riodic modulo p, it makes sense to divide a forward orbit into its tail and
its periodic part). When this condition is met, even at a single prime of
suitably good reduction, one can apply the generalized Skolem-type tech-
niques of [BGT10] to prove the cyclic case of the Dynamical Mordell-Lang
Conjecture for ® and a.

Unfortunately, a random map model suggests that there may be no such
prime when when d > 4. Roughly, the issue is that if ® : PY — P9, then
under certain assumptions of randomness, an argument akin to the birthday
paradox suggests that the periodic part of the forward orbit of a point under
® should typically be of order p%/2. Since the proportion of points in P4(F,)
that lie on the ramification divisor should be about 1/p, this means that
for d > 3 and p large, the chances are very high that the periodic part of a
given forward orbit passes through the ramification divisor over IF,,. In fact,
a naive argument would seem to indicate that this chance is so high when
d > 3 that even taking the product over all p, one is left with a nonzero
chance that the periodic part of the forward orbit of a given point passes
through the ramification divisor modulo p for allp. To our surprise, however,
a more thorough analysis shows that the likelihood of periods intersecting
the ramification divisor modulo p is dominated by very short cycles, namely
of length < plogp (rather than p%2, the expected length of a period modulo
p.) This changes the dimension cutoff so that it is only when d > 5 that
there is a nonzero chance that the periodic part of the forward orbit of a
given point passes through the ramification divisor modulo p for all p.

In Section 5.1, we explain this random model in some detail and present
evidence that it is accurate in at least some cases.

Remark 5.1. The idea of using random maps to model orbit lengths is not
new — for (generic) quadratic polynomials in one variable it is at the heart of
Pollard’s rho method [Pol75] for factoring integers. Under the random map
assumption, Pollard’s method factors an integer n in (roughly) time pl/2,
where p is the smallest prime divisor of n. As for the validity of the random
model, unfortunately not much is known. In [Bac91], Bach showed that for
a randomly selected quadratic polynomial and starting point, the random
map heuristic correctly predicts the probability of finding orbits of length
about log p. Further, in [Sil08], Silverman considered general morphisms of
P™ defined over a number field, and he showed that for any € > 0, a random
starting point has > (log p)!~¢ distinct elements in its orbit modulo p for
a full density subset of the primes; see also [AG09]. Silverman [Sil08] also
conjectured that the period is greater than p%2=¢ for a full density subset
of the primes, and motivated by experimental data, he also made a more
precise conjecture for quadratic polynomials in dimension 1.

5.1. A probabilistic model for orbits and cycles. Let X be a (large)
finite set, and let f : X — X be a random map in the following sense: for
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each z € X, select the image f(x) by randomly selecting an element of X,
with uniform distribution.

5.1.1. Cycle lengths. Fix a starting point z¢o € X, and inductively define
Tnt1 = f(x,). Since X is finite, z( is necessarily preperiodic. Let 7 be
the collision time for the orbit (xg,x1,...), i.e., 7 is the smallest positive
integer such that z, = x4 for some s < 7. For any integer k& > 0, we
have x; & {xo,21,...,2j_1} for all j < k if and only if 7 > k. Thus, the
randomness assumption on f implies that

k . k .
Prob(r > k) = H1 (1 - ﬁ) — exp [zlog (1 - |)]T|ﬂ
j= =

as in the birthday paradox. From the Taylor series expansion log(1l — z) =
—(z+22/2 +23/3+...), we deduce the inequality

(5.1.1) Prob(r > k) < exp <—k(§;‘l)> ,

and similarly we find that for k = o(|X|?/3),

2
(5.1.2) Prob(7 > k) = exp (—;XO (14 o(1)),

since

k(k + 1)

(513) PrOb(T > k) = exp <_M

n 0<k3/\X|2>)

2
— exp <—2‘]‘“X| +O(k/|IX| + k3/\X|2)> .

In addition, if we let a(k) := Prob(r > k — 1), then

Prob(r = k) = Prob(7 > k — 1) — Prob(7 > k)
k—1 ) k .
“H () -0~ )
=11 1 i T 1 Iy k k
== (- ) T 15) = g e

j=1

Define C := {zs = x,Zs41,-..,Tr—1} to be the periodic part of the orbit
of . Conditioning on 7 = k, the random map assumption implies that xy
is uniformly selected among {x, ...,2zr_1}, and hence

1
= = = — < .
Prob<|C| E‘T k:) k for any ¢<k
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The cycle length probability may thus be written as

(5.1.4) Prob(|C| =£) = > Prob(|C| = {|r = k) - Prob(r = k)
k>0

—Z% Prob(r = k) Zk ]X] \X\Z

k>4 k>t k>4

Before stating the next Lemma we recall that the Gaussian error function
erfc is defined as (cf. [AS92, Chapter 7])

erfc(s) : /
f
Lemma 5.2. If { = o(|X|*/3) then, as | X| — oo,

Prob(|C| = £) =, /ﬁ - (exfe (¢//2IXT) +o(1))

Proof. By (5.1.4), we find that

| X R

1
(5.2.1)  Prob(|C| =¢) = |X|Z = x| > alk) = > alk)

k=1 1<k<t

We begin by evaluating the first sum. Recalling that a(k) = Prob(r > k—1),
if k = o(|X|?/?), then by (5.1.2), we have

a(k) =exp(— k2/(2|X|)) (14 0(1)).

Moreover, by (5.1.1) the inequality
a(k) < exp (= k*/(3|X]))

holds for k > 1. Thus, setting Q(T)) := T2%/3/log T', we have

X|
(522) Y ak)= > ak)+ D> alk)
k=1 1<k<Q(IX1) QUX|)<k<|X|
= (1+o0(1)) - Z e F/AXD 4 o (/oo e~/ GIXD dt) :
1<k<Q(1 X)) QUXD-1

To show that the contribution from the integral is negligible, we note the
inequality (valid for all A, B > 0)

o0 [o¢] o0 B
/ e /Bat =B e~ ds < E se=5" ds = — e A/B,
A A/\F A JavB 24
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Thus,

& 2
2. el g« SXL o (QUXD 1)
223 /anule "= 2qux) —2 P 31X

X|Y31og|X .S R
< [X]/" log [ X | exp 3oz [X|)? =o(1)

as | X| — oo.
Meanwhile, note that for any L > 1,

L 21X
T R _ /o] l/t IS Gg)
1<k<L 0 | X|
L/\/2[X]

2 L
e dt+0| —+1].
(\/2|X| >

by interpreting the sum as a 1/1/2|X|-spaced Riemann sum approximation
of an integral and noting that |e=** — e~**| < |s — t| for all s,¢ € R. Thus,
the sum in the right side of (5.2.2) is

) QUXN/MV2XT QX)) )
e F/CAXD = /3] td+0<+1
1<I<:<ZQ(|X) / V2| X|

2[X] - (/OOO et dt+o(1)> ,

and the second sum on the right side of (5.2.1) is

—F/

/-1
S alk) = (14 o(1) -3 e HeD
1<k<t k=1
4/ V2IX|
(1+o0(1 e_tht—kO(L—}—l) .
V22X
Combining equations (5.2.1), (5.2.2), and (5 2.3) with the above Riemann

sum estimates, and recalling that erfc(s) f f 0 ot dt, we have

\/Q . fg;o\/me_ﬂ dt + 0(1)
’X‘l/Q

- \/E (erfc (ﬁ/\/ﬁ) —I—O(l)) . g

Prob(|C| = ¢) =
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5.1.2. Clycles intersecting the ramification locus. We now specialize to poly-
nomial maps: let ¢ : AYZ) — A%Z) be a polynomial map such that its
Jacobian matrix d¢ has non-constant determinant, and fix a starting point
zo € AYZ). Given a prime p, let X, = A%(F,), and denote by ¢, : X, = X,
the reduction of ¢ modulo p. Further, let C,, denote the periodic part of the
forward orbit of xg under ¢,, and let R,, denote the ramification locus of ¢,,.
We say ¢ has random map behavior modulo p if the following two conditions
hold:
e |C,| has the same probability distribution as the cycle length of a
random map on a set of size p?.
e The probability of a collection of distinct points y1,...,yr € Cp all
belonging to R, is 1/ pF.

By the Weil bounds, |R,| = p¢~!- (1 + o(1)), since R,, is a hypersurface
(assumed irreducible for simplicity) defined by the vanishing of the deter-
minant of the Jacobian of the map ¢,. Thus, the main thrust of the second
assumption above is that the sets C, and R, are suitably independent.

Proposition 5.3. Assume that the polynomial map ¢ : A4(Z) — A%(Z) has
random map behavior modulo every sufficiently large prime p. If d > 3, then

/2
pd/2-1

Prob(C, "R, = 0) = (14+0(1)) asp— oo.

Proof. Fix a large enough prime p. For simplicity of notation, we will write
C and R instead of C, and R,,. Conditioning on the cycle length |C| being

equal to ¢, we find that Prob(C NR= (Z)‘]C| = E) = (1 —1/p)*, and hence

pd

Prob(CNR =10) = Z (1 —1/p)* - Prob(|C| = ¢).
=1
We start by bounding the contribution from the large cycles. Since (1—1/p)*
is a decreasing function of ¢ and E]Zil Prob(|C| = ¢) = 1, we have
P! 1\ ¢ 1\ dpl
O
Z (1 — 7> -Prob(|C| =¢) < <1 — 7> T < exp(—dlogp) = p~ <.
£>dpl p p
>dplogp

To determine the contribution from the short cycles we argue as follows.
By Lemma 5.2, for £ < dplogp = o(p?/?), we have

Prob(|C| = £) = \/;- (erfe (£/v/207) + 0(1)) = \/27;?- (1+o(1))

since erfc(0) = 1. Hence,

dplfp(ul) -Prob(|C| = £) = (1+0(1 \/;dpbgp (1—2){

(=1 (=1 1<€<dplogp
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which, on summing the geometric series, equals
T 1-0(p~ =42,
1 1)) - = (/r / O
(1+0(1)) 3l 1_(1_1/ 2+ 0(1

Remark 5.4. For d = 2 a similar argument gives that as p — oo,

Prob(Cy "Ry =0) = (1+0(1)) - Y (1= 1/p)"/7/(2p?)erfe(¢//2p?)

1<p?

— (14 o(1) f/ V2 rfo(t) dt ~ (1+ o(1)) - 0.598.

For d = 1 it is easy to see that Prob(C, "R, =0) =1+ 0(1) as p — oo as
follows: since |R,| = O(1),

Prob(Cp "R, = (Z)‘|Cp\ < p'?logp) > (1 — O(1/p))P Hlogp — 7 4 o(1)
and, by (5.1.1),

Prob(|C,| > p*/?logp) < Prob(r > p'/%logp)
= exp(—(logp)*/2)(1 + o(1)) = o(1).

5.1.3. Global probabilities in higher dimensions. Since it is enough to find
one prime p for which C, N R, = 0, the “probability” that our approach
fails — assuming good reduction of the map for all primes, as well as the
random map model being applicable and that the “events” C, "R, = ) are
independent for different p — in dimension d > 3 is, by Proposition 5.3,
given by an Euler product of the form

I1 (1 - V;jf) =11 (1 - O(plfd/2)) .

p p

Since the product diverges to zero if d = 3,4, we would in this case expect
to find at least one (if not infinitely many) primes for which C, N R, = 0.
On the other hand, if d > 5 the product converges, and hence there is a
non-vanishing probability that C, N R, # 0 for all primes.

|C]
Vv 2[X]
denote the normalized cycle length, it is straightforward to deduce from
Lemma 5.2 that the probability density function of ¢ is given by

(5.4.1) g(s) = /7 - erfe(s),

i.e., that

5.2. Numerical evidence for the random model. Letting ¢ :=

Prob(¢ <t) = /0 g(s) ds.

In this section, we shall compare observed cycle lengths with this prediction
in dimensions one and three.
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5.2.1. Clycle lengths in dimension d = 1. Consider the map x — f(x), where
f(x) = 2? + x + 2, with starting point x9 = 1. For each prime p < 100000,
we computed the normalized cycle length ¢, := |Cp|/v/2p. A histogram
plot of {¢,},<n for the resulting data appears in Figure 1, along with the
probability density function g(t) = /7 - erfc(t) from (5.4.1).

FIGURE 1. Normalized cycle length statistics for p < 100000.

5.2.2. Cycle lengths in dimension d = 3. Next, consider the map
(z1, @2, 23) = (f1(z1, T2, 23), f2(@1, 32, 3), f3(21, 2, 73)),
where
fi(xy, o, 23) = sc% +2x129 — 3173 +4:1:§ +bxoxs +6x§ +7x1+8x2+9x3+11,
falxy, 22, 23) = 2:17%+3x1:172—|—4x1:133+5x%+6x2x3+10x§+11‘1 +8xo+3x3+7,
fa(x1, 2, 23) = 3:1:%—1—4361%2+5x13:3+6:v§+17x2:r3+11x§+2x1+8$2+5m3+121.
With starting point z¢ = (1,2, 3), we proceed as we did in dimension one,

except that now the normalized cycle length is ¢, := |Cp|//2p?, and we
consider only p < 21000. The resulting histogram and expected probability
density function appear in Figure 2.

FIGURE 2. Normalized cycle length statistics for p < 21000.
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5.2.3. Probability that R, N C, = (. To further check the accuracy of the
predictions of Section 5.1.2, we randomly generated 50000 degree 2 polyno-
mial maps ¢ : A% = A? with integer coefficients and checked how often the
forward orbit of (0,...,0) had a periodic point on the ramification divisor
modulo p; see Figure 3. In both cases, the data shows that as p increases,
the probability quickly goes to 0 in dimension 1, remains roughly constant
in dimension 2 (compare with Remark 5.4 and note that 1 — 0.598 ~ 0.4),
and quickly goes to 1 in dimension 3, as suggested by our model.

Dimension 1
0.6
> 05 ¢
2
= 04 4
| 033
S 02
- V3
0+ -
0 500 1000 1500 2000
Prime
Dimension 2
0.8
07 ¢
Z0s
§ 0.4 e
° 03
e 02
0.1
0 | |
0 500 1000 1500 2000
Prime
Dimension 3
1 - wwnte o
> 08 0/“‘“"
£
s 06
2
2 0.4
o
e 0.2
0+ t t t t
0 100 200 300 400 500 600
Prime

F1GURE 3. Probability that the forward orbit of a point has
a periodic point lying on the ramification divisor modulo p

For d = 3, we also compared the number of primes p < N for which
Cp N R, = 0 with the prediction given by the random map model. Thus,
given p, let X, = 1if C, N R, = 0, or X, = 0 otherwise. According to
Proposition 5.3, Prob(X, = 1) should be /7 /(2p) - (1 4+ o(1)). To test this
prediction, Figure 4 compares

S(N):=> X,

p<N
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with its expected value > _n +/7/(2p). For the first 5000 primes p we
estimated Prob(X, = 1) by taking a collection of 50 different polynomial
maps of degree two, and for each p we computed the proportion of maps for
which C, "R, = 0. Once again, as Figure 4 shows, the the data agrees very
closely with the predictions of the random map model.

Dimension 3 Experiment

70

60

50

40

Value

30

20

10

0 10000 20000 30000 40000 50000

FIGURE 4. S(N) compared to }_,_n /7/(2p).

6. FURTHER QUESTIONS

It is natural to ask whether Theorem 3.1 is true if we remove the re-
striction that at most one element of (J?_; A; is not ¢;-preperiodic. Un-
fortunately, our method does not extend even to the case that ¢ = 1 and
Ay = {ai1, a2} if neither o nor aw is ¢i-preperiodic. Indeed, the proof of
Theorem 3.1 uses [BGKT11, Lemma 4.3], which relies on Roth’s theorem
and [Sil93], and it is not at all clear how to extend those methods to the
case of more than one wandering point.

Here is one particularly simple question that we have been unable to treat
with our methods.

Question 6.1. Let K be a number field, let ¢ : IP’}( — ]P’}{ be a rational
map of degree at least 2, and let 1,72 € PY(K) be nonperiodic for ¢. Are
there infinitely primes p of K such that neither 1 nor s is periodic modulo
p? Is the density of such primes positive?

The answer to Question 6.1 is trivially “yes” if both v and ~» are prepe-
riodic. In addition, Theorem 3.1 also gives a positive answer if only one of
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the points is preperiodic, or if ¢™(v1) = 72 for some m > 0. Other than
these special arrangements, however, we know of very few cases in which
we can answer Question 6.1. One such case, again with a positive answer,
is the case that 73 = 0 and ¢(z) = 2% + ¢, where ¢ an integer other than
0 or —1. The proof is like that of Theorem 4.5: since the intersection of a
set of positive density with a set of density 1 has positive density, the result
follows by combining Theorem 3.1 with the results of [Jon08].

In a different direction, one might also ask for a higher-dimensional version
of Theorem 3.1 involving points rather than hypersurfaces.

Question 6.2. Let K be a number field, let N > 1, let ® : P% — ]P’% be
a morphism of degree at least 2, and let y1,7v2 € ]P’N(K). Suppose that there
is no m > 0 such that ®™(y1) = v2. Are there infinitely many primes p of
K such that ®"(y1) # 72 (mod p) for all m? Is the density of such primes
positive?

In contrast to the case of orbits intersecting hypersurfaces as in Section 5,
it appears to be less likely that the orbit of a point passes through another
point modulo a prime in higher dimensions than in dimension 1. Indeed, the
same orbit length heuristics suggest that at a given prime p of Q, there is a
ﬁ chance that the orbit of 41 meets 5 modulo p. Because Hp(l—ﬁ) >0

for N > 3, the reasoning of Section 5 would suggest that there is a positive
chance that in fact ®™(v;) # v2 (mod p) for all m and all primes p.

It is not difficult to construct explicit examples where this happens if the
orbit of 7; lies on a proper preperiodic subvariety of PV that does not contain
~2; it would be interesting to find examples where this happens when ; has
a Zariski dense forward orbit. Note also that Question 6.2 has a negative
answer if ® is not a morphism, or if it is a morphism of degree one.

By a result of Fakhruddin [Fak03], a positive answer to Question 6.2 for
maps P : IP’]I\([ — }P’% would give a positive answer for any polarizable self-
map f : X — X of projective varieties. (A map f: X — X is said to
be polarizable if there is an ample divisor L such that f*L = L®? for some
d > 1; see [Zha06].) In particular, one would have a reasonable dynamical
generalization of [Pin04]. However, proving that Question 6.2 has a positive
answer may require new techniques. It is not clear to us how to modify the
arguments in this paper to treat this higher-dimensional problem.
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