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ABSTRACT. Let ¢: X — X be a morphism of a variety over a number field K. We consider
local conditions and a “Brauer-Manin” condition, defined by Hsia and Silverman, for the
orbit of a point P € X (K) to be disjoint from a subvariety V' C X, i.e., for VN O, (P) = 0.
We provide evidence that the dynamical Brauer-Manin condition is sufficient to explain
the lack of points in the intersection V' N O, (P); this evidence stems from a probabilistic
argument as well as unconditional results in the case of étale maps.

1. INTRODUCTION

In recent work, Hsia and Silverman (Hsia and Silverman, 2009)) ask a dynamical question
in analogy with a question of Scharaschkin (Scharaschkin, 1999); the dynamical question is
as follows. Let ¢: X — X be a self-morphism of a variety over a number field K, let VV C X
be a subvariety, and let P € X(K). The orbit of P under ¢ is defined by

Oy (P) := {P,¢(P), o(¢(P)),...}.

We also let A be the ring of adeles of K and C(—) denotes the closure in the adelic topology
of subsets of V(Af). Hsia and Silverman ask whether the closure of the intersection of the
orbit O, (P) with the subvariety V' is equal to the intersection of V (Af) with the closure of
O,(P) in the adelic topology, i.e. whether

C(V(K) N Oy(P)) = V(Ak) NC(O,(P)).

The purpose of this paper is to give some justification to the assertion that a closely related
question has a positive answer. In particular, when K = Q, (and a choice of an integral
model for V' is made) we give evidence for the assertion that for fixed P,V

V(K)NOW(P)=0=3meZ,m>1,V(Z/mZ) N (O,(P) mod m) = () (1.1)

holds for “sufficiently generic” ¢

Our evidence is twofold: an analogous result in a probabilistic model, and unconditional
results in the case that ¢ is étale and V is ¢*-invariant or p-preperiodic.

The probabilistic model — inspired by similar work of Poonen (Poonen, 2006) for the
original question of Scharaschkin — is developed in Section [2] and it suggests the following:
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(i) For all sufficiently large prime p, it is highly probable that, provided dimV >
dim X /2,
V(Z/pZ) N (Oy,(P) mod p) #

(cf. Proposition 2.4]) It thus seems unlikely that one would be able to show that
V(K) N Ou(P) = 0 by exhibiting a prime p so that the modulo p intersection is
empty, even when it is expected that the modulo m intersection is empty for some
m (as discussed below). In other words, a “Chinese remainder theorem” does not
work for orbits.

(ii) On the other hand, if V(K)NO,(P) = 0, then there very likely exist infinitely many
squarefree integers m such that

V(Z/mZ) N C,, =0,
where C,, denotes the cyclic part of O,(P) in X(Z/mZ) (cf. Proposition [2.6])

Remark 1.1. If the intersection of the orbit O, (P) modulo m with V(Z/mZ) is contained only
in the tail of O,(P) mod m, then there exists Ny such that for all n > Ny, ¢"(P) mod m ¢
V(Z/mZ) (here ¢™ denotes the composition of ¢ with itself n times). Therefore V(K) N
O,(P) is contained in

{P.o(P),*(P),.... 0" (P)},
and so can be determined by a finite computation.

In contrast, if the cyclic part of O,(FP) modulo m intersects V(Z/mZ), then there are
infinitely many integers n such that ¢™(P) mod m € V(Z/mZ). Hence, we cannot a priori
show that V(K) N O,(P) is contained in a finite set. Therefore, it is reasonable to only
consider the intersection with the cyclic part of the orbit when trying to formulate and give
heuristic evidence to a local criterion for the intersection of V' with the orbit of P to be
empty.

In Section |3 we provide numerical evidence for the randomness assumptions needed in
the heuristic argument from Section [2 We also describe experiments on randomly generated
morphisms of A® which support the argument that holds for many .

The unconditional results are the focus of Section [4. Assume that X is quasi-projective,
that ¢ is étale, and that ¢*(V) C V, i.e., that V is ¢*-invariant, for some positive integer
k. Under these assumptions we show that if VN O,(P) = ), then for all but finitely many
primes p, there exists an n = n(p) such that V(Z/p"Z) N O,(P) mod p" = 0.

An irreducible subvariety W of X is called preperiodic (or ¢-preperiodic if the morphism
is not clear from the context) if "™*(1W) = * (W) for some integers ky > 0 and k > 0.
If every irreducible component of V' is preperiodic, X is quasi-projective, and ¢ is étale and
closed, then we obtain the same result. In other words, we prove

Theorem 1.2. Let X be a quasi-projective variety over a global field K and V' a closed
subvariety of X. Assume that ¢ is étale, and either (1) that V is @*-invariant, for some
k > 1 or (2) that ¢ is closed and every irreducible component of V is p-preperiodic. If
P e X(K) is such that V(K) N Oy,(P) = 0 then, for all but finitely many primes v,

V(Ky) NCy(Oy(P)) =0,

where C,(—) denotes closure in the v-adic topology.
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In Section , we discuss whether the assumption that V is preperiodic or ¢*-invariant
can be weakened in any way.
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2. PROBABILISTIC PROOF

Let X be a projective variety over Q, let V' C X be a geometrically irreduciblem closed
Q-subvariety, and let ¢: X — X be a Q-morphism. We write

D :=dim(X), and d:=dim(V).

The goal of this section is to give probabilistic evidence for the assertion that if VNO,(P) =
() and ¢ is “sufficiently generic”, then there exists positive squarefree integers m such that
V(Z/mZ) is disjoint from the cyclic part of O,(P) mod m. Specifically, we model the cyclic
part of O,(P) mod m by certain random subsets C;, of X(Z/mZ), and then prove that the
probability that V(Z/mZ) N C!, = 0 approaches 1 as m — oo along a certain subsequence.
To make this more precise, we fix some further notation.

Fix a finite set of primes S such that X and V extend to flat projective models 2" and 7
over Zg, the ring of S-integers, i.e. rational numbers whose denominators are divisible only
by primes in S. After possibly enlarging S, we also assume that ¢ extends to a morphism
o: X — A and that P : Spec K — X extends to & : SpecZg — Z . Then for any integer
m which is relatively prime to all elements of S, we may consider the base change X,, :=
X Xgo LImL,Vy, =V Xz, Z/mZ as well as the restrictions ¢, 1= @|x,,: Xm = X, P 1=
Plspeczmz - SpecZ/mZ — X,,. We will often abuse notation and write V(Z/mZ) for
Vi(Z/mZ).

We write

O = { Py om(Pn)s @ (@m(Prm)), - - -}
As O,, is contained in the finite set X,,(Z/mZ), there is some pair of non-negative integers
ko < ky such that ©*(P,,) = ¢F(P,). Let ko be the minimal such integer; then we define
the cyclic part of O,, as

Cm = {@:g(Pm)7 @frg—ﬂ(Pm)a 90§,2+2(Pm>, - }

Our probabilistic model is motivated by the following heuristics for C,, and O,,.

(i) The reduction of morphisms ¢: X — X modulo p behave like random maps on a
finite set X (F,).

ISince O,(P) € X(Q), the intersection V(Q) N O,(P) is contained in a finite union of geometrically
irreducible closed Q-subvarieties V; C V. Therefore there is no loss of generality in restricting to geometrically
irreducible subvarieties V.
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(ii) For any y € X(F,), the condition that y € O, is independent from the condition
that y € V(FF,).

(iii) For any y € X(Q) \ V(Q), the condition that y (mod p) € V(F,) is independent
from the condition that y (mod q) € V(F,) for primes p # ¢. In particular, if
V N Oy(P) = 0, then the condition that ¢"(P) (mod p) € V(F,) is independent
from the condition that ¢"(P) (mod q) € V(F,).

2.1. The probabilistic model. For each prime p ¢ S, let C|, C O, C X (F,) be randomly
selected subsets of X (IF,), subject to the cardinality conditions |C)| = |C,| and [O}| = |0,

together with random identification Z/|C)|Z — C}. For any squarefree integer m which is
coprime to all elements of S, we may consider the composition

z-1]z/c)jz =T, c [[XF,) — X(Z/mZ);
plm plm plm

note that this factors through Z/(lemyy,, |C}|Z). Thus, we may define C), C X(Z/mZ) as
the image of Z/(lemy, |C)|Z) in X (Z/mZ) under the above map. Notice that this definition
implies that |C,,| = |C/,|.

As the notation suggests, we would like to think of C/, as modeling the behavior of C,, in
the case that V N O,(P) = 0.

Lemma 2.1. Assume that as p — 00,
0,1 = [0, = pP2+Wand |G| = |G| = pP/2HW. (2.1)
Then, we have the following properties.
(i) Independence between O,, and V (F,): As p — oo,

Prob(V(F,) N O, =0) =(1— 1/pP-d+oI0}] and

Prob(V(F,) NC) =) = (1—1/pP=dteW)I%], (22)
(ii) Asymptotic independence modulo large primes: as T — oo,
Prob(V(F,) N O, # 0 Vp > T) =[] . Prob(V(F,) N O, # ), and (2.3)

Prob(V(F,) NC, # 0 Vp >T) =[], Prob(V(F,) N C}, # 0).
(iii) Independence modulo squarefree m: For all x € V(Z/mZ),
Prob(z € ")) = |C" | /mPTeW), (2.4)
as the smallest prime factor of m tends to infinity.

Proof. By the Weil conjectures, | X (F,)| = pP?™°® and |V (F,)| = p?*°M (as V is geometri-
cally irreducible modulo p for p sufficiently large) and we find that the probability that a
randomly selected point in X (F,) lies in V(IF,) equals 1/pP~4tM) Thus, if O, C X (F,) is

a random subset with given cardinality, then

01 .
, XE) - VEN f(IXEN D X E) ~ [V E) ~ i
prov( )10, =0) = (0 V) /(RO T o
|07 |-1
T _ V()| ; (1 _ 1/ D—d+o(1)1[0)]
1 (1 ey (0 U/ ) = (117>
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since % (14 O(i/|X(F,)|) = 1/pP~4+W for i < |04] = o(| X (FF,)])). The same asymp-
totics hold for Prob(V (F,) N C; = 0).

Property (ii) holds since the sets O, for different p are chosen independently, and the same
for C},.

We may select independent random subsets C), C X (F,) as follows: for each prime p let
op be a random permutation (chosen independently for different p) of X (IF,), and let C), =
0,(C,). Hence Prob(z € C),) is the same as the probability of a randomly selected element
of X(Z/mZ) lying in C,,; in turn, this probability equals |C,,|/mP*T°M) = |C7 |/mP+eW),
This proves (iii). O

Remark 2.2. If A is a (large) finite set, and f : A — A is a map chosen uniformly at random
from the set of all possibilities, then the cardinality of the forward orbit of a random starting
point is likely to be of size |A|/27°(1) (Flajolet and Odlyzko, 1990), as |A| — oo. This
motivates assumption ([2.1)).

Remark 2.3. We warn the reader that there are maps of special type for which the random
map heuristic does not apply. For example, for any linear automorphism ¢ of P"” which
is represented by a semisimple matrix, there is a positive density set of primes for which
O,|(p—1). Specifically, one can take the set of primes for which the characteristic polynomial
of A, € PGL,4; splits completely.

2.2. Nonempty intersections modulo p. Consider the case where V' has sufficiently small
codimension, say 1. Then we may expect that there is a 1/p chance of ¢"(P) landing in V'
modulo p for any n. Furthermore, if the orbit is of length pP/2, as we would expect, then
the likelihood of V/(F,) N O} = 0 should be given by (1 —1/p)!%! = exp(—(1+ o(1))|0,|/p),
assuming p is sufficiently large. Thus, if the orbits are long, then one expects “accidental”
intersections modulo p, even if V N O, (P) = 0.

With our probabilistic model, we are able to make this precise.

Proposition 2.4. Assume that assumptions (2.1)—(2.3) hold, and that d > D/2. Then, as
T — o0,

Prob(V(F,) N0, #0Yp>T)=1— e 777 =1 _o(1).

Proof. By assumption (2.1), |0}| = p”/?*°() hence assumption (2.2) gives that
/ D/240(1)
Prob(V (F,) N O, = 0) = (1 — p=Prem)%! — (1 _ pi=Dre(y”
_pP/2=(D=d)to(1) e_pde/2+o(1)
In particular,
Prob(V(IFp) N O;) 7& Q)) =1 e—Pde/2+o(1>’
and therefore, by assumption ({2.3)), as T — oo,

d—D/240(1) _d—D/2+0(1)
) e’

Prob(V(F,) N0, # 0 Vp>T)=[[(1—e™

p>T

—1— =1-o0(1).



2.3. Empty intersections for some composite m. The situation is quite different over
composite integers m. Indeed, the main result of this section is that there exist squarefree
integers m such that the probability that V(Z/mZ) and C!, are disjoint is arbitrarily close
to 1.

We begin by recalling some background on smooth numbers.

Definition 2.5. An integer n is y-smooth if all primes p dividing n are bounded above by y.
Define

W(x,y) :=|{n <z :nisy— smooth}|.

Smooth integers have the following well-known distribution (Tenenbaum and Mendes
France, 2000, Thm. 10, p. 97) for a € (0, 1) and z tending to infinity,

(z,2%) = (1+o0(1)) -z - p(u)
where u :=logx/logx® = 1/a, and p(u) € (0,1) for u € (1, 00).
Our analysis will be based on the following heuristic: that |C}| has the same “likelihood”
of being smooth as a random integer of the same size. By (2.1), |C}| = pP/2+e) "o the
heuristic implies that the density of primes p for which ]C’]’)| = pP/2+e() i5 p*smooth equals

p(u) where u = logpP?/?+°M) /log p* = D(1 + o(1))/(2c). In particular, we expect that as
T — 00,

{p € [logz, x| : |C’;')| is 2%-smooth}| = (1 4+ 0(1)) - 7 (z) - p <M) ’

2x

which, by partial summation, implies that

O vmeo| X | =eo(ep(20EA2))

pEllog z,z] p€llog z,z]
C!| is x%-smooth C!| is z%-smooth
P p

This heuristic leads us to the following precise cycle length smoothness assumption: For a and

D fixed and x — oo,
[T »r=cw (:c p (W)) . (2.5)

pellogz,x]
|Cyp is *-smooth

Proposition 2.6. Assume that (2.1) and (2.5) hold, and that d < D. Then there exists a

sequence of squarefree integers m such that
Prob(V(Z/mZ)NC) =0) =1—o(1)
as m — 0.

Proof. Define

My o = H p.

p€llog z,z]
C!| is z%-smooth
1G5
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Since for any squarefree integer M, |C},| = lemyas |C)|, we have, as  — oo,

|C;nz,a| < H plong/Z-&-o(l)/log(P) = exp (Z (D/2+ o(1))log x)

i D-(1+0(1)
20 ) '

=exp ((D/240(1)) - logz - w(z%)) = exp (xo‘ :

In particular, for m = m, /3, we have that |C/,| = exp(O(x*/3)) = m°W.
To bound Prob(V(Z/mZ) N C!, # 0) we will use Markov’s inequality. For each = €
V(Z/mZ) define a random variable B, by letting B, = 1 if x € C/, otherwise let B, = 0.

By (2.4),
E(BI) =0- (1 — |C’7’n|/mD+o(1)) +1- |C;n|/mD+o(1) _ |CT/n|/mD+O(1)
for all x € V(Z/mZ), thus

E(V(Z/mZ)nC,)=E( > B,

z€V(Z/mZ)
= > EB) = V(Z/mZ)| - Ol fmP oW = mi=Pred) = o(1).
€V (Z/mZ)
Markov’s inequality then gives

E(VEMmZ)0 Gl _
1

and thus Prob(V(Z/mZ) N C), =0) =1 —o(1), as x — 0. O

Prob(|V(Z/mZ)NC! | > 1) <

3. COMPUTATIONS

3.1. Cycle length smoothness assumption. We ran experiments, detailed below, to
justify the assumption (2.5)) on the smoothness of the cycle lengths. Our experiments do
not confirm this assumption. Fortunately, it is clear from the proof of Proposition that
we only need that the cycle lengths be at least as smooth as the prediction and this is
what we see in the experiments. We also found some maps with special properties for which
the cycle lengths are even smoother. We conjecture that cycle lengths are at least as smooth
as the prediction in all cases but we don’t know how to explain the extra smoothness
shown in the experiments.
We considered three rational maps:

o: P =P (2:y) — (2® + 597 7),

v P? — P2, (x:y:z)v—>(x2—|—y2:x2+3y2—2xy+22:22), and

o PP =P (ziy:ziw) = (2P 4y -2 Hyw w2 —ay 4 a2+ 2w
22—y2+x2+3w2:w2).

For each prime less than 100000, 500000, and 1000000 respectively we computed C,, the

length of the periodic cycle length of [1:1], [1:1:1], or [1:1:1:1] under ¢, ¥, and o
7



respectively in F,. Setting a = 1/3, we computed S (z) := H p| at each prime
|Cpl is I;%ivsmooth

in the range specified. We then created the graphs below which compare log S (x) to the

predicted value of x - p(u) where u = % and p is the Dickman p-function. Recall that

assumption states that log S(x) should behave linearly; the graphs (Figures 1, 2, and 3

below) support this assumption. The data appear approximately linear for large enough =z,

with slope at least as big as predicted. All computations were performed using C and Sage

4.8 (Stein, 2013).

70000

60000 +

50000 | log(S(x))

40000

30000 t

x*p

20000 t

10000 ¢

0 20000 40000 60000 80000 100000

FIGURE 1. log S (z) for the map ¢, and = < 100000



40000

35000 +
30000 +
log(S(x))
25000 +
20000 r
15000 ¢
10000 .

wkp

5000 t

0 100000 200000 300000 400000 500000

FIGURE 2. log S (z): for the map v, and x < 500000

4500

4000 +

3500 +

3000 t

2500 log(S(x))

2000 |
1500
1000 |
500 | ¥ p
0 . . . .
0 200000 400000 600000 800000

FIGURE 3. log S (z) for the map o, and x < 1000000

3.2. Experiments. In this section, we let X = Ap,_,... and let V = V(1 —v* —w? —

22 —y* — 2%). Fix a point P € X(Z) and consider a morphism ¢: X — X with integer

coeficients; then O4(P) C X(Z). As V contains few integral points, namely only those

points with exactly one coordinate equal to 1 and the remaining coordinates 0, one expects
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the intersection V' N Oy (P) to be empty. Thus, by the arguments in Section [2 we expect to
find a positive integer m such that V(Z/mZ) N O,,(P) = 0.

We considered a fixed integer starting point P := (3 :10: —4 : 8 : 6) and 500 morphisms
X — X given by 5 quadratic polynomials with coefficients chosen randomly from [—20, 20].
For each of these morphisms, we computed whether there exists a prime power ¢ < 2000
such that the intersection V(Z/qZ) N O,(P) was empty. If there was no such ¢, then we
computed whether there exists a composite integer m < 2000 such that V(Z/mZ) N O,,(P)
was empty. The results are as follows:

(i) For 86.8% of these maps, i.e., 434 out of 500, there exists a prime power ¢ < 2000
such that V(Z/qZ) N O4(P) = 0.

(ii) For 96.2% of these maps, i.e., 481 out of 500, there exists a positive integer m < 2000
such that V(Z/mZ) N O,,(P) = 0.

(iii) For 11 of the 19 remaining maps, we concluded that V N O,(P) = () by finding an
integer 2000 < m < 11500 such that V(Z/mZ)N O,,(P) = 0. In each of these cases,
the smallest such m is supported at more than 1 prime.

(iv) For the remaining 8 maps, V(Z/mZ) N O,,(P) # ( for all m < 11500. However, we
were still able to conclude that V N O,(P) = (0 by showing that the image of V(Z)
modulo 7 is disjoint from Oz (P).

All computations were performed using Magma (Bosma et al., 1997)).

4. A DYNAMICAL HASSE PRINCIPLE FOR ETALE MORPHISMS

4.1. Notation. Let K be a global field, and let Mg denote its set of places. For a finite
set S of places of K containing all the archimedean places, we write Ok g to denote the
ring of S-integers. For all v € Mg, we use K, to denote the v-adic completion. If v is
nonarchimedean, we write O,, m,, and k, for the valuation ring, maximal ideal, and residue
field of v, respectively.

Let X denote a K-variety, i.e., a reduced separated scheme of finite type over K, let
V' C X denote a closed K-subvariety, and let ¢: X — X denote a K-endomorphism. For
any K-variety Y, define

Y(K,S) =[]V (K.) (4.1)
vegS
We equip Y (K,) with the v-adic topology and Y (K, S) with the product topology. We view
Y (K) as a subset of Y(K,S) via the diagonal embedding. For every subset T" of Y (K, S)
or Y(K,), we write C(T) or C,(T) for the closure of T" in the product topology or v-adic
topology, respectively.

Since Y is separated, Y (K,), and hence Y (K,S), is Hausdorff. We note that Y (K,J5)
need not agree with the set of adelic points of Y. For basic terminologies and properties
of scheme theory, we refer the readers to (Hartshorne, 1977). For properties of smooth and
étale morphisms used throughout this section, we refer the readers to (Grothendieck, 1967).

4.2. The dynamical Hasse principle for étale maps and preperiodic subvarieties.
For any point P € X (K), we have the following containments:

V(K)NO,(P) CV(K,S) NC(0,(P)) C [[V(EK,) NC(O,(P)). (4.2)

vgS
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Recall the definition by Hsia-Silverman (Hsia and Silverman, 2009} p.237-238) that (X, V, ¢)
is said to be dynamical Brauer-Manin S-unobstructed if the leftmost containment is an
equality for every P € X(K) satisfying VPP N O,(P) = ), where VPP is the union of all
positive dimensional preperiodic subvarieties of V. In analogy, we define the dynamical
Hasse principle:

Definition 4.1. The triple (X,V, ) is said to satisfy the dynamical Hasse principle (over
K ) if for every P € X(K) such that V(K) N Oy(P) = 0, there exists a place v (depending
on P) such that V(K,) N C,(Ou(P)) = 0. If there are infinitely many such places v, we say
that (X, V, ) satisfies the strong dynamical Hasse principle.

When V' = VPP if (X, V, ) satisfies the strong dynamical Hasse principle then it is
immediate that (X,V,S) is Brauer-Manin S-unobstructed for every S. The reason is that
for every P € X(K) such that V(K)NO,(P) = 0, both containments in are equalities
since all the three sets are the empty set. Our main results in this section are the following:

Theorem 4.2. Assume that X is quasi-projective, that ¢ is étale, and that o*(V) C V for
some k € Zsg. If P € X(K) is such that V(K) N Ou(P) = 0 then, for all but finitely many
primes v,

V(K,) NC,(O,(P)) = 0.

Consequently, (X,V, ) satisfies the strong dynamical Hasse principle.

We obtain a similar result when every irreducible component of V' is @-preperiodic, under
the mild additional assumption that ¢ is closed:

Theorem 4.3. Assume that X is quasi-projective and that ¢ is étale and closed. Let V be a
subvariety of X such that every irreducible component is p-preperiodic. For every P € X (K),
if V(K) N O,(P) =0 then, for all but finitely many primes v,

V(K,) NC,(O,(P)) = 0.
Consequently, (X,V, @) satisfies the strong dynamical Hasse principle.

The rest of this paper is organized as follows. In Section 4.3| we prove a local version of
Theorem [4.2] Next in Section we show how Theorem [£.2] follows from the local version,
Theorem [£.4] In Section [£.5 we prove Theorem [4.3] and in Section [4.6] we give some closing
remarks.

4.3. The local statement. Throughout this section, we work locally. Let A denote a
complete discrete valuation ring, m its maximal ideal, and k its residue field; we will assume
that k is perfect. We write F' for the fraction field of A.

The goal of this section is to prove the following:

Theorem 4.4. Let 2 be a scheme of finite type over A, let ¢ be an étale endomorphism of
X, and let ¥ be a reduced closed subscheme of X such that ™ (V) C ¥ for some M > 1.
Let P € Z'(A). If V' (A) does not intersect the orbit of P, then ¥ (A) does not intersect the
m-adic closure of the orbit of P.

The current version of the proof follows the remarks by the referee, which have sub-
stantially simplified the original arguments. We shall also sketch an alternative proof in

a somewhat more restrictive situation, based on p-adic uniformization of orbits ((Bell et
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al., 2010)), rendered very elementary by a recent note of B. Poonen (Poonen, 2014)). This
technique will also appear in the proof of Proposition [4.9]
We use the following very simple lemma:

Lemma 4.5. Let R be a Noetherian ring and I an ideal of R. If ¢ is a ring automorphism
of R such that o(I) C I, then o(I) = 1.

Proof. We assume that ¢(I) C I. Then

1S (1) S (D).

violates the ascending chain condition. O

Proof of Theorem[].J). Let P denote the image of P under the reduction map 2 (A4) —
Z (k). If P is not preperiodic, then the orbit O,(P) equals its m-adic closure and we are
done. Hence we may assume that P is preperiodic. By replacing P by a point in its orbit
and replacing ¢ by an iterate, we may reduce to the case that p(P) = P and o(?) C V.
We may also assume P € ¥ (k); otherwise the conclusion of the theorem is obvious.

Since P is not in ¥ (A), we can choose n such that the image of P under 2 (A) —
Z'(A/m™) is not in ¥ (A/m"). The infinitesimal lifting property for the formally étale
morphism ¢ shows that the diagram of sets:

2 (Ajw™) —— 2 (k) (4.3)

A

2 (Afw") — Z (k)

is Cartesian. Let T} be the set of preimages of P under the reduction map 2 (A/m") —
Z (k). We have that ¢ induces a permutation on 77.

Let Ty denote the set of preimages of P under the reduction map 7 (4/m") — ¥ (k). Let
o 2.p and @«,/7 p denote respectively the completion of the local rings Oy p and O, p with
respect to their maximal ideals. Let J denote the ideal of O4 p defining ¥". Since ¢ is

étale, it induces an automorphism ¢ : O 2P O 2 .p- From Lemma applied to the ideal

J, using the assumption ¢(¥#) C ¥, we deduce that ¢ induces an automorphism of @,1/7 p-
Hence ¢ induces a permutation on 7.

For m > 0, we can use induction on m to show that the image of ¢ (P) in 2 (A/m")
is contained in T; \ 7. Hence the image in 2 (A/m™) of the orbit of P is disjoint from
¥ (A/m™). This finishes the proof of the theorem. O

For the rest of this section, we briefly explain another proof of Theorem [4.4] using an
analytic uniformization of O,(P) as in (Bell et al., 2010) or (Amerik, 2011). This proof
requires the extra assumption that F' and A are finite extensions of QQ, and Z,, respectively,
and 2 is smooth over A.

As before, we may assume that p(P) = P and o(#) C ¥. Let C(P) denote the set of
points in 2 (A) whose image in 2 (k) is P. Let g denote the Krull dimension of O, 5. As
explained in (Bell et al., 2010), there is an isomorphism of A-algebras:

7: Oy p > AlTh, ..., T,
12



inducing a corresponding m-adic analytic homeomorphism
h,: C(P)=mI
mapping P to the origin (0,...,0) € m9.

Definition 4.6. Identify @%-715 with A[[Ty,...,T,]], and C(P) with m? as above. We say
that the orbit O (P) has a uniformization if there exist power series Gi,...,Gy in F[[T]]
convergent on A such that:

(i) (G1(0),...,G4(0)) = P, which equals 0 in m?, and
(i) ¢(Gi(2),...,Gy(2)) = (G1(2 +1),...,Gy(2 + 1)) for all z in Z,.

Proof of Theorem[{.]] using uniformization. By (Poonen, 2014)) (which has simplified and
generalized (Bell et al., 2010, Theorem 3.3) and (Amerik, 2011, Theorem 7)), there is a
uniformization of O,(P) (possibly after replacing ¢ by an iterate). Let G = (Gy,...,Gy)
be such a uniformization. By Definition the m-adic closure of O,(P) is contained in
G(Z,). If there is some u € Z, such that G(u) € ¥ (A), then G(u+n) € ¥ (A) for every
natural number n. Let H = 0 be any of the equations defining 7" in 2. Then we have
HoG(u+n) = 0 for every natural number n. Since a nonzero p-adic analytic function on Z,
can have only finitely many zeros, the analytic function H oG must be identically zero on Z,.
Therefore G(Z,) C ¥ (A) and so the whole orbit of P is contained in ¥'(A), contradicting
our assumption that ¥ (A) N O,(P) = 0. O

4.4. Proof of Theorem [4.2] In this section, we present the proof of Theorem [£.2] First
we show that for all but finitely many places v, the assumptions of Theorem hold.

Lemma 4.7. Assume that ¢ is étale and that ¢"(V) C V' for some m > 1. Fiz a point
P € X(K). Then there exists a finite set S C Mg containing all the archimedean places such
that X, V', and ¢ extend to models 2", V', and ¢, respectively, over Ok s and P extends to
P € X (Oks) with the following properties:

o 2 s quasi-projective over Ok s, ¢ is étale,
e ¥V is a reduced closed subscheme of Z~ and g™ (V) C V.

Proof. Since X is quasi-projective over K, we can find a quasi-projective model 2~ for X,
models ¥ and ¢ for V and ¢, respectively, over some Ok s. By enlarging S, we may assume
P extends (uniquely since 2 is separated) to & € 2 (Ok,s). As the locus in Spec(Ok s)
over which 2" is not smooth, ¥ is not flat, or ¢ is not étale is closed, by enlarging S, we may
assume that this locus is empty. Since ¥ is flat over Ok g and its generic fiber is reduced,
¥ is itself reduced.

It remains to ensure that ¢" (%) C ¥". By enlarging S again, we may assume that every
irreducible component of ¥ contains some point in the generic fiber. Then since (V) C V
and V is dense in ¥, we have o"(¥) C V.. O

Proof of Theorem[{.2 Fix S C Mg asin Lemma4.7 Fix v ¢ S. Now we apply Theorem [4.4]

to have that #(O,) does not intersect the closure of O3(#?) in Z°(0,). Since Z°(O,) is

closed in 2 (K,) = X(K,), the set V(K,) = ¥ (K,) does not intersect the closure of O, (P)

in X(K,). O
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4.5. Proof of Theorem We need the following useful result which might also be of
independent interest.

Lemma 4.8. Let X and ¢ be as in Theorem[].3. LetY be a closed irreducible p-preperiodic
subvariety of X and let Y1 be a periodic iterate of Y. We recall from the introduction that
this means there exist integers ko > 0 and k > 0 such that Y, = o (Y) and ©*(Y;) = Y.
Then every irreducible component of Y NY] is preperiodic.

Proof. We may assume that ¢(Y') # Y. Replacing ¢ by an iterate, we reduce to the case Y; =

oY) = @*(Y) #Y. Let vy: Yy — Yy and v: p=1(Y}) — ¢ (V1) denote the normalizations
of ¥} and p~!(Y}), respectively. For every integer n > 1, define:

Zy ={zeYi: |y (z)] = n},

where |v; ! (z)| is counted with multiplicity. By the semicontinuity theorem, Z, is closed in
Yi.

Now let W be an irreducible component of Y NY;. Let d = dim W and let w be the generic
point of W. Let s = |v; ! (¢(w))|. Since ¢ is closed, ¢(W) is the closure of {¢(w)}, which
is contained in Z,. We will prove that ¢(W) is an irreducible component of Z,. Assume
otherwise and let C; be an irreducible component of Z, strictly containing ¢(W). Let ¢;
denote the generic point of C;. Since ¢; € Z,, we have |v;'(c;)| > s. On the other hand, by
semicontinuity |v; ' (c1)] < |v; H(p(w))| = s. Hence we must have |v; ' (c1)| = s.

The étale morphism ¢ induces an étale morphism ¢~*(Y;) — Y;. In particular, the induced
morphism Spec(Oy-1(y;)w) — Spec(Oy, uw)) is flat, and hence, surjective by Exercise 10
and Exercise 11 in (Atiyah and Macdonald, 1969, p.68). Therefore, there exists ¢ in ¢ (¥})
such that ¢(c) = ¢; and the Zariski closure C' of ¢ in ¢~ !(Y;) contains W. Since taking
normalization commutes with étale base change, we have a Cartesian diagram:

—_——

e 1Y) — Y,

X
(V1) Y

This implies:

v (w)l = |y (p(w))] = s = |y (e)] = v (0)] (4.4)

Let .# denote the set of irreducible components of ¢~ '(Y;). Let .#, and .. denote the
set of irreducible components of ¢ ~1(Y}) containing w and ¢, respectively. Since W C C,
we obviously have ., C .#,,. By comparing dimensions, we have that Y and Y; belong to
F. Since C strictly contains ¢(W), we have that C strictly contains W. Note that it is
impossible for both Y and Y; to contain C since W is an irreducible component of Y NY;
and C strictly contains W. Therefore either Y ¢ Z. or Y} ¢ .Z.. This gives that .7, is
strictly contained in .Z,,.

For each T € ., let vp : T — T be the normalization of T. After composing with the
embedding T < ¢~1(Y}), we still use vy to denote the map T — ¢~ (Y1), By definition

of normalization, we may identify ©~1(Y;) with the disjoint union of T for T € .#. The
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morphism v is induced from the morphisms vy for T' € .. We have:

el =) lvrt ()l

TeS,

Tw)= ) vt (w)

TeSw

(4.5)

By semicontinuity, we have |v5'(c)| < |vzt(w)] for every T' € #,. Since .#,, strictly contains
S, we have that [v7!(c)| < |[v7'(w)], contradicting (4.4). This proves that ¢(W) is an
irreducible component of Z;.

Now let Z denote the union of all d-dimensional irreducible components of all the Z,,’s for
n > 1. This is a finite union since Z,, = () for all sufficiently large n thanks to finiteness of
v1. We have proved that ¢(W) is an irreducible component of Z. For each m > 1, repeating
the same arguments for ¢ instead of ¢, we have that ™ (W) is an irreducible component
of Z. This proves that W is preperiodic. 0

We now begin the proof of Theorem [£.3] We may assume that V is irreducible. If V is
periodic, we are done by Theorem [4.2] So assume that V' is not periodic. Replacing ¢ by an
iterate, we may assume V; := (V) = ¢@*(V) £ V.

Assume first that Vi (K) N Oy(P) = 0. Then by Theorem [4.2] there is a finite set of
places S; such that Vi(K,) NC,(O,(P)) = 0 for v ¢ S;. For any such v, since ¢ maps
V(K,) NCy(Oy(P)) into Vi (K,) N Cyp(Oy(P)), we have V(K,) N C,(Oy(P)) = B too. Thus
the conclusion of Theorem [4.3] holds.

Now assume that ¢™(P) € V1(K) for some m > 0. For every v, we have

Co(Op(¢™(P))) € Vi(Ky) (4.6)

Co(Op(P)) = Co(Op(¢™(P))) UL P, ..., H(P)} (4.7)
Assume that V(K,) N C,(O,(P)) # 0. Because of and V(K) N O,(P) =0, we have
that V(K,) NC,(O,(¢™(P))) # 0. Hence (4.6) implies:

(VN WV)(K,) NC(Oy(P)) # 0.

This can only happen for finitely many v’s by the induction hypothesis applied to V N V7,
whose irreducible components are preperiodic by Lemma |4.8|

4.6. Closing remarks. It is natural to ask whether the assumption in Theorem that
V' is preperiodic is necessary. In the next proposition, let K be a number field, let X be
a quasi-projective variety over K, let ¢ : X — X be an étale K-endomorphism, and let
V = @Q € X(K) be a single point. For simplicity, we assume that X is smooth over K
(see Remark . Fix a finite set of places S of K containing all the archimedean ones, a
smooth quasi-projective model 2" of X over Ok g, an extension ¢ of ¢ such that ¢ is an
étale Ok g-endomorphism of 2", and an extension 2 € 2 (Ok.s) of (). We say that 2 has
almost everywhere periodic reduction if for all but finitely many primes p, the reduction of 2
modulo p is periodic. The next result shows that (X, @, ¢) fails the strong dynamical Hasse
principle if and only if @) is not periodic but 2 has almost everywhere periodic reduction.

Proposition 4.9. Let K, X, ¢, S, 2" and Q be as in the previous paragraph.
15



(a) For all primesp ¢ S, the following is true: if the reduction of 2 modulo p is periodic
then the p-adic closure of the orbit of ¢(Q) contains Q). Consequently, if Q) is not
periodic but 2 has almost everywhere periodic reduction then (X,Q,p) does not
satisfy the strong Hasse principle.

(b) Conversely, if Q is either periodic or 2 does not have almost everywhere periodic
reduction, then (X, Q, p) satisfies the strong dynamical Hasse principle.

Proof. (a) The first assertion follows immediately from the p-adic uniformization of the -
orbit of @ (for some integer N, sufficiently large depending on p) and the fact that for every
analytic function G from O, to Of, the point G(0) lies in the closure of {G(1),G(2),...}
(see e.g. (Poonen, 2014), cf. Subsection 4.2, for the existence of the uniformization). For
the second assertion, note that the orbit of P = ¢(@Q) does not contain () but the p-adic
closure of this orbit contains @) by the first assertion.

(b) The case that @ is periodic follows from Theorem . Hence we assume that @ is
non-periodic. Let P € X(K) be such that @ ¢ O,(P). Let p ¢ S be such that P extends
to a point & € Z(O,). If Q € C,(O,(P)) then there exist infinitely many m such that 2
and @™ () have the same reduction modulo p, so this implies that 2 is periodic modulo
p. But there are infinitely many primes p such that this conclusion does not hold, thanks to
our assumption on @; hence (X, Q, ) satisfies the strong dynamical Hasse principle. O

Remark 4.10. For simplicity, we assumed that X is smooth over K in Proposition [4.9] It is
not difficult to remove this assumption by using the fact that étale morphisms preserve the
smooth locus. In other words, let X’ be the smooth locus of X over K and let X" = X — X”;
then we have that ¢ induces étale self-maps on X’ and X”. By enlarging S and taking
closure in 2", we have a model of X" over Ok g which is the non-smooth locus of 2" and ¢
extends to an étale self-map of this model over Ok s. We now take the complement in 2~ of
the above model to obtain a model of X’. Enlarging S further if necessary, we may assume
that ¢ extends to an étale sell-map of the above model of X’. The proof of Proposition
settles the case @ € X'(K). If Q € X”(K), we can use Noetherian induction since X” is a
strictly smaller closed subvariety of X. This kind of argument has appeared in (Bell et al.,
2010).

Some results in the literature suggest that the examples of non-periodic points with almost
everywhere periodic reduction must be very special, and so the strong dynamical Hasse
principle mostly holds when the endomorphism is étale and the subvariety is a single point
(but we remark that, on the contrary, if the dimension of the subvariety is large, the heuristics
in Section 2 indicate the failure of the strong dynamical Hasse principle). For instance, by a
result of Pink (Pink, 2004, Corollary 4.3), such points cannot exist for the multiplication-by-
d map on an abelian variety. Furthermore, by (Benedetto et al., 2013, Corollary 1.2), such
points also cannot exist for a self-map of P! of degree at least two (though such a map is
not étale, and thus Proposition does not apply directly). On the other hand, such points
exist for automorphisms of infinite order (eventually after a finite extension of the base field).
It seems reasonable to conjecture that non-periodic points with almost everywhere periodic
reduction do not exist for polarized morphisms ¢ (that is, morphisms such that ¢*£ = L&
for some integer £ > 1 and some ample line bundle £), so that the strong dynamical Hasse
principle holds for number fields K, étale polarized morphisms ¢ and V € X(K). Notice

however that étale polarized endomorphisms are extremely rare, cf. (Fakhruddin, 2003)).
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We conclude this paper by proving that for curves over number fields, the only coun-
terexamples to the dynamical Brauer-Manin criterion are automorphisms ¢ of a very special
kind.

Proposition 4.11. Let X be a smooth geometrically integral projective curve of genus g
over a number field K, let ¢ be a nonconstant self-map of X over K, and let V be a finite
subset of X (K). We make the following additional assumptions.

(a) If X =P, assume that ¢ is not conjugate to z +— z+ 1.
(b) If g = 1, assume that ¢ has a preperiodic point in X(K). (If we regard X as an
elliptic curve, this condition is equivalent to the condition that ¢ is not a translate

by a non-torsion point.)
If P e X(K), then:
V(K)NO,(P) = V(K,S)NC(O,(P)). (4.8)

Remark 4.12. When X is an abelian variety, V' is an arbitrary subvariety and ¢ is a K-
endomorphism of X such that Z[y] is an integral domain, Hsia and Silverman show that
holds under certain strong conditions. We refer the readers to (Hsia and Silverman,
2009, Theorem 11) for more details. Our proof of Proposition gives an unconditional
proof of their result when X is an elliptic curve.

Proof of Proposition[4.11. The case g > 2 is trivial since all endomorphisms of curves of
genus at least two are of finite order. The case X = P! has been settled by Silverman and
Voloch (see Theorem 1 and Remark 9 in (Silverman and Voloch, 2009)).

Now consider the case when g = 1. The case that P is p-preperiodic is easy, so we assume
that P is not preperiodic. There exists a non-negative integer N such that ¢ (P) € V(K)
for all M > N. After replacing P by ¢V *1(P), we may assume the p-orbit of P does not
intersect V(K). It remains to show that V(K,S) N C(O,(P)) = 0. By assumption (b),
there is some M > 0 such that ©™ has a fixed point. By replacing the data (¢, P) with
(oM, o' (P)) for 0 < i < M, we may assume that ¢ has a fixed point.

Note that if we can prove

V(L,SL)NC(OL(P)) =0

for L a finite extension of K, and S;, C M, the set of places of L lying above places in
S, then this implies that V(K,S) N C(O,(P)) = 0. Thus, we may assume that ¢ has a
fixed point O € X(K). By Theorem [4.2] for all but finitely many primes p of K, we have
{0}y NC,(O,(P)) = 0. We may enlarge S (and by abuse of notation) to assume that X is
an elliptic curve over Ok ¢ with identity O € X(Oks), ¢ is an endomorphism of X over
Ok,s, P € X(Ok,s) is not preperiodic under ¢, {O} N C,(O,(P)) = 0 for every p ¢ S, and
V(K)\ {0} € (X \{0})(Ok.s).

By Siegel’s theorem, (X — O)(Ok ) is finite, so some iterate P’ of P is not in it. Hence
there exists some p ¢ S such that P’ reduces to O modulo p. Then all iterates of P’
reduce to O modulo p since ¢(O) = O. Thus C,(O,(P)) cannot contain any point of
V(K) - {0} = V(K,) — {O}. Together with the condition {O} N C,(O,(P)) = 0, we have
that V(K) NCy(O,(P)) =0. So V(K,S)NC(OH(P)) = (. This finishes the proof.

U
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