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Abstract. We study the value distribution and extreme values of
eigenfunctions for the “quantized cat map”. This is the quantiza-
tion of a hyperbolic linear map of the torus. In a previous paper it
was observed that there are quantum symmetries of the quantum
map - a commutative group of unitary operators which commute
with the map, which we called “Hecke operators”. The eigenspaces
of the quantum map thus admit an orthonormal basis consisting
of eigenfunctions of all the Hecke operators, which we call “Hecke
eigenfunctions”.

In this note we investigate suprema and value distribution of
the Hecke eigenfunctions. For prime values of the inverse Planck
constant N for which the map is diagonalizable modulo N (the
“split primes” for the map), we show that the Hecke eigenfunctions
are uniformly bounded and their absolute values (amplitudes) are
either constant or have a semi-circle value distribution as N tends
to infinity. Moreover in the latter case different eigenfunctions
become statistically independent. We obtain these results via the
Riemann hypothesis for curves over a finite field (Weil’s theorem)
and recent results of N. Katz on exponential sums. For general
N we obtain a nontrivial bound on the supremum norm of these
Hecke eigenfunctions.

1. Introduction

In the past few years, much attention has been devoted to the be-
havior of eigenfunctions of classically chaotic quantum systems. One
aspect of this topic concerns their value distribution and specifically
their extreme values [Be, AS, AQC, IS, HR, ABST]. Our aim is to
explore this for one of the best-studied models in quantum chaotic dy-
namics, the “quantized cat map” [HB]. This is the quantization of a
hyperbolic linear map A of the torus. For a brief background about
this model, see section 2.
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For each integer N ≥ 1 (the inverse Planck constant) let UN(A) de-
note the quantization of A as a unitary operator on HN = L2(Z/NZ).
In a previous paper [KR] it was observed that there are quantum sym-
metries of UN(A) - a commutative group of unitary operators which
commute with UN(A). We called these Hecke operators, in analogy
with the classical theory of modular forms. The eigenspaces of UN(A)
thus admit an orthonormal basis consisting of eigenfunctions of all the
Hecke operators, which we called Hecke eigenfunctions. These can be
thought of as the eigenfunctions for the desymmetrized quantum map.

In [KR] we showed that the Hecke eigenfunctions become uniformly
distributed as N →∞. In this note we investigate suprema and value
distribution of the Hecke eigenfunctions. For general N we obtain a
nontrivial bound on the supremum norm of these Hecke eigenfunctions.
For prime values of N for which A is diagonalizable modulo N (the
“split primes” for A), we obtain much more refined, optimal results
via the modern theory of exponential sums. We show that for these
values of N , the Hecke eigenfunctions are uniformly bounded and their
absolute values (amplitudes) are either constant or have a semi-circle
value distribution as N → ∞. Moreover in the latter case different
eigenfunctions become statistically independent.

Below is a detailed description of our results.

1.1. Suprema - general N . The trivial bound

(1) ||ψ||∞ ≤ N1/2

is a consequence of the L2-normalization

||ψ||22 =
1

N

∑
Q∈Z/NZ

|ψ(Q)|2 = 1 .

Equidistribution of the eigenfunctions [KR] implies that one can do
better: ||ψ||∞ = o(N1/2). Our first result gives a quantitative improve-
ment on this:

Theorem 1. Let ψ be a Hecke eigenfunction, normalized by ||ψ||2 = 1.
Then the supremum of ψ satisfies

||ψ||∞ �ε N
3/8+ε

for all ε > 0, the implied constant depending only on ε and not on ψ.

1.2. The split primes. We next consider the case when N is a prime
for which A is diagonalizable modulo N (these constitute half the
primes). In this case, the group of Hecke operators is isomorphic to the
multiplicative group (Z/NZ)∗ and the Hecke eigenfunctions correspond
to eigencharacters of the group of Hecke operators, namely to Dirichlet
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characters χ modulo N . For nontrivial χ, the corresponding eigenspace
is one-dimensional, while for the trivial character χ0 the eigenspace is
two-dimensional. For nontrivial χ denote by ψχ,N a Hecke eigenfunc-
tion of norm 1. For simplicity, we also assume that A is not triangular
modulo N (which holds for all but finitely many N). The suprema of
the Hecke eigenfunctions in this case are given by

Theorem 2. If N is a split prime for A such that A is not triangular
modulo N then

(1) The Hecke eigenspace corresponding to the trivial character has
an orthonormal basis ψ0,N , ψ∞,N for which the amplitude is con-

stant: |ψ∞,N | = 1 and |ψ0,N | =
√

1− 1/N .

(2) For nontrivial χ mod N , ||ψχ,N ||∞ ≤ 2
√

1− 1/N .

We finally turn to the question of value distribution. The issue here
is only for nontrivial characters χ. We will show that the value distribu-
tion of 1

2
|ψχ,N | tends to the semi-circle measure, which is the measure

µsc on [0, 1] such that

µsc(I) =

∫
I

4

π

√
1− u2du

for any interval I ⊂ [0, 1]. This measure is the image of Haar measure
on SU(2) under the map g 7→ | tr(g)|/2.

The precise result is:

Theorem 3. If N is restricted to vary only over split primes for A
then

(1) For any nontrivial character χ modulo N , the amplitude |ψχ,N(t)|
has a semi-circle limit distribution as N → ∞, i.e. for any
subinterval I ⊂ [0, 1] we have as N → ∞ through split primes
for A

1

N
#{t mod N : |ψχ,N(t)|/2 ∈ I} → µsc(I) .

(2) For r ≥ 2, and any choice of distinct nontrivial characters χ1,
. . . , χr, the amplitudes |ψχ1,N |, . . . , |ψχr,N | are statistically inde-
pendent, that is for any choice of subintervals I1, . . . , Ir ⊂ [0, 1]
we have

1

N
#{t mod N : |ψχi,N(t)|/2 ∈ Ii,∀i = 1, . . . , r} →

r∏
i=1

µsc(II)

as N →∞ through split primes for A.

Theorem 3 is a consequence of a corresponding theorem by N. Katz
[Ka] on the value distribution of certain exponential sums, see Section 5.
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1.3. Comparison with Maass forms. To put our results in perspec-
tive, we briefly survey the situation in another well studied example in
quantum chaology - the eigenfunctions of the hyperbolic Laplacian ∆
on modular surfaces. These are the quotient H/Γ of the hyperbolic
plane H by a congruence subgroup Γ of the units of a quaternion al-
gebra (in the compact case) or of the modular group SL(2,Z), see
Sarnak’s survey [AQC]. In these cases, there is a commuting family
of self-adjoint operators which commute with the Laplacian, and thus
there is an orthonormal basis ψj, j = 0, 1, . . . of L2(H/Γ) consisting
of (real-valued) eigenfunctions of the Laplacian (∆ψj + λjψj = 0) and
of all the Hecke operators. These are called Maass-Hecke forms. To
compare with our result, note that the Laplace eigenvalue λ scales with
Planck’s constant h like 1/h2. In the case of the cat map, the inverse
Planck constant N equals 1/h.

A general bound for the eigenfunctions of the Laplacian on any com-
pact Riemannian surface gives [Ho]:

||ψj||∞ � λ
1/4
j ∼ 1/h1/2

which is analogous to the trivial bound (1). Iwaniec and Sarnak [IS]
studied the supremum of the Maass-Hecke forms, and showed that for
L2-normalized forms one has

||ψj||∞ �ε

√
λj

5/12+ε ∼ 1/h5/12+ε

for all ε > 0. This is analogous to our result in Theorem 1.
Unlike in the cat map case, for modular surfaces equidistribution of

eigenfunctions is still open, though recent work of Sarnak [S] establishes
this for a subsequence of eigenfunctions of “CM type” for congruence
subgroups of SL(2,Z), and a recent formula of Watson [W] confirms
that it is implied by the Generalized Riemann Hypothesis for certain
automorphic L-functions.

Concerning the question of value distribution for modular surfaces,
numerical experiments indicate that the Hecke eigenfunctions have a
locally Gaussian value distribution [HR, AS]. In the compact case, this
means that if ψ is an L2-normalized cusp form with eigenvalue λ > 0,
which is an eigenfunction of all Hecke operators, then the measure of
the set of z ∈ H/Γ where the amplitude |ψ(z)| < r is asymptotic to√

2/π
∫ r

0
e−t2/2dt as λ → ∞. Here “measure” means the hyperbolic

measure dxdy/y2 on H/Γ normalized to have total area unity. More-
over these experiments indicate that eigenfunctions corresponding to
different eigenvalues are statistically independent[HR, AS].
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At present, we seem to be far from being able to prove such state-
ments for modular surfaces (not to mention doing it for a generic sys-
tem). Recently some progress has been made toward Gaussian value
distribution: Watson [W] showed that the third moment

∫
H/Γ

ψ3 of

the eigenfunctions vanishes as λ→∞ (all odd moments vanish for the
Gaussian distribution), and Sarnak showed that for “CM forms”, the
fourth moment agrees with the Gaussian moment, i.e.

∫
H/Γ

|ψ|4 → 3 as

λ→∞ (recall that we normalized the total area of H/Γ to be unity).
Acknowledgments: We thank P. Sarnak for stimulating discus-

sions on the subject matter of this paper and N. Katz for discussions
on exponential sums and for providing us with [Ka].

2. Background

The full details on the cat map and its quantization can be found in
[KR]. For the reader’s convenience we briefly recall the setup:

2.1. Classical dynamics. The classical dynamics are given by a hy-
perbolic linear map A ∈ SL(2,Z) so that x = ( p

q ) ∈ T2 7→ Ax is a
symplectic map of the torus. Given an observable f ∈ C∞(T2), the
classical evolution defined by A is f 7→ f ◦A, where (f ◦A)(x) = f(Ax).

2.2. Kinematics: The space of states. As the Hilbert space of
states, we take distributions ψ(q) on the line R which are periodic in
both the position and the momentum representation. This restricts h,
Planck’s constant, to take only inverse integer values. With h = 1/N ,
the space of states, denoted HN , is of dimension N and consists of
periodic point-masses at the coordinates q = Q/N , Q ∈ Z. We identify
HN with L2(Z/NZ), where the inner product 〈 · , · 〉 is given by

〈φ, ψ〉 =
1

N

∑
Q mod N

φ(Q)ψ(Q).

2.3. Observables: The basic observables are given by the operators
TN(n1, n2) acting on ψ ∈ L2(Z/NZ) via:

(2) (TN(n1, n2)ψ) (Q) = e
iπn1n2

N e(
n2Q

N
)ψ(Q+ n1).

For any smooth classical observable f ∈ C∞(T2) with Fourier expan-
sion

f(x) =
∑

n1,n2∈Z

f̂(n1, n2)e(n1p+ n2q), x = ( p
q ) ∈ T2,
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its quantization, OpN(f), is given by

OpN(f) :=
∑

n1,n2∈Z

f̂(n1, n2)TN(n1, n2)

2.4. Dynamics: We let Γ(4, 2N) ⊂ SL(2,Z) be the subgroup of ma-
trices that are congruent to the identity matrix modulo 4 (resp., 2) if
N is even (resp., odd). For A ∈ Γ(4, 2N) we can assign unitary op-
erators UN(A), acting on L2(Z/NZ), having the following important
properties:

• “Exact Egorov”: For all observables f ∈ C∞(T2)

UN(A)−1 OpN(f)UN(A) = OpN(f ◦ A).

• The quantization depends only on A modulo 2N : if A,B ∈
Γ(4, 2N) and A ≡ B mod 2N then

UN(A) = UN(B)

• The quantization is multiplicative: if A,B ∈ Γ(4, 2N), then

(3) UN(AB) = UN(A)UN(B)

2.5. Hecke eigenfunctions. If α is an eigenvalue of A, form O = Z[α]
which is an order in the real quadratic field K = Q(α). (Note that O
is not necessarily equal to OK , the full ring of integers in K.) Let v =
(v1, v2) ∈ O2 be a vector such that vA = αv. Let I := Z[v1, v2] ⊂ O.
Then I is an O-ideal, and the matrix of α acting on I by multiplication
in the basis v1, v2 is precisely A. The choice of basis of I gives an
identification

(4) ι : I → Z2 .

The action of O on the ideal I by multiplication gives a ring homo-
morphism ι : O → Mat2(Z) with the property that the determinant of
ι(β), β ∈ O, is given by N (β), where N : Q(α) → Q is the norm map.

Reducing the norm map modulo 2N gives a well defined map

N2N : O/2NO → Z/2NZ,

and we let Cθ
A(2N) be the elements in the kernel of this map that are

congruent to 1 modulo 4O (resp., 2O) if N is even (resp., odd).
Now, reducing ι modulo 2N gives a map

ι2N : Cθ
A(2N) → SL2(Z/2NZ).

Since Cθ
A(2N) is commutative, the properties in section 2.4 imply that

{UN(ι2N(β)) : β ∈ Cθ
A}
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forms a family of commuting operators. Analogously with modular
forms, we call these Hecke operators, and functions ψ ∈ HN that are si-
multaneous eigenfunctions of all the Hecke operators are denoted Hecke
eigenfunctions. Note that a Hecke eigenfunction is an eigenfunction of
UN(ι2N(α)) = UN(A).

3. Proof of Theorem 1

3.1. Spectral expansions. We first display the intensity |ψ(Q)|2 for
ψ ∈ HN as an expectation value of an N -dependent observable. Choose
f ∈ C∞

c (R) so that f(0) = 1,
∫∞
−∞ f(x) dx = 0, and f is supported in

(−1/2, 1/2). The function

GN(x) = N
∑
k∈Z

f(N(x− k))

is periodic, and its Fourier coefficients are given by

ĜN(m) = f̂(
m

N
),

where f̂(y) =
∫∞
−∞ f(x)e−2πixydx is the Fourier transform of f on the

line. For Q ∈ Z/NZ, set

gN,Q(p, q) = GN(q − Q

N
), (p, q) ∈ T2 .

We obtain a function on the torus which is independent of the mo-
mentum variable p, and is strongly localized in the position variable q
around Q/N .

Lemma 4. Let Q ∈ Z/NZ. Then for all ψ ∈ HN

|ψ(Q)|2 = 〈OpN(gN,Q)ψ, ψ〉

Proof. Recall that

OpN(gN,Q) =
∑

m,n∈Z

ĝN,Q(m,n)TN(m,n) .

Since gN,Q is independent of p, we have ĝN,Q(m,n) = 0 unless m = 0,
in which case we have

(5) ĝN,Q(0, n) = e(−nQ
N

)ĜN(n) = e(−nQ
N

)f̂(
n

N
) .
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Since TN(0, n)ψ(Q′) = e(nQ′/N)ψ(Q′), we get

OpN(gN,Q)ψ(Q′) =
∑

m,n∈Z

ĝN,Q(m,n)TN(m,n)ψ(Q′)

=
∑
n∈Z

ĝN,Q(0, n)TN(0, n)ψ(Q′)

=
∑
n∈Z

ĝN,Q(0, n)e(nQ′/N)ψ(Q′)

= gN,Q(0, Q′)ψ(Q′) = GN(
Q′ −Q

N
)ψ(Q′)

Since the support of GN(x) is contained in (−1/2N, 1/2N) modulo 1,
and GN(0) = N , we get

OpN(gN,Q)ψ(Q′) =

{
Nψ(Q) if Q′ = Q mod N

0 otherwise.

Hence

〈OpN(gN,Q)ψ, ψ〉 =
1

N

∑
Q′ mod N

GN(
Q′ −Q

N
)|ψ(Q′)|2 = |ψ(Q)|2

�

Lemma 5. Let ψ1, . . . , ψN ∈ HN . Then for all Q ∈ Z/NZ

N∑
j=1

|ψj(Q)|8 ≤

∑
n∈Z

|f̂(
n

N
)|

(
N∑

j=1

|〈TN(0, n)ψj, ψj〉|4
)1/4

4

Proof. For ease of notation we put

tj(n) = |〈TN(0, n)ψj, ψj〉|.

By the previous lemma,

|ψj(Q)|2 = 〈OpN(gN,Q)ψj, ψj〉

≤
∑
n∈Z

|ĝN,Q(0, n)|tj(n)

=
∑
n∈Z

|f̂(
n

N
)|tj(n)
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on using (5). Thus

N∑
j=1

|ψj(Q)|8 ≤
N∑

j=1

(∑
n∈Z

|f̂(
n

N
)|tj(n)

)4

=
N∑

j=1

∑
n1,n2,n3,n4∈Z

4∏
k=1

|f̂(
nk

N
)|tj(nk) .

Applying Cauchy-Schwartz twice we get that

N∑
j=1

tj(n1)tj(n2)tj(n3)tj(n4) ≤

√√√√ N∑
j=1

tj(n1)2tj(n2)2

√√√√ N∑
j=1

tj(n3)tj(n4)

≤
4∏

k=1

(
N∑

j=1

tj(nk)
4

)1/4

and hence

N∑
j=1

|ψj(Q)|8 ≤
∑

n1,n2,n3,n4∈Z

4∏
k=1

|f̂(
nk

N
)|

(
N∑

j=1

tj(nk)
4

)1/4


=

∑
n∈Z

|f̂(
n

N
)|

(
N∑

j=1

tj(n)4

)1/4
4

�

3.2. A counting problem. Recall that we identified the action of
the matrix A on Z2 with multiplication by its eigenvalue α on the ideal
I ⊆ Z[α]. Let ι : I → Z2 be the identification given in (4). We will
need the following Proposition ([KR, Proposition 11]):

Proposition 6. Fix ν ∈ I. Then for any orthonormal basis of Hecke
eigenfunctions ψj,

N∑
j=1

|〈TN(ι(ν))ψj, ψj〉|4 ≤
N

|Cθ
A(2N)|4

Sol(N, ν)

where Sol(N, ν) is the number of solutions of the equation

(6) ν(β1 − β2 + β3 − β4) ≡ 0 mod N

with β1, . . . , β4 in Cθ
A(N).
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It was also shown that equation (6) has less than N2+ε solutions
for ν fixed, as N tends to infinity. However, in the current setup, we
need to make the dependence on ν more explicit1. Recall that α is an
eigenvalue of A, and that N : Q(α) → Q is the norm map.

Lemma 7. We have
N∑

j=1

|〈TN(0, n)ψj, ψj〉|4 ≤ gcd(n,N)2N−1+ε

Proof. It is sufficient to show that equation 6 has less than

gcd(n,N)2N2+ε

solutions. We argue as in [KR], section 7, except for a small twist: If
(0, 1) ∈ Z2 corresponds to ω ∈ I, then (0, n) corresponds to ν = nω
since the action is Z-linear. We may thus make ν Galois stable by
multiplying by ω. Since ω is in Z[α], the number of solutions to

ν(β1 − β2 + β3 − β4) ≡ 0 mod N, βi ∈ Cθ
A(N)

is bounded by the number of solutions of

nN (ω)(β1 − β2 + β3 − β4) ≡ 0 mod N, βi ∈ Cθ
A(N)

which in turn is given by the number of solutions to

(7) β1 − β2 + β3 − β4 ≡ 0 mod (N/ gcd(N, nN (ω))) , βi ∈ Cθ
A(N).

Let N ′ = N/ gcd(N, nN (ω)). The number of solutions of equation 7
then equals the product of:

• The number of solutions to

β′1 − β′2 + β′3 − β′4 ≡ 0 mod N ′ β′i ∈ Cθ
A(N ′).

where β′1, . . . , β
′
4 ranges over all elements in Cθ

A(N ′).
• The number of elements (β1, β2, β3, β4) ∈ Cθ

A(N)4 that reduce
to the same element (β′1, β

′
2, β

′
3, β

′
4) ∈ Cθ

A(N ′)4.

From proposition 14 in [KR], applied with ν = 1, it follows that the first
term is � (N ′)2+ε. For the second term, lemma 20 in [KR] gives that
the cardinality of the cokernel of the reduction map Cθ

A(N) → Cθ
A(N ′)

is uniformly bounded in N . Hence there are � (Cθ
A(N)/Cθ

A(N ′))4 ele-
ments (β1, β2, β3, β4) that reduce to (β′1, β

′
2, β

′
3, β

′
4) modulo N ′.

Finally, from lemma 8 in [KR] we have

N1−ε � |Cθ
A(N)| � N1+ε

1If n ≡ 0 mod N , then there are about N4 solutions; it is essential to control
the contribution from such terms.
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and thus

Cθ
A(N)/Cθ

A(N ′) � (N/N ′)1+ε.

The number of solutions is therefore bounded by

(N ′)2+ε × (N/N ′)4+ε � N2+ε gcd(nN (ω), N)2+ε � N2+2ε gcd(n,N)2 .

�

Lemma 8. For all ε > 0,∑
n∈Z

|f̂(
n

N
)| gcd(n,N)1/2 �ε N

1+ε.

Proof. Let R = 1/ε. Since f is smooth and compactly supported,

|f̂( n
N

)| � 1 for |n| ≤ N1+1/R, and |f̂( n
N

)| � 1
(n/N)R for |n| ≥ N1+1/R.

Trivially, gcd(n,N)1/2 ≤ N , so∑
|n|≥N1+1/R

|f̂(
n

N
)| gcd(n,N)1/2 �

∑
|n|≥N1+1/R

N

(n/N)R

= NR+1
∑

|n|≥N1+1/R

n−R

� NR+1

(N1+1/R)R−1
= N1+1/R

For the sum over small n, we have∑
|n|≤N1+1/R

|f̂(
n

N
)| gcd(n,N)1/2 �

∑
|n|≤N1+1/R

gcd(n,N)1/2

� N1/R

N−1∑
n=0

gcd(n,N)1/2 .

(8)

We note that

(9)
N−1∑
n=0

gcd(n,N)1/2 � N1+ε .

Indeed,

N−1∑
n=0

gcd(n,N)1/2 =
∑
d|N

d1/2
∑

n≤N,gcd(n,N)=d

1 ≤
∑
d|N

d1/2N

d
= N

∑
d|N

d−1/2.

Now
∑

d|N d
−1/2 is bounded by the number of divisors of N , and hence

is � N ε for all ε > 0.
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Therefore from (8) and (9) we get∑
|n|≤N1+1/R

|f̂(
n

N
)| gcd(n,N)1/2 �

∑
|n|≤N1+1/R

gcd(n,N)1/2 � N1/R+1+ε .

�

3.3. Conclusion of the proof. Let {ψj}N
i=1 be an orthonormal basis

of HN such that ψ1 = ψ, and each ψj is a Hecke eigenfunction. We will

then bound |ψ(Q)|8 trivially by the sum
∑N

j=1 |ψj(Q)|8.
By lemma 5,

N∑
j=1

|ψj(Q)|8 ≤

∑
n∈Z

|f̂(
n

N
)|

(
N∑

j=1

|〈TN(0, n)ψj, ψj〉|4
)1/4

4

and from Lemma 7 we have
N∑

j=1

|〈TN(0, n)ψj, ψj〉|4 ≤ gcd(n,N)2N−1+ε

Lemma 8 then gives that

N∑
j=1

|ψj(Q)|8 � N−1+ε

(∑
n∈Z

|f̂(
n

N
)| gcd(n,N)1/2

)4

� N−1+ε
(
N1+ε

)4 � N3+5ε

and thus
|ψ(Q)| � N3/8+ε

as required. �

4. Uniform boundedness for split primes

4.1. Explicit construction of Hecke eigenfunctions. Let N = p
be an odd “split” prime, i.e. a prime p which does not divide (trA)2−4
such that A is diagonalizable modulo p. We also assume that A is not
triangular mod p, that is p does not divide any of the off-diagonal
entries of A. For such p, we give an explicit construction of the Hecke
eigenfunctions (see [DEGI] for an alternative approach to constructing
these). This construction will enable us to prove Theorems 2 and 3.

The condition above implies that N = p is an odd prime that splits
in K and does not divide the conductor2 of O. Since p does not divide
the conductor of O, we have O/pO ' OK/pOK . Moreover, since p

2Recall that O can be written as Z+ fOK ; the integer f is called the conductor
of O.
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splits in K, (OK/pOK)× ' (Z/pZ)× × (Z/pZ)×, and from lemma 19
in [KR] we get that Cθ

A(p) ' (Z/pZ)×. On the other hand, since p is
odd, we have Cθ

A(2p) ' Cθ
A(p), hence Cθ

A(2p) is a cyclic group of order
p − 1. Let β be the generator of this group, and let B ∈ Γ(4, 2p) be
congruent to ι(β) modulo 2p. The Hecke operators are then given by
UN(Bk). Since the order of B modulo p is p−1, B can be diagonalized
modulo p (all elements in (Z/pZ)× are p−1 roots of unity.) Let (B2, Bp)
denote the mod 2 and mod p reductions of B. Since B ∈ Γ(4, 2p) we
find that B2 is the identity matrix, and as Bp is diagonalizable there

exists D,M ∈ Γ(4, 2p) such that D ≡
(
t 0
0 t−1

)
mod 2p is diagonal

and

B ≡MDM−1 mod 2p

Because all matrices lie in Γ(4, 2p), the multiplicativity property (3)
implies that UN(B) = UN(M)UN(D)UN(M)−1.

Now, UN is constructed as a tensor product UN = ⊗pk||NUpk and
since B2 is trivial, we find the action is determined by Bp. Recall from
section 4 of [KR] that the action of diagonal matrices on ψ ∈ L2(Z/pZ)
is given by

(Up (D)ψ) (x) = Λp(t)ψ(tx)

where Λp(t) is the quadratic character of (Z/pZ)×. Thus, if χ is a
character on (Z/pZ)×, extended to Z/pZ by letting χ(0) = 0, we find
that χ is an eigenfunction of Up (D). We also find that δ(x), where
δ(0) = 1 and δ(x) = 0 for x 6= 0, is an eigenfunction.

If f is an eigenfunction of Up(D), then Up(M)f is an eigenfunction
of Up(B) since

Up(B)Up(M)f = Up(M)Up(D)Up(M
−1)Up(M)f = Up(M)Up(D)f

But Up(B) generates the group of Hecke operators, hence any Hecke
eigenfunction will either be of the form Up(M)χ, for χ nontrivial, or a
linear combination of Up(M)χ0 and Up(M)δ for χ0 trivial.

4.2. A reduction to exponential sums. We first note that M is
not upper triangular modulo p, otherwise the same would hold for B.
Since A is a power of B (modulo p), this would imply that A is upper
triangular modulo p, which is contrary to our assumption on p. Thus
we may use the Bruhat decomposition of SL(2,Z/pZ) to write

(10) M =

[
1 b1
0 1

] [
0 1
−1 0

] [
1 b2
0 1

] [
t 0
0 1/t

]
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for some b1, b2, t (depending on p). From section 4 of [KR], we obtain
that for ψ ∈ L2(Z/pZ),

(11) (Up(M)ψ)(x) = Λp(t)
ep(rpb1x

2)
√
p

p∑
y=1

ep(rp(b2y
2 + 2xy))ψ(ty)

where rp is the inverse of 2 mod p, and ep(x) := e2πix/p.

4.2.1. The case ψ = Up(M)χ. We begin with the following lemma on
exponential sums:

Lemma 9. If rp 6≡ 0 mod p then

(1) If χ is nontrivial and b2 6= 0 mod p then∣∣∣∣∣
p∑

y=1

ep(rp(b2y
2 + 2xy))χ(y)

∣∣∣∣∣ ≤ 2
√
p

(2) If χ = χ0 is trivial or b2 = 0 mod p then∣∣∣∣∣
p−1∑
y=1

ep(rp(b2y
2 + 2xy))χ(y)

∣∣∣∣∣ =
√
p

Proof. If χ is trivial or b2 ≡ 0 mod p then we can express the sum as
a classical Gauss sum, and in this case the result is well known. For
χ nontrivial, we note that the degree of rp(b2y

2 + 2xy) is coprime to
p, hence we may apply Weil’s bound [Weil] on exponential sums (see
[Sch, page 45, Theorem 2G ]) to obtain∣∣∣∣∣

p∑
y=1

ep(rp(b2y
2 + 2xy))χ(y)

∣∣∣∣∣ ≤ 2
√
p

Note that the bound is independent of the order of χ! �

Corollary 10. Let ψ =
√
p/(p− 1)Up(M)χ. Then ‖ψ‖2 = 1, |ψ| ≡√

p/(p− 1) if χ is the trivial character, and for nontrivial characters
χ

‖ψ‖∞ ≤ 2
√
p/(p− 1) .

4.2.2. The case f = Up(M)δ.

Lemma 11. Let ψ∞,p =
√
pUp(M)δ. Then ‖ψ∞,p‖2 = 1 = ‖ψ∞,p‖∞.
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Proof. ‖ψ∞,p‖2 = 1 since ‖δ‖2
2 = 1/p and Up(M) is unitary. From

equation 11 we get

|ψ∞,p(x)| = |√p(Up(M)δ)(x)|

=

∣∣∣∣∣√pΛp(t)
ep(rpb1x

2)
√
p

p∑
y=1

ep(rp(b2y
2 + 2xy))δ(ty)

∣∣∣∣∣ = 1

since δ(ty) = 0 unless y = 0. Hence ‖ψ∞,p‖∞ = 1. �

Theorem 2 follows immediately from Corollary 10 and Lemma 11.

5. Value distribution for split primes

Let p be a split prime for our map A. We assume that A is not
triangular mod p. To prove Theorem 3, we again use (11), which
says that we can write the normalized Hecke eigenfunctions ψχ,p for
nontrivial χ as

ψχ,p(x) =
Λp(tp)ep(rpb1,px

2)√
p− 1

∑
y mod p

ep(rp(b2,py
2 + 2xy))χ(y)

where rp is the inverse of 2 modulo p, Λp is the unique quadratic char-
acter mod p, and tp, b1,p and b2,p come from the Bruhat decomposition
(10) of the diagonalizing matrix Mp for A.

Note that b2,p 6= 0 mod p for p as in our assumptions, since otherwise
from (10), we find that

Mp =

[
−b1,ptp 1/tp
−tp 0

]
and consequently the matrix B is upper triangular:

B = MDM−1 =

[
1/tp b1,p(tp − 1/tp)
0 tp

]
.

Since A is a power of B mod p, this implies that A is also upper
triangular, contradicting our assumption on p .

Thus we may express the absolute value of ψχ,p in terms of the ex-
ponential sums

Hp(χ,R)(t) =
∑

y mod p

ep(R(y2 + ty))χ(y) .

First define (following N. Katz) a normalization Fp(χ,R)(t) of these
sums as (R 6= 0 mod p):

Fp(χ,R)(t) = − ep(Rt
2/8)√

χ(−1/2)G(R,χ)G(R,Λp)
Hp(χ,R)(t)
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where G(R,χ) =
∑

x mod p χ(x)ep(Rx) are Gauss sums, and
√
∗ de-

notes any choice of the square root. Then we have:

(12) |ψχ,p(x)| =
1√

1− 1/p

∣∣∣∣Fp(χ, rpb2,p)(
2x

b2,p

)

∣∣∣∣ .
Concerning the the normalized sums Fp(χ,R)(t), Katz proved the

following value distribution and statistical independence theorem:

Theorem 12 ([Ka] ). Let p be an odd prime, χ be a nontrivial character
mod p and R 6= 0 mod p. Then

(1) The normalized sums Fp(χ,R)(t) are real and take values in the
interval [−2, 2].

(2) As p → ∞, the p numbers {Fp(χ,R)(t)/2 : t mod p} become
equidistributed in [−1, 1] with respect to the semi-circle measure
2
π

√
1− u2du.

(3) For any r ≥ 2, and a choice of r distinct nontrivial characters
χ1, . . . , χr, the p vectors

{(Fp(χ1, R)(t)/2, . . . , Fp(χr, R)(t)/2) : t mod p}
become equidistributed in [−1, 1]r with respect to the product of
the semi-circle measures.

By virtue of the relation (12) between the normalized eigenfunctions
fχ and the normalized sums Fp(χ,R), Theorem 3 is an immediate con-
sequence of Katz’s theorem and the following general lemma:

Lemma 13. Let {fp(t), t = 1, . . . , p} be a sequence of p points in
the interval [0, 1] which become equidistributed as p → ∞ with re-
spect to a probability measure ρ(x)dx having a continuous density ρ.
Suppose {gp(t) : t = 1, . . . , p} is another sequence of points so that
gp(t) = θpfp(t), with θp = 1 + o(1). Then {gp(t) : t = 1, . . . , p} is also
equidistributed in [0, 1] with respect to ρ(x)dx.

We leave the proof of this as a simple exercise for the reader.
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