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Abstract. We study semi-classical limits of eigenfunctions of a
quantized linear hyperbolic automorphism of the torus (“cat map”).
For some values of Planck’s constant, the spectrum of the quan-
tized map has large degeneracies. Our first goal in this paper is
to show that these degeneracies are coupled to the existence of
quantum symmetries. There is a commutative group of unitary
operators on the state-space which commute with the quantized
map and therefore act on its eigenspaces. We call these “Hecke
operators”, in analogy with the setting of the modular surface.

We call the eigenstates of both the quantized map and of all
the Hecke operators “Hecke eigenfunctions”. Our second goal is to
study the semiclassical limit of the Hecke eigenfunctions. We will
show that they become equidistributed with respect to Liouville
measure, that is the expectation values of quantum observables in
these eigenstates converge to the classical phase-space average of
the observable.

1. Introduction

1.1. Background. One of the key issues of “Quantum Chaos” is the
nature of the semi-classical limit of eigenstates of classically chaotic
systems. When the classical system is given by the geodesic flow on a
compact Riemannian manifold M (or rather, on its co-tangent bundle),
one can formulate the problem as follows: The quantum Hamiltonian is,
in suitable units, represented by the positive Laplacian −∆ on M . To
measure the distribution of its eigenstates, one starts with a (smooth)
classical observable, that is a (smooth) function on the unit co-tangent
bundle S∗M , and via some choice of quantization from symbols to
pseudo-differential operators, forms its quantization Op(f). This a
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zero-order pseudo-differential operator with principal symbol f . The
expectation value of Op(f) in the eigenstate ψ is 〈Op(f)ψ, ψ〉.

Let ψj be a sequence of normalized eigenfunctions: ∆ψj + λjψj = 0,∫
M
|ψj|2 = 1. The problem then is to understand the possible limits as

λj →∞ of the distributions

(1.1) f ∈ C∞(S∗M) 7→ 〈Op(f)ψj, ψj〉.

In the case that the geodesic flow is “chaotic”, it is assumed that the
eigenfunctions are “random”, for instance in the sense that the expec-
tation values converge as λj → ∞ to the average of f with respect to
Liouville measure on S∗M . The validity of this for almost all eigen-
modes if the classical flow is ergodic (so a very weak notion of chaos!) is
asserted by “Schnirelman’s theorem” [21] 1, a fact sometimes referred
to as quantum ergodicity. The case where there are no exceptional
subsequences is called Quantum Unique Ergodicity (QUE). Its validity
seems to be a very difficult problem, to-date unsolved in any case where
the dynamics are truly chaotic (see however Marklof and Rudnick [16]
where QUE is proved for an ergodic, though non-mixing, model case).

1.2. Cat maps. In order to shed some light on the validity of QUE,
we look at a “toy model” of the situation - the quantization of linear
hyperbolic automorphisms of the 2-dimensional torus T2. Here the
phase space T2 is compact and instead of a Hamiltonian flow we con-
sider a discrete time dynamics, generated by the iterations of a single
map A ∈ SL(2,Z). If A is hyperbolic, that is | trA| > 2, then this
map is a paradigm of chaotic dynamics. Such maps are sometimes
called “cat maps” in the physics literature. A quantization of these
“cat maps” was proposed by Hannay and Berry [9] and elaborated on
in [13, 6, 7, 12, 25]. We review this in some detail in Sections 2, 3. In
particular the admissible values of Planck’s constant are inverse inte-
gers h = 1/N , and the Hilbert space of states HN ' L2(Z/NZ) of the
quantum system is finite dimensional, of dimension N = h−1. To every
classical observable f ∈ C∞(T2) one associates an operator OpN(f) on
HN , the corresponding quantum observable. The quantization of the
cat map is a unitary operator UN(A) on HN , the quantum propaga-
tor, unique up to a phase factor, characterized by an exact2 version of
Egorov’s theorem

(1.2) UN(A)−1 OpN(f)UN(A) = OpN(f ◦ A), ∀f ∈ C∞(T2)

1see Zelditch [24] and Colin de Verdiere [5] for proofs.
2This exact version of Egorov’s theorem is very special and is a consequence of

the map being linear.
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The eigenvectors φ of the quantum propagator UN(A) are the ana-
logues of the eigenmodes of the Laplacian, and to study their concen-
tration properties one forms the distributions

f 7→ 〈OpN(f)φ, φ〉
In particular we want to understand the quantum limits as N → ∞.
An analogue of Schnirelman’s theorem in this setting was proven in
[3, 25]. One would like to know if QUE holds, that is if the only
quantum limit is the uniform measure on T2.

The spectrum of the quantum propagator UN(A) has degeneracies,
which renders the study of possible quantum limits difficult. The de-
generacies are systematic and are inversely related to the order of A
mod 2N . Degli Esposti, Graffi and Isola [7] showed that if instead of
looking at all integer values of N , one restricts to the sparse3 subse-
quence consisting of primes for which the degeneracies are bounded, and
moreover split in the quadratic extension of the rationals containing the
eigenvalues of A, then the only limit is indeed the uniform measure.

Our first goal in this paper is to show that the degeneracies are
coupled to the existence of quantum symmetries. There is a commu-
tative group of unitary operators on HN which commute with UN(A)
and therefore act on each eigenspace of UN(A). We will call these
“Hecke operators”, in analogy with the setting of the modular surface4

[20, 15, 10]. We may thus consider eigenfunctions of the desymmetrized
quantum map, that is eigenstates of both UN(A) and of all the Hecke
operators. We call these Hecke eigenfunctions. Our second goal is to
show that these become equidistributed with respect to Liouville mea-
sure, that is the expectation values of quantum observables in Hecke
eigenstates converge to the classical phase-space average of the observ-
able.

1.3. Results. We turn to a detailed description of our results. We
first carry out a systematic study of the quantum propagator. We
define UN(A) so that it only depends on the remainder of A mod 2N
and satisfies (1.2). One gets a projective representation A 7→ UN(A)
of the subgroup of “quantizable” elements in the finite modular group
SL(2,Z/2NZ). We explain (Section 4) that it can be made into an
ordinary representation if we further restrict to the subgroup Γ(4, 2N)

3It is an open problem to show that there are infinitely many primes where
the degeneracy is bounded. This is known assuming the Generalized Riemann
Hypothesis, which in fact guarantees that a positive proportion of the primes satisfy
the assumption.

4A notable difference between our setting and the modular surface is that there
one expects few, if any, degeneracies.
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given by g = I mod 4 for N even, g = I mod 2 for N odd. Thus
for A,B ∈ Γ(4, 2N) we have UN(AB) = UN(A)UN(B). Consequently,
if AB = BA mod 2N then their propagators commute. This is the
basic principle that we use to form the Hecke operators.

Fix a hyperbolic matrix A, which we will further assume lies in the
congruence subgroup

Γ(4) = {g ∈ SL(2,Z) : g = I mod 4}

so that its reduction modulo 2N lies in Γ(4, 2N) for all N . To find
matrices commuting with A modulo 2N , we use the connection with
the theory of real quadratic fields (Section 5): If α is an eigenvalue
of A, form O = Z[α] which is an order in the real quadratic field
K = Q(α). There is an O-ideal I so that the action of α on I by
multiplication has A as its matrix in a suitable basis. Thus the action
of O on I by multiplication gives us an embedding ι : O ↪→ Mat2(Z),
and induces a map ι : O/2NO → Mat2(Z/2NZ). Under this map,
the images of elements β ∈ O/2NO whose Galois norm is 1 mod 2N
lie in SL(2,Z/2NZ) and commute with A modulo 2N . If we further
require that β = 1 mod 4O then we get a group of commuting matrices
ι(β) ∈ Γ(4, 2N), whose quantum propagators UN(ι(β)) commute with
UN(A) and with each other. These are our Hecke operators.

Since the Hecke operators commute with UN(A), they act on its
eigenspaces, and since they commute with each other there is a basis
of HN consisting of joint eigenfunctions of UN(A) and the Hecke oper-
ators, whose elements we call Hecke eigenfunctions. Our main theorem
is

Theorem 1. Let A ∈ Γ(4) be a hyperbolic matrix, and f ∈ C∞(T2)
a smooth observable. Then for all normalized Hecke eigenfunctions
φ ∈ HN of UN(A), the expectation values 〈OpN(f)φ, φ〉 converge to the
phase-space average of f as N →∞. Moreover, for all ε > 0 we have

〈OpN(f)φ, φ〉 =

∫
T2

f(x)dx+Of,ε(N
−1/4+ε), as N →∞

Remark 1.1. It is easy to extend Theorem 1 to give similar results for
matrix elements of OpN(f). When N is such that the degeneracies
in the spectrum of UN(A) are sufficiently small, this implies as in [7]
that the expectation values of OpN(f) in all eigenstates converge to∫
T2 f(x)dx.

Remark 1.2. The exponent of 1/4 in our theorem is certainly not opti-
mal, and more likely the correct exponent is 1/2. That is the exponent
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given in [7], where the problem is reduced to one-variable exponen-
tial sums, which can be estimated using Weil’s theorem - the Riemann
Hypothesis for a curve over a finite field.

What we in fact show (Theorem 9) is that if φi, i = 1, . . . , N is an
orthonormal basis of HN consisting of Hecke eigenfunctions then

N∑
i=1

∣∣∣∣〈OpN(f)φi, φi〉 −
∫

T2

f(x)dx

∣∣∣∣4 � N−1+ε

from which we deduce Theorem 1 by taking an orthonormal basis with
φ1 = φ and omitting all but one term on the LHS. If all terms on the
LHS are of roughly the same size then we would expect this to give the
exponent 1/2.

The proof of Theorem 1 is reduced to a counting problem in Section 6.
This in turn comes down to counting solutions of the congruence

β1 − β2 + β3 − β4 = 0 mod NO

in norm-one elements βi ∈ O/NO. The number of such norm-one
elements is O(N1+ε) (Lemma 8), and since this equation has 3 degrees
of freedom, the trivial bound of the number of solutions is O(N3+ε),
∀ε > 0. To get any result in Theorem 1 we need to show that the
number of solutions is O(N3−δ) for some δ > 0, that is any saving over
the trivial bound would do. This is accomplished in Section 7 where
we show that the number of solutions is O(N2+ε), the optimal bound.
Acknowledgements: We thank J. Bernstein, D. Kazhdan, J. Keat-
ing, J. Marklof, F. Mezzadri, P. Sarnak and S. Zelditch for helpful
discussions concerning various points in the paper.
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2. Background on quantization of maps

In this paper we consider the quantization of linear (orientation pre-
serving) automorphisms of the torus T2 = R2/Z2, that is elements of
the modular group SL(2,Z), which for the most part will be assumed
hyperbolic (known as “cat maps” in some of the literature). For this
we first review a procedure (one of several) for quantization of maps.

The first to quantize the cat map were Hannay and Berry [9]. We
will follow in part an approach by means of representation theory which
was developed by Knabe [13] and Degli Esposti, Graffi and Isola [6, 7].
See also [12, 3, 25] for other approaches.

2.1. The quantization procedure. We start by describing some desider-
ata for a quantization procedure for a symplectic map A of a phase
space. In the literature it is customary to distinguish two components
of the quantization procedure - a kinematic component and a dynam-
ical one.

In the kinematic component one constructs a Hilbert space Hh of
states of the quantum system5 and an algebra of operators on the
space - the algebra of quantum observables. Smooth functions f on
the classical phase space of the system (that is classical observables)
are mapped to members Oph(f) of this algebra. To make the connec-
tion with the classical system, it is required that in the limit h → 0,
the commutator of the quantization of two observables f , g reproduce
the quantization of their Poisson bracket {f, g} =

∑
j

∂f
∂pj

∂g
∂qj

− ∂f
∂qj

∂g
∂pj

:

(2.1)
i

~
[Oph(f),Oph(g)]−Oph({f, g}) −−→

h→0
0

(we won’t specify the sense of convergence).
The dynamical part of quantization amounts to prescribing a discrete

time evolution of the algebra of quantum observables, that is a unitary
map Uh(A) of Hh, which reproduces the classical map A in the limit
h→ 0 in the sense that:

(2.2) Uh(A)−1 Oph(f)Uh(A)−Oph(f ◦ A) −−→
h→0

0

(this is the analogue of Egorov’s theorem).
In our case, the classical phase space is the torus T2. The classical

observables are smooth functions on T2. We will find that Planck’s
constant h is restricted to be an inverse integer: h = 1/N , N ≥ 1.
The state-space Hh will be HN = L2(Z/NZ). To each observable
f ∈ C∞(T2) we will assign, by an analogue of Weyl quantization, an

5h stands for Planck’s constant.
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operator OpN(f) on HN so that (2.1) holds, where convergence is in
the space of N × N matrices. The dynamics will be given by a linear
map A ∈ SL(2,Z) so that x = ( p

q ) ∈ T2 7→ Ax is a symplectic map
of the torus. Given an observable f ∈ C∞(T2), the classical evolution
defined by A is f 7→ f ◦A, where f ◦A(x) = f(Ax). It turns out that
for a certain subset of matrices A, there is a unitary map UN(A) on
L2(Z/NZ) so that an exact form of (2.2) holds:

UN(A)−1 OpN(f)UN(A) = OpN(f ◦ A), ∀f ∈ C∞(T2)

This will be our discrete time evolution.
Below we describe these procedures in detail.

2.2. Kinematics: The space of states. As the Hilbert space of
states, we take distributions ψ(q) on the line R which are periodic in
both the position and the momentum representation. As is well known,
this restricts Planck’s constant to take only inverse integer values. We
review the argument: Recall that the momentum representation of a
wave-function ψ is

Fhψ(p) =
1√
h

∫ ∞

−∞
ψ(q)e−2πi qp

h dq

We then require

ψ(q + 1) = ψ(q), Fhψ(p+ 1) = Fhψ(p)

(one may just require that this hold up to a phase). From periodicity
in the position representation, we get

ψ(q) =
∑
n∈Z

cne(nq)

where
e(z) := e2πiz

In the momentum representation, that is applying Fh, we get

Fhψ(p) =
√
h
∑
n∈Z

cnδ(p− nh)

Now in order that Fhψ(p+ 1) = Fhψ(p) we clearly need 1
h
∈ Z, that is

for some integer N ≥ 1 that

h =
1

N
In that case we also need

cn+N = cn
Thus one finds that h = 1/N and the space of states is finite dimen-

sional, of dimension N = 1/h, and consists of periodic point-masses at
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the coordinates q = Q/N , Q ∈ Z. We may then identify HN with the
N -dimensional vector space L2(Z/NZ), with the inner product 〈 · , · 〉
defined by

〈φ, ψ〉 =
1

N

∑
Q mod N

φ(Q)ψ(Q),

2.3. Quantizing observables. Next we construct quantum observ-
ables: For a free particle on the line, we would take as the basic ob-
servables the position and momentum operators

q̂ψ(q) := qψ(q), p̂ψ(q) :=
~
i

dψ

dq
(q)

(~ = h/2π). For our periodic phase space we take the basic observ-
ables to be e(q̂) = e2πiq̂ and e(p̂), which correspond to the phase space
translations

e(q̂)ψ(q) = e(q)ψ(q), e(p̂)ψ(q) = ψ(q + h)

Corresponding to the commutation relation

[q̂, p̂] = i~ = − h

2πi

we find that
e(q̂)e(p̂) = e−2πihe(p̂)e(q̂)

Writing
t1 := e(p̂), t2 := e(q̂)

(so that t2t1 = e−2πiht1t2) we put for n = (n1, n2) ∈ Z2

(2.3) TN(n) := e
iπn1n2

N tn2
2 t

n1
1

Their action on a wave-function ψ ∈ L2(Z/NZ) is

(2.4) TN(n)ψ(Q) = e
iπn1n2

N e(
n2Q

N
)ψ(Q+ n1)

These are clearly of period 2N in n:

TN(n+ 2Nm) = TN(n), n,m ∈ Z2

The adjoint of TN(n) is given by

(2.5) TN(n)∗ = TN(−n)

They also satisfy

(2.6) TN(m)TN(n) = e
iπω(m,n)

N TN(m+ n)

where
ω(m,n) = m1n2 −m2n1
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Now we can finally construct quantum observables: For any smooth
classical observable f ∈ C∞(T2) with Fourier expansion

f(x) =
∑
n∈Z2

fne(n · x), x = ( p
q ) ∈ T2,

we define its quantization OpN(f) as

OpN(f) :=
∑
n∈Z2

fnTN(n)

The verification of (2.1) is an easy calculation using (2.6).

2.4. The Heisenberg group. We now digress to connect this con-
struction to the representation theory of a certain Heisenberg group
H2N .

For vectors x = (x1, x2), y = (y1, y2) define ω(x, y) := x1y2 − x2y1.
This is a non-degenerate symplectic form. The Heisenberg group H2N

is defined to be the set (Z/2NZ)2 × Z/2NZ with multiplication

(x, z) · (x′, z′) := (x+ x′, z + z′ + ω(x, x′))

This is at odds with the standard convention where one multiplies ω
by 1/2, but is essential for us because 2 is not invertible in Z/2NZ.

It is useful to record various facts about the multiplication in H2N :
The inverse of (x, z) is

(2.7) (x, z)−1 = (−x,−z)
The commutator of two elements is given by

(2.8) (x, z)(x′, z′)(x, z)−1(x′, z′)−1 = (0, 2ω(x, x′))

From this commutator identity and the fact that ω is non-degenerate
we immediately find

Lemma 2. The center of H2N is (NZ/2NZ)2 × Z/2NZ, that is

Cent(H2N) = {(Nε,Nη, z) : ε, η = 0, 1, z ∈ Z/2NZ}

We define a representation of H2N on L2(Z/NZ) by setting

π(n, z) = e(
z

2N
)TN(n)

From the relation (2.6) it follows that π(h)π(h′) = π(hh′), i.e. we do
indeed get a representation.

The center of H2N then acts via the character χ given by

χ(x0, y0, z) = e(
z + x0y0

2N
)

(that is π(x0, y0, z) = χ(x0, y0, z)I).
The basic facts about π and the representation theory of H2N are
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Proposition 3. i) All irreducible representations of H2N have dimen-
sion at most N .

ii) The representation π is irreducible, and is the unique irreducible
N-dimensional representation with central character χ.

We omit the details of the proof; the main point (which is easy to
verify from the definitions) is

Lemma 4. the trace of TN(n) is given by

| trTN(n)| =

{
N if n ≡ (0, 0) mod N ,

0 otherwise.

Proof. Let φi =
√
Nδi where δi is the Dirac delta function supported

at i, so that {φi}N
i=1 is an orthonormal basis of L2(Z/NZ). Then

trTN(n) =
N∑

i=1

〈TN(n)φi, φi〉

and by equation (2.4)

TN(n)φi(Q) = e(
n1n2 + 2n2Q

2N
)φi(Q+ n1)

= e(
n1n2 + 2n2Q

2N
)φi−n1(Q)

= e(
−n1n2 + 2n2i

2N
)φi−n1(Q)

Therefore trTN(n) = 0 unless n1 ≡ 0 mod N , in which case

N∑
i=1

〈TN(n)φi, φi〉 = e(
−n1n2

2N
)

N∑
i=1

e(
n2i

N
).

The result now follows since
∑N

i=1 e(
n2i
N

) equals N if n2 ≡ 0 mod N ,
and is zero otherwise. �

2.5. Description of π as an induced representation. Let Y be
the subgroup of elements

Y = {(x0, y, z) : y, z ∈ Z/2NZ, x0 ∈ NZ/2NZ}
It is easily seen to be a normal, maximal abelian subgroup, of index
N , containing the center. Set for (x0, y, z) ∈ Y

τ(x0, y, z) := e(
z + x0y

2N
)

This is a character of Y (we need to use 2x0 ≡ 0 mod 2N in verifying
this), restricting to the character χ(x0, y0, z) = e( z+x0y0

2N
) of the center.
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We consider the induced representation IndH2N
Y τ of the Heisenberg

group. The basic model for it is the space of functions Φ : H2N → C
satisfying Φ(ah) = τ(a)Φ(h) for a ∈ Y , h ∈ H2N . The action of the
group is by right multiplication hΦ(h′) := Φ(h′h). By restricting to the
subgroup X = {(x, 0, 0)} we can realize this induced representation as
functions on Z/2NZ which are N -periodic (since the element (N, 0, 0)
lies in X∩Y ). This space of functions we can identify with L2(Z/NZ).

Let us compute the action of a group element h = (x, y, z) ∈ H2N in
this model. For this we need to write (x′, 0, 0) ·h as a · (x′′, 0, 0), a ∈ Y .
The relevant identity is

(x′, 0, 0)(x, y, z) = (0, y, z + xy + 2x′y)(x′ + x, 0, 0)

Thus the element h = (x, y, z) acts as

hφ(x′) = e(
z + xy + 2x′y

2N
)φ(x′ + x)

In particular (x, 0, 0) acts as translation by x and (0, y, 0) as a multipli-

cation operator φ(x′) 7→ e(x′y
N

)φ(x′). The center acts by the character

(x0, y0, z) 7→ e( z+x0y0

2N
). These show that π coincides with the induced

representation IndH2N
Y τ .
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3. Dynamics: quantized cat maps

We now show how to assign to (certain) linear automorphisms A of
the torus T2 a unitary operator UN(A) on L2(Z/NZ), which satisfies:
For all observables f ∈ C∞(T2)

UN(A)−1 OpN(f)UN(A) = OpN(f ◦ A),

The finite modular group SL(2,Z/2NZ) acts by automorphisms on
the Heisenberg groups H2N via (x, z)A := (xA, z), A ∈ SL(2,Z/2NZ).
That this is indeed an automorphism (that is (h1h2)

A = hA
1 h

A
2 ) follows

from A preserving the symplectic form ω. Moreover we have (hA)B =
hAB. Composing the representation π of H2N with A gives a new
representation πA(h) := π(hA), which is clearly still an irreducible
N -dimensional representation. Its central character χA can be easily
computed as follows: if x0, y0 ∈ NZ/2NZ and (x1, y1) = (x0, y0)A then
χA is given by

χA(x0, y0, z) = χ((x0, y0)A, z) = e(
z + x1y1

2N
)

This will be the same character as χ iff x1y1 ≡ x0y0 mod 2N for
all x0, y0 ∈ NZ/2NZ. Writing A = ( a b

c d ) and x0 = Nε, y0 = Nη,
ε, η ∈ Z/2Z, this is equivalent to requiring

N(abε2 + cdη2) ≡ 0 mod 2, ∀ε, η ∈ Z/2Z

or
Nab ≡ Ncd ≡ 0 mod 2

This is only a restriction if N is odd, and is satisfied by the elements
of the theta group

Γθ(2N) = {
(
a b
c d

)
∈ SL(2,Z/2NZ) : ab ≡ cd ≡ 0 mod 2}

Therefore if A ∈ Γθ(2N), we get a unitarily equivalent representa-
tion πA of H2N . Thus there is a unitary map UN(A), the quantum
propagator associated to A, so that

π(hA) = UN(A)−1π(h)UN(A), ∀h ∈ H2N

In particular we find

(3.1) UN(A)−1TN(n)UN(A) = TN(nA)

and consequently for all observables f ∈ C∞(T2),

(3.2) OpN(f ◦ A) = UN(A)−1 OpN(f)UN(A)

We now for any “quantizable” element A ∈ SL(2,Z) (that is A =
( a b

c d ) with ab ≡ cd ≡ 0 mod 2), we define the quantum propagator
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(or “quantized cat map”) to be UN(Ā) where Ā ∈ SL(2,Z/2NZ) is
the reduction of A modulo 2N . Thus by its construction, UN(A) only
depends on the reduction A mod 2N . (This is a difference from the
construction in Hannay and Berry [9]).
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4. Multiplicativity

The quantum propagators UN(A) are uniquely defined up to a phase-
factor, because of the irreducibility of π (Schur’s lemma). Thus they
define a projective representation of Γθ(2N), that is

UN(AB) = eiφN (A,B)UN(A)UN(B) A,B ∈ Γθ(2N)

Define the subgroup

Γ(4, 2N) =

{
g ∈ SL(2,Z/2NZ) :

{
g = I mod 4, N even

g = I mod 2, N odd

}
The goal of this section is to show that there is a choice of phases

for the propagators UN(A) so that on the subgroup Γ(4, 2N) the map
A 7→ UN(A) is a homomorphism:

Theorem 5. There is a choice of quantum propagators so that

UN(AB) = UN(A)UN(B), A,B ∈ Γ(4, 2N)

As a consequence we find

Corollary 6. If A,B ∈ Γ(4, 2N) commute mod 2N then their propa-
gators also commute: UN(A)UN(B) = UN(B)UN(A).

Theorem 5 in various guises is essentially known, and arose out of
the study of theta-functions and the Weil representation. One form is
due to Kubota [14] (see also [8]). There are also treatments purely at
the finite level [18, 1]. Since Corollary 6 is absolutely crucial to our
work, and we did not find a good reference for the exact form that
we need, we will sketch a proof (or more precisely, a verification) of
Theorem 5. We wish to note that Theorem 5 is a-priori more subtle
than Corollary 6, since once we know that there is some choice of phases
for which Corollary 6 holds, than it holds for all choices; this is not the
case with Theorem 5.6

4.1. Reduction to prime powers. Factor 2N =
∏

p p
kp = 2k

∏
p>2 p

kp =

2kM , M odd. The Chinese remainder theorem gives an isomorphism

Z/2NZ '
∏

p

Z/pkpZ

given by

x 7→ (x mod pkp)p

6We thank Jon Keating for emphasizing this point to us.
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with inverse

(xp mod pkp)p 7→
∑ 2N

pkp
rpxp mod 2N

where rp is the inverse of 2N/pkp modulo pkp . Correspondingly we have
a bijection

L2(Z/2NZ) '
⊗

p

L2(Z/pkpZ)

We define the phase space translations T (p) on L2(Z/pkpZ) as in (2.4),
by

T (p)(n)ψ(Q) = e(
rp(n1n2 + 2n2Q)

pkp
)ψ(Q+ n1)

Is is then a simple matter to see that TN(n) = ⊗pT
(p)(n), that is if

ψ = ⊗pψp ∈
⊗

p L
2(Z/pkpZ) is decomposable then

TN(n)ψ(Q) =
∏

p

T (p)(n)ψ(Q mod pkp)

This allows us to express the quantum propagators UN(A) as tensor
products. Indeed, if we already have propagators U (p)(A) which satisfy

(4.1) U (p)(A)−1T (p)(n)U (p)(A) = T (p)(nA)

We then set

(4.2) UN(A) := ⊗U (p)(A)

which still satisfies

UN(A)−1TN(n)UN(A) = TN(nA)

for all n ∈ Z2 and therefore UN(A) coincides up to a phase with any
other map satisfying this.

We use this procedure to define UN(A) (that is, choose a phase)
so that UN is an honest representation of a subgroup Γ(4, 2N) of
SL(2,Z/2NZ), not merely a projective representation. From the fac-
torization property (4.2), it follows that it enough to show that U (p) is
a representation of SL(2,Z/pkpZ) when p > 2 is odd, and of Γ(4, 2k) if
N = 2k−1M is even.

4.2. Gauss sums. We need some preliminary information on Gauss
sums. We define normalized Gauss sums

(4.3) Sr(a, p
k) =

1√
pk

∑
x mod pk

e(
−rax2

pk
)



16 PÄR KURLBERG AND ZEÉV RUDNICK

For p odd these are 4-th roots of unity. To describe them, define for
t ∈ (Z/pkZ)∗

Λr,pk(t) =
Sr(t, p

k)

Sr(1, pk)

Note that if t = t21 ∈ (Z/pkZ)∗ is a square then Λr,pk(t) = 1 since from
(4.3) we find after the change of variables x1 = t1x that Sr(t, p

k) =
Sr(1, p

k).
For odd p, Λr,pk is given in terms of the Legendre symbol as

Λr,pk(t) =

(
t

p

)k

and is a character of (Z/pkZ)∗:

Λr,pk(tt′) = Λr,pk(t)Λr,pk(t′)

When p = 2, one has

Λr,2k(t) =

(
−2k

t

)
i−r(t̄2−1)/8

where t̄ is the smallest positive residue of t mod 4. In that case it is
not quite a character of the whole multiplicative group of Z/2kZ, but
instead satisfies

(4.4) Λr,2k(tt′) = (t, t′)2Λr,2k(t)Λr,2k(t′)

where (t, t′)2 is the Hilbert symbol. In particular, if t, t′ = 1 mod 4 then
the Hilbert symbol is trivial and so we get a character of the subgroup
{t = 1 mod 4} ⊂ (Z/2kZ)∗ 7 given simply by

Λr,2k(t) =

{
1, t = 1 mod 8

(−1)k, t = 5 mod 8

For p odd we will also need to know the normalized Gauss sum (4.3)
when t = −1 in which case one has

Sr(−1, pk) =

{
1, k even

ε(p)
(

r
p

)
, k odd

where

ε(p) =

{
1, p = 1 mod 4

i, p = 3 mod 4

7this is relevant for k ≥ 2.
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4.3. p odd. We describe how to define U (p) on SL(2,Z/pkZ) so that
it gives a representation - see Nobs [18] for details. This group is
generated by the matrices

(4.5)

(
1 b

1

)
,

(
t
t−1

)
,

(
1

−1

)
and so it suffices to specify U (p) on such matrices, provided we preserve
all relations between them. This is done by the formulas

(4.6) U (p)

(
1 b

1

)
ψ(x) = e(

rbx2

pk
)ψ(x)

(4.7) U (p)

(
t
t−1

)
ψ(x) = Λr,pk(t)ψ(tx)

(4.8) U (p)

(
1

−1

)
ψ(x) = Sr(−1, pk)

1√
pk

∑
y mod pk

ψ(y)e(
2rxy

pk
)

It is easy to check that these satisfy (4.1). To see a verification that
this prescription does indeed give a consistent definition (that is that all
relations between the generators (4.5) are satisfied), see e.g. [18]. Once
we have this then automatically we get U (p)(AB) = U (p)(A)U (p)(B).

Remark 4.1. It is in fact the case that any projective representation
of SL(2,Z/pkZ), p odd, can be modified to give a representation (and
more generally, SL(2,Z/mZ) if m 6= 0 mod 4)- this is due to Schur [22]
when k = 1. See [17] and [2] for the general case.

4.4. p = 2. Here we restrict to the subgroup Γ(4, 2k), k ≥ 2. The
literature in this case is harder to come by, so we include complete
proofs. We start by describing generators and relations for this group.
More generally, let p be any prime, and k ≥ 2. Let

Γ(p2, pk) := {g ∈ SL(2,Z/pkZ) : g = I mod p2}.
Lemma 7. Γ(p2, pk) has a presentation with generators u+(x), u−(y),
s(t), where x, y, t ∈ Z/pkZ, x, y ≡ 0 mod p2, t ≡ 1 mod p2, and rela-
tions

u+(x)u+(x′) = u+(x+ x′)(4.9)

u−(y)u−(y′) = u−(y + y′)(4.10)

s(t)s(t′) = s(tt′)(4.11)

s(t)u+(x)s(t)−1 = u+(t2x)(4.12)

s(t)u−(y)s(t)−1 = u−(t−2y)(4.13)

s(d)u+(a)u−(b) = u−(d−1b)u+(da), d := (1 + ab)−1(4.14)
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Proof. Let G be the abstract group with the above presentation. We
get a map Ψ from G into Γ(p2, pk) by taking

Ψ : u+(x) 7→
(

1 x
1

)
, u−(y) 7→

(
1
y 1

)
, s(t) 7→

(
t
t−1

)
One verifies that the relations hold in SL(2,Z/pkZ) so that Ψ is a
homomorphism. Next, note that we have a “Bruhat decomposition”
for Γ(p2, pk): Every element can be uniquely written in the form

γ =

(
t
t−1

)(
1 x

1

)(
1
y 1

)
which follows from the formula(

a b
c d

)
= γ =

(
d−1

d

)(
1 bd

1

)(
1
c
d

1

)
(note that since d = 1 mod p2 it is in particular invertible). This
implies that the map Ψ is surjective. To see that Ψ is an isomorphism,
it suffices to show that every element of the abstract groupG can also be
written in the form g = s(t)u+(x)u−(y), since then by the uniqueness
of the decomposition in Γ(p2, pk), Ψ is also one-to-one.

With the aid of the first five relations, every word W ∈ G can be
written as a product:

W = s(t1)u+(x1)u−(y1) · · · · · s(tn)u+(xn)u−(yn)

for some n ≥ 1. We prove by induction on n that we can write W =
s(t)u+(x)u−(y) for x, y = 0 mod p2, t = 1 mod p2. When n = 1 this
holds trivially, and for n > 1 we use the relation (4.13), (4.14) to write

u−(yn−1)s(tn)u+(xn) = s(tn)u−(t2nyn−1)u+(xn) = s(tn)s(t′)u+(x′)u−(y′)

and so

W = s(t1)u+(x1)u−(y1) . . . s(tn−1)u+(xn−1)s(tn)s(t′)u+(x′)u−(y′)u−(yn)

= s(t1)u+(x1)u−(y1) . . . s(t
′
n−1)u+(x′′n−1)u−(y′′n−1)

after a further application of the first five relations. The result now
follows by induction. �

We now specify the propagators U (2)(A) for the generators: For(
1 a

1

)
and

(
t
t−1

)
they are given by the same formulas (4.6), (4.7).

For the matrices(
1
b 1

)
=

(
1

−1

)−1(
1 −b

1

)(
1

−1

)
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we conjugate (4.6) by an analogue of the Fourier transform (4.8) and
define
(4.15)

U (2)

(
1
b 1

)
ψ(x) =

∑
y mod 2k

ψ(y)
1

2k

∑
z mod 2k

e(
r(−bz2 + 2z(y − x))

2k
)

To show that this defines a representation, one has to check that all
the relations of Lemma 7 are satisfied. The first five are fairly straight-
forward, bearing in mind that Λ is a character of the multiplicative
group of residues t = 1 mod 4 (see (4.4)). The last relation (4.14)
requires verifying an identity of Gauss sums: Unwinding the action of
the right and left hand sides in (4.14) we must show that

Λ(d)
∑

z mod 2k

∑
y mod 2k

ψ(y)e
( r

2k

(
2yz − bz2 − 2dxz + ad2x2

))
=

∑
z mod 2k

∑
y mod 2k

ψ(y)e
( r

2k

(
2yz − d−1bz2 − 2xz + ady2

))
Now, d ≡ 1 mod 16 implies that Λ(d) = 1 since then d is a square

modulo 2k, and if the identity is to hold for all ψ and all values of x
we obtain that for all x, y

(4.16)
∑

z mod 2k

e
( r

2k

(
−bz2 + 2z(y − dx) + ad2x2

))
=

∑
z mod 2k

e
( r

2k

(
−d−1bz2 + 2z(y − x) + ady2

))
.

We will verify this in Appendix A.
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5. Hecke operators

We now introduce a commutative group of unitary operators on
L2(Z/NZ) which commute with UN(A). For this, we have to bring
in the theory of quadratic fields (see [19] for a survey in connection to
cat maps).

5.1. Integral matrices and quadratic fields. Let A ∈ SL2(Z) be a
hyperbolic matrix: | trA| > 2. The eigenvalues α, α−1 of A generate a
field extension K = Q(α), which is a real quadratic field since tr(A)2 >
4. We denote by OK the ring of integers ofK. The eigenvalues α, α−1 of
A will be units in OK . Adjoining α to Z gives an order O = Z[α] ⊆ OK

in K. We claim that there is an O-ideal I ⊂ O so that the action of
α by multiplication on I is equivalent to the action of A on Z2, in the
sense that there is a basis of I with respect to which the matrix of α
is precisely A.

The construction is as follows [23]: Since α is an eigenvalue of A,
there is a vector v = (v1, v2) such that vA = αv and v ∈ O2. Let
I := Z[v1, v2] ⊂ O. Then I is in an O-ideal, and the matrix of α acting
on I by multiplication in the basis v1, v2 is precisely A.

Remark 5.1. It is easy to check that the above construction sets up
a bijection between GL2(Z)-conjugacy classes of elements in SL2(Z)
with eigenvalues α, α−1 and and ideal classes in the order O. (Recall
that two ideals I1, I2 are said to be in the same ideal class if there exist
nonzero a, b ∈ O so that aI1 = bI2.)

In the same way, the action of O by multiplication on I gives us an
embedding

ι : O ↪→ Mat2(Z)

so that γ = x + yα ∈ O corresponds to xI + yA. Moreover, the
determinant of xI + yA equals N (γ) = γγ̄, where N : K → Q is the
Galois norm. In particular, if γ ∈ O has norm one then γ corresponds
to an element in SL2(Z), and if in addition γ ≡ 1 mod 4O then γ
corresponds to an element in Γ(4).

5.2. Hecke operators. Given an integer M ≥ 1, the embedding ι :
O ↪→ Mat2(Z) induces a map ιM : O/MO → Mat2(Z/MZ) and the
norm N : K → Q gives a well-defined map

N : O/MO → Z/MZ.

We let CA(M) be the group of norm one elements in O/MO.

CA(M) = ker [N : (O/MO)∗ → (Z/MZ)∗]
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Similarly, replacing the order O by the maximal order OK we set

CK(M) = ker [N : (OK/MOK)∗ → (Z/MZ)∗]

to be the norm one elements in OK/MOK .
If M = 2N is even, we set Cθ

A(M) to be the elements of CA(2N) that
are congruent to one modulo 4O (respectively 2O) if N is even (resp.
odd). For M odd we set Cθ

A(M) = CA(M).
By construction, the image of Cθ

A(2N) in Mat2(Z/2NZ) lies in Γ(4, 2N).
Since α commutes with all elements in Cθ

A(2N) we see that A commutes,
modulo 2N , with the elements in ι(Cθ

A(2N)). Thus by Corollary 6 the
quantizations UN(ι(β)) of β ∈ Cθ

A(2N) commute with UN(A) and with
each other. We will call these “Hecke operators”.

We will need to know the number of Hecke operators:

Lemma 8. The number of elements of Cθ
A(2N) satisfies

N1−ε � |Cθ
A(2N)| � N1+ε, ∀ε > 0.

Proof. Since the reduction map O → O/4O has image of size 42,
Cθ

A(2N) has bounded index in CA(2N). The inclusion O ⊂ OK in-
duces a map O/MO → OK/MOK which has kernel and co-kernel
of size at most [OK : O], independent of M . Therefore the induced
map CA(M) → CK(M) on norm-one elements also has bounded kernel
and co-kernel. Thus it suffices to prove the lemma in the case of the
maximal order OK . By the Chinese remainder theorem, it suffices to
prove it in the case of prime powers, which is given in Appendix B by
Lemma 19. �

5.3. Hecke eigen-functions. The Hecke operators UN(ι(β)), β ∈
Cθ

A(2N), commute with each other and with UN(A). Therefore the
eigen-spaces of the unitary map UN(A) break up into joint eigen-spaces
of the Hecke operators. Such a joint eigen-function we call a Hecke
eigen-function. In other words, there exist an orthonormal basis {φi}
of L2(Z/NZ) and characters λi of Cθ

A(2N) such that φi are eigenfunc-
tions of UN(A) and

UN(ι(β))φi = λi(β)φi, ∀β ∈ Cθ
A(2N).

We call such a basis of L2(Z/NZ) a Hecke basis.
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6. Ergodicity of Hecke eigenfunctions

In this section and the following we show that if φ ∈ L2(Z/NZ) is a
normalized Hecke eigenfunction then the expectation values 〈OpN(f)φ, φ〉
converge to the classical phase-space average

∫
T2 f for all smooth ob-

servables (Theorem 1 of the Introduction). In fact, we show something
stronger:

Theorem 9. Let φi ∈ L2(Z/NZ), i = 1, . . . , N be any orthonormal
basis of Hecke eigenfunctions of UN(A). Then

N∑
i=1

∣∣∣∣〈OpN(f)φi, φi〉 −
∫

T2

f(x)dx

∣∣∣∣4 �f,ε N
−1+ε

6.1. Proof of Theorem 9. To prove this theorem, it suffices (see
below) to prove it for the basic observables f(x) = e(nx), 0 6= n ∈ Z2,
that is to show

Theorem 10. Let 0 6= n ∈ Z2, and let φi ∈ L2(Z/NZ), i = 1, . . . , N
be any orthonormal basis of Hecke eigenfunctions of UN(A). Then

N∑
i=1

|〈TN(n)φi, φi〉|4 �ε |n|16N−1+ε, N →∞

The proof of Theorem 9 from Theorem 10 is easy using the rapid de-

cay of the Fourier coefficients of f . Indeed, write f(x) =
∑

n∈Z2 f̂(n)e(nx),

so that OpN(f) =
∑

n∈Z2 f̂(n)TN(n). Therefore

N∑
i=1

∣∣∣∣〈OpN(f)φN
i , φ

N
i 〉 −

∫
T2

f(x)dx

∣∣∣∣4 =
N∑

i=1

∣∣∣∣∣∣
∑

0 6=n∈Z2

f̂(n)〈TN(n)φi, φi〉

∣∣∣∣∣∣
4

≤
N∑

i=1

∑
n1,...,n4 6=0

4∏
k=1

|f̂(nk)〈TN(nk)φi, φi〉|

For notational convenience we write

ti(n) := |〈TN(n)φi, φi〉|
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Now interchange the order of summation, and apply Cauchy-Schwartz
twice: For fixed n1, n2, n3, n4

N∑
i=1

ti(n1)ti(n2)ti(n3)ti(n4) ≤(
N∑

i=1

(ti(n1)ti(n2))
2

)1/2( N∑
i=1

(ti(n3)ti(n4))
2

)1/2

≤
4∏

k=1

(
N∑

i=1

ti(nk)
4

)1/4

Now use Theorem 10: For nk 6= 0,(
N∑

i=1

ti(nk)
4

)1/4

� |nk|4N−1/4+ε

and so we get

N∑
i=1

ti(n1)ti(n2)ti(n3)ti(n4) � N−1+ε′
4∏

k=1

|nk|4

Now sum over all possible nk 6= 0 to find

N∑
i=1

∣∣∣∣〈OpN(f)φi, φi〉 −
∫

T2

f(x)dx

∣∣∣∣4 � N−1+ε

(∑
n6=0

f̂(n)|n|4
)4

which proves Theorem 9. �

6.2. Reduction to a counting problem. We first reduce Theo-
rem 10 to a counting problem.

Proposition 11. Fix 0 6= n = ι(ν) ∈ Z2, ν ∈ I. Then for any Hecke
basis of eigenfunctions φi,

N∑
i=1

|〈TN(n)φi, φi〉|4 ≤

N

|Cθ
A(2N)|4

#{βi ∈ Cθ
A(2N) : ν(β1 − β2 + β3 − β4) = 0 mod NI}

In order to prove Proposition 11, we define for n = ι(ν), 0 6= ν ∈ I

D = D(n) =
1

|Cθ
A(2N)|

∑
β∈Cθ

A(2N)

UN(ι(β))−1TN(n)UN(ι(β)).
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If (tij) is the matrix coefficients of TN(n) expressed in the eigenvector
basis {φk} so that tij =< TN(n)φi, φj >, then we see that

Dij =
1

|Cθ
A(2N)|

∑
β∈Cθ

A(2n)

λi(β)λj(β)tij

Since the sum of a nontrivial character over all elements in a group
vanishes we have

(6.1) Dij =

{
tij if λi = λj,

0 otherwise.

Lemma 12. With D defined as above we have∑
λi=λj

|tij|4 ≤ tr((D∗D)2).

Proof. Let D = (dij) = (vi) where the vi’s are the column vectors of
D. Examining the (k, k)-entry of (D∗D)2 we get

((D∗D)2)kk =
∑

i

< vi, vk >< vk, vi >=
∑

i

| < vi, vk > |2,

and hence

tr((D∗D)2) ≥
∑

k

| < vk, vk > |2 ≥
∑
i,j

|dij|4.

The result now follows from equation (6.1). �

Lemma 13. We have

tr((D∗D)2) ≤ N

|Cθ
A(2N)|4

|{βi ∈ Cθ
A(2N) : ν(β1−β2+β3−β4) ≡ 0 mod NI}|

Proof. Recall that by (3.1), since n · ι(β) = ι(νβ) for β ∈ O, n = ι(ν),

UN(ι(β))−1TN(n)UN(ι(β)) = TN(ι(νβ))

Also note that TN(w)∗ = TN(−w) for all w by (2.5). Substituting
the definition of D and expanding we see that (D∗D)2 is given by
1/|Cθ

A(2N)|4 times a sum, ranging over all β1, β2, β3, β4 ∈ Cθ
A(2N), of

terms

TN(ι(νβ1))TN(−ι(νβ2))TN(ι(νβ3))TN(−ι(νβ4))

= γ(β1, β2, β3, β4)TN(ι(ν(β1 − β2 + β3 − β4)))

where γ(β1, β2, β3, β4) has absolute value one (see (2.6)). Now take the
trace; by Lemma 4, the absolute value of the trace of TN(n) equals N
if n ≡ (0, 0) mod N , zero otherwise. The result now follows by taking
absolute values and summing over all β1, β2, β3, β4 ∈ Cθ

A(2N). �
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It remains to estimate the number of solutions of

(6.2) ν(β1 − β2 + β3 − β4) ≡ 0 mod NI, βi ∈ Cθ
A(2N).

We will show

Proposition 14. The number of solutions to equation (6.2) is bounded
by O(|N (ν)|8N2+ε).

6.3. Proof of Theorem 10: Conclusion. By Proposition 11, we
need a suitable upper bound for the number of solutions of equation
(6.2), and a lower bound for the number of elements of Cθ

A(2N). By
Proposition 14, the number of solutions is at most |N (ν)|8N2+ε. Note
that |N (ν)| � |n|2. From Lemma 8 we obtain that |Cθ

A(2N)| � N1−ε

and the result follows.
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7. Counting solutions

In this section, we prove Proposition 14.

7.1. A reduction. Since NI ⊆ NO ⊆ NOK , the number of solutions
to (6.2) is bounded by the number of solutions to

ν(β1 − β2 + β3 − β4) ∈ NOK , βi ∈ Cθ
A(2N).

Moreover, at the cost of increasing slightly the number of solutions, we
may omit the parity condition on βi and so replace Cθ

A(2N) by CA(2N).
The inclusion O ⊂ OK induces a map O/MO → OK/MOK which

has kernel and co-kernel of size at most [OK : O], independent of M .
Therefore the induced map

CA(M) = ker[(O/MO)∗ → (Z/MZ)∗]

→ CK(M) = ker[(OK/MOK)∗ → (Z/MZ)∗]

on norm-one elements also has bounded kernel and co-kernel. Thus, up
to a bounded factor (depending on A but not on N or ν), the number
of solutions to (6.2) is bounded by the number of solutions of

(7.1) ν(β1 − β2 + β3 − β4) = 0 mod NOK , βi ∈ CK(2N)

At the cost of increasing the number of solutions, we multiply the
equation (7.1) by the Galois conjugate ν̄ to get an equation

N (ν)(β1 − β2 + β3 − β4) = 0 mod NOK , βi ∈ CK(2N)

Setting

N ′ =
N

gcd(N,N (ν))

this equation is equivalent to

(7.2) β1 − β2 + β3 − β4 = 0 mod N ′OK , βi ∈ CK(2N)

Next, note that the reduction map OK/rsOK → OK/rOK has ker-
nel rOK/rsOK ' OK/sOK of size s2, and so the induced map on
norm-one elements CK(rs) → CK(r) has kernel of order at most s2

(this is crude, but sufficient for our purposes). Thus the reduction
map CK(2N) → CK(N ′) has kernel of size at most 4 gcd(N,N (ν))2 ≤
4|N (ν)|2. Therefore the number of solutions of (7.2) is bounded by
(4|N (ν)|2)4 times the number of solutions of the equation

(7.3) β1 − β2 + β3 − β4 = 0 mod N ′OK , βi ∈ CK(N ′)

Equation (7.3) is invariant under Galois conjugation and we obtain
a second equation (note that β̄ = β−1 since N (β) = 1 mod N ′)

(7.4) β−1
1 − β−1

2 + β−1
3 − β−1

4 ≡ 0 mod N ′OK .
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7.2. A transformation. We thus have a system of equations (7.3),
(7.4), which we transform using the following:

Lemma 15. If x, y, z, w are invertible then the system of equations{
x+ y = z + w

x−1 + y−1 = z−1 + w−1

is equivalent to the system{
(z − x)(z − y)(x+ y) = 0

w = x+ y − z

Proof. From the second equation we get

x+ y

xy
=
z + w

zw
,

or

(x+ y)zw = (z + w)xy

The first equation gives that w = x+ y− z, inserting it in (x+ y)zw =
(z + w)xy we get

(x+ y)z(x+ y − z) = (x+ y)xy

or

0 = (x+ y)(zx+ zy − z2 − xy) = −(z − x)(z − y)(x+ y).

�

Thus by lemma 15 the system of equations (7.3), (7.4) is equivalent
to the system:

(β3 − β1)(β3 − β2)(β1 + β2) ≡ 0 mod N ′OK ,(7.5)

β4 ≡ β1 − β2 + β3 mod N ′OK .(7.6)

with βi ∈ CK(N ′).
Since β4 is determined by β1, β2, β3, we may ignore the second equa-

tion (7.6) (at the cost of increasing the number of solutions, since being
in CK(N ′) is a non-empty condition). Multiplying equation (7.5) by β−3

3

and letting β′i = βi/β3 we obtain

(1− β′1)(1− β′2)(β
′
1 + β′2) ≡ 0 mod N ′OK(7.7)

Since β3 is arbitrary, the number of solutions of (7.5) is bounded by
|CK(N ′)| times the number of solutions in β′1, β

′
2 ∈ CK(N ′) to (7.7).
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7.3. Prime powers. By the Chinese remainder theorem the number
of solutions to (7.7) is multiplicative, and we may concentrate on the
prime power case. Thus we need to count the solutions to the equation

(7.8) (1− β′1)(1− β′2)(β
′
1 + β′2) ≡ 0 mod pkOK

with β′i ∈ OK/p
kOK , N (β′i) = 1 mod pk.

We first recall some properties of primes in quadratic extensions: Let
P |p be a prime in OK lying above p, and let e denote the ramification
index, i.e. the largest integer e such that P e|pOK . Since K is quadratic
e ∈ {1, 2}, and e = 1 for all but finitely many primes p. If e = 2 then p
is said to be ramified. If e = 1 then p is called unramified, and one of
two things can happen: either pOK = P is still a prime ideal, in which
case p is said to be inert, or pOK = PP , in which case p is said to split.

Now, fix a prime p with ramification index e, be it one or two. The
norm map N : OK → Z gives a well-defined homomorphism(

OK/P
ek
)× → (

Z/pk
)×
.

We let (
OK/P

ek
)1

be the kernel of this map, i.e., the group of norm one elements. For
l ≤ ek we let (

(1 + P l)/(1 + P ek)
)1

be the norm one elements in the subgroup (1+P l)/(1+P ek), these are
precisely the norm one elements that reduce to one modulo P l.

Lemma 16. There is a constant c > 1 so that the number of solutions
of equation (7.8) is at most ckpk.

Proof. Equation (7.8) is invariant under Galois conjugation, therefore
its solutions in OK/p

kOK correspond bijectively to solutions β′i ∈
OK/P

ek, N (β′i) = 1 mod pk (this is of course only an issue in the

split case where OK/p
kOK ' OK/P

k × OK/P
k
). Thus we need to

count solutions of

(7.9) (1− β′1)(1− β′2)(β
′
1 + β′2) ≡ 0 mod P ek

with β′i ∈ OK/P
ek, N (β′i) = 1 mod pk.

We will first assume that p is odd. Since β′1 ≡ β′2 ≡ 1 mod P implies
that β′1 + β′2 ≡ 2 6≡ 0 mod P we see that at most two of the factors in
equation (7.9) can be congruent to zero modulo P . Moreover, we may
assume that the third factor is nonzero by multiplying by a suitable
β and permuting the variables. (Of course we must then compensate
by multiplying the number of solutions by

(
3
2

)
). Now, if the product is

zero modulo P ek, then there is some 0 ≤ n ≤ ek such that one factor is
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zero modulo P n, and the other zero modulo P ek−n. Thus the number
of solutions to equation (7.9) equals(

3

2

) ek−1∑
n=1

∣∣∣((1 + P n)/(1 + P ek)
)1∣∣∣× ∣∣∣((1 + P ek−n)/(1 + P ek)

)1∣∣∣+
2
∣∣∣(OK/P

ek
)1∣∣∣

Using Lemma 20 we obtain∣∣∣((1 + P n)/(1 + P ek)
)1∣∣∣× ∣∣∣((1 + P ek−n)/(1 + P ek)

)1∣∣∣ ≤ pk+e−1

and by Lemma 19 ∣∣∣(OK/P
ek
)1∣∣∣ ≤ 2(p+ 1)pk−1.

Hence for p odd, the total number of solutions to (7.9) is bounded by

4(p+ 1)pk−1 + 3(ek − 1)pe−1pk � kpk

(since e = 1 for all but finitely many primes).
If p = 2 it is no longer true that only two factors can be zero mod-

ulo P . However, β1 ≡ β2 ≡ 1 mod P e+1 implies that β1 + β2 ≡ 2
mod P e+1. Since 2OK = P e, we see that if two factors are zero modulo
P e+1, then the third factor can be congruent to zero at most modulo
P e. We may thus bound the number of solutions by counting the num-
ber of ways the product of two factors can be equal to zero modulo
P ek−e. This we can do as we did for odd primes, and we obtain the
same bound as before, except that we lose an additional factor of at
most ∣∣∣((1 + P ek−e)/(1 + P ek)

)1∣∣∣4 � 2O(e) = O(1).

This proves the Lemma. �

7.4. Proof of Proposition 14. By multiplying over all primes, we
see from Lemma 16 that the number of solutions of equation (7.7) is
O((N ′)1+ε). Therefore we see that the number of solutions of (7.5)
is O((N ′)2+ε) since |CK(N ′)| � (N ′)1+ε by Lemma 19. This gives a
bound for the solutions of (7.3) and multiplying by |N (ν)|8 gives a
bound for the number of solutions of (7.2). In turn, by the reasoning
in section 7.1 this gives a bound of O(|N (ν)|8N2+ε) on the solutions of
(6.2).
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Appendix A. An identity of Gauss sums

For section 4 we need to prove the identity (4.16). To prove it we
will need a lemma about Gauss sums. Given an integer x, we define its
“dyadic valuation”, v(x), by x = 2v(x)x0, where x0 is an odd integer.
Let

G(b, c) =
∑

z mod 2k

e
( r

2k
(−bz2 + 2cz)

)
.

Lemma 17. If v(c) < v(b) < k then

G(b, c) =

{
2k if v(b) = k − 1 and v(c) = k − 2,

0 otherwise.

Proof. We may write

G(b, c) =
∑

z mod 2k

e

(
2cr

2k
(−βz2 + z)

)
where β is an integer satisfying 2cβ ≡ b mod 2k. Let n = k−1− v(c);
it is the smallest integer n such that e

(
2cr
2k x
)

= 1 for all x ≡ 0 mod 2n.

Assume first that n > 1. Let ε = ε02
n−1 be such that e

(
2cr
2k ε
)
6= 1.

Making the change of variables z → z + ε we see that

G(b, c) =
∑

z mod 2k

e

(
2cr

2k
(−β(z2 + 2εz + ε2) + z + ε)

)
= G(b, c)e

(
2cr

2k
ε

)
since 2εz+ ε2 ≡ 0 mod 2n. But e

(
2cr
2k ε
)
6= 1 and therefore G(b, c) = 0.

If n ≤ 1 then, as n = k−1−v(c) and v(c) < v(b) < k, we must have
n = 1, v(c) = k − 2 and v(b) = k − 1. Hence β ≡ 1 mod 2. Moreover,
if n = 1 we must have e

(
2crx
2k

)
= e

(
x
2

)
. Thus

G(b, c) =
∑

z mod 2k

e

(
z2 + z

2

)
= 2k

since z2 + z ≡ 0 mod 2 for all z. �

Proposition 18. The following equality holds for all x, y∑
z mod 2k

e
( r

2k
(−bz2 + 2z(y − dx) + ad2x2)

)
=

∑
z mod 2k

e
( r

2k
(−d−1bz2 + 2z(y − x) + ady2)

)
.



HECKE THEORY AND EQUIDISTRIBUTION FOR QUANTIZED CAT MAPS31

Proof. The case v(b) ≥ k, i.e. b ≡ 0 mod 2k, implies that d ≡ 1
mod 2k and equality holds trivially. We may thus assume that v(b) < k.

We begin by noting that since y−dx = d(d−1y−x) = d(y−x+aby)
we see that v(y − x) < v(b) implies that v(y − dx) < v(b); putting
x′ = d−1x we see that the converse holds, and hence v(y − x) < v(b) if
and only if v(y − dx) < v(b).

First case, v(y−x) < v(b): Putting c = y−x, c = y−dx respectively
and applying lemma 17 we see that both sides are zero except when
v(c) = k − 2 and v(b) = k − 1. For the exceptional case we note that
v(b) = k − 1 implies that d−1 = 1 + ab ≡ 1 mod 2k, and the same
holds for d. Moreover, v(c) = k − 2 means that x ≡ y mod 2k−2 and
since 4|a we see that

LHS = 2ke
( r

2k
ad2x2

)
= 2ke

( r
2k
ady2

)
= RHS.

Second case, v(y − x) ≥ v(b): As remarked above this means
that v(y − dx) ≥ v(b). We may thus complete the squares inside the
exponentials, and we get

LHS =
∑

z mod 2k

e

(
r

2k

(
−b(z − y − dx

b
)2 +

(y − dx)2

b
+ ad2x2

))
and

RHS =
∑

z mod 2k

e

(
r

2k

(
−d−1b(z − d(y − x)

b
)2 +

d(y − x)2

b
+ ady2

))
.

After changing variables and taking constants outside we get

LHS = e

(
r

2k

(
(y − dx)2

b
+ ad2x2

)) ∑
z mod 2k

e
( r

2k

(
−bz2

))
and

RHS = e

(
r

2k

(
d(y − x)2

b
+ ady2

)) ∑
z mod 2k

e
( r

2k

(
−d−1bz2

))
.

Now, d ≡ 1 mod 16 means that d is a square modulo 2k. Changing
variables by z →

√
dz in the second sum we see that the sums are

equal, and we are left to prove that

e

(
r

2k

(
(y − dx)2

b
+ ad2x2

))
= e

(
r

2k

(
d(y − x)2

b
+ ady2

))
.
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This will follow from the equality

(y − dx)2

b
+ ad2x2 =

d(y − x)2

b
+ ady2.

Collecting terms it is equivalent to

0 = ad(y2 − dx2) + b−1(dy2 + dx2 − 2dxy − y2 − d2x2 + 2dxy)

= ad(y2 − dx2) + b−1(y2(d− 1) + x2(d− d2))

= ad(y2 − dx2) + (d− 1)b−1(y2 − dx2),

which follows from the identity

ad+ (d− 1)/b = d(a+
1− 1/d

b
)

= d(a+
1− (1 + ab)

b
)

= d(a− ab

b
) = 0.

�
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Appendix B. Counting norm one elements

Let e be the ramification index of a prime p in OK , i.e. the largest
integer such that P e|pOK , where P ⊂ OK is any prime ideal dividing
pOK . Since K is quadratic e ∈ {1, 2}. If e = 2 then p is said to be
ramified. If e = 1 then p is called unramified, and one of two things
can happen: either pOK = P , in which case p is said to be inert, or
pOK = PP , in which case p is said to split.

Now, fix a prime p with ramification index e, be it one or two. The
norm map

N : OK → Z

descends modulo pk, and gives a homomorphism(
OK/P

ek
)× → (

Z/pk
)×
.

We let (
OK/P

ek
)1

be the kernel of this map, i.e., the group of norm one elements. For
l ≤ ek we let (

(1 + P l)/(1 + P ek)
)1

be the norm one elements in the subgroup (1+P l)/(1+P ek), these are
precisely the norm one elements that reduce to one modulo P l.

Lemma 19. We have∣∣∣(OK/P
ek
)1∣∣∣ =


(p− 1)pk−1 if p is split,

(p+ 1)pk−1 if p is inert,

2pk if p is ramified.

Proof. Recall first from class field theory [4] that the index (in Z×
p ) of

the image of the units in the p-adic completion of OK under the norm
map equals the ramification index e. We will split the proof in three
parts:

The split case: If p splits in K then pOK = P1P2 where P1, P2 are
prime ideals in OK , and where P2 = P1. The map x → x gives an
isomorphism between OK/P

k
1 and OK/P

k
2 . This, together with the

Chinese Remainder Theorem gives

OK/p
kOK ' OK/P

k
1 ×OK/P

k
2 ' OK/P

k
1 ×OK/P

k
1

where x ∈ OK/p
kOK is mapped to (x, x) ∈ OK/P

k
1 × OK/P

k
1 . Fur-

thermore, OK/P
k
1 ' Z/pkZ, and therefore

(B.1) OK/p
kOK ' Z/pkZ× Z/pkZ.

Under this isomorphism, Galois conjugation maps (x, y) ∈ Z/pkZ ×
Z/pkZ to (y, x). Thus the natural embedding of Z/pkZ in OK/p

kOK '
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Z/pkZ×Z/pkZ consists of elements of the form (x, x), and the image of
(x, y) under the norm map is (xy, xy). Hence the norm one elements in
OK/p

kOK correspond to elements of the form (x, y) ∈ Z/pkZ×Z/pkZ
such that xy = 1, and the number of such elements is (p− 1)pk−1.

The inert case: Here e = 1 and the local norm map is onto Z×
p ;

reducing modulo p we get an exact sequence

1 → (OK/P
k)1 → (OK/P

k)× → (Z/pk)× → 1.

Hence

|(OK/P
k)1| = |(OK/P

k)×|
|(Z/pk)×|

= (p+ 1)pk−1.

The ramified case: Here the image of the norm map in Z×
p is of index

2, and thus the image of the norm in (Z/pk)× has cardinality (p−1)pk−1

2
.

Consequently,

|(OK/P
ek)1| = 2

|(OK/P
ek)×|

(p− 1)pk−1
.

Now,

|(OK/P
ek)×| = |(OK/P )×| × |(1 + P )/(1 + P ek)| = (p− 1)pek−1

and since e = 2 we get

|(OK/P
ek)1| = 2

(p− 1)p2k−1

(p− 1)pk−1
= 2pk.

�

We will also need to know the number of norm one elements that
reduce to one modulo P l.

Lemma 20. We have∣∣∣((1 + P l)/(1 + P ek)
)1∣∣∣ =

{
pk−l if p is split or inert,

Kp × pk+dl/2e−l if p is ramified.

where Kp = 1 if p is odd, and K2 = 1 or 2.

Proof. The split case: From the previous discussion of the isomorphism
in equation B.1 we see that norm one elements congruent to one modulo
P l

1 correspond to elements (x, x−1) ∈ Z/pkZ× Z/pkZ such that x ≡ 1
mod pl. The number of such elements is |(1 + pl)/(1 + pk)| = pk−l.

The inert case: If p is odd then x → x2 is an automorphism of
(1 + P l)/(1 + P k) since the order of the group is odd. Thus the norm
is locally onto in the sense that the map

N : (1 + P l)/(1 + P k) → (1 + pl)/(1 + pk)

is onto.
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If p is even (and inert) then squaring is not an automorphism as
(1 + x)2 = 1 + 2x + x2. However, 1 + pl ⊂ 1 + P l and squaring maps
(1 + pl)/(1 + pk) onto (1 + pl+1)/(1 + pk). Thus

(1 + pl+1)/(1 + pk) ⊂ N
(
(1 + P l)/(1 + P k)

)
,

which shows that the image of the norms must be either (1+pl+1)/(1+
pk) or (1 + pl)/(1 + pk). (There are no subgroups in between!) We will
show that the former holds; since 2 is unramified the discriminant of

K is odd and OK = Z[1+
√

dk

2
]. Hence tr(OK) = Z, and there exists

x ∈ OK with odd trace. Now,

N (1 + pkx) = 1 + pk tr(x) + p2kN (x),

shows that the image must be (1 + pl)/(1 + pk).
Thus, whether p is even or odd, the norm map is locally onto and

hence ∣∣∣((1 + P l)/(1 + P k)
)1∣∣∣ =

∣∣∣((1 + P l)/(1 + P k)
)×∣∣∣∣∣((1 + pl)/(1 + pk))×
∣∣ = pk−l.

The ramified case: First we note that

(B.2) N
(
(1 + P l)/(1 + P ek)

)
⊂ (1 + pdl/2e)/(1 + pk).

Arguing as before that squares are in the image of the norm we see
that equality holds for odd p, and we obtain∣∣∣((1 + P l)/(1 + P ek)

)1∣∣∣ =

∣∣∣((1 + P l)/(1 + P ek)
)×∣∣∣∣∣∣((1 + pdl/2e)/(1 + pk))
×
∣∣∣ =

|OK/P |2k−l

pk−dl/2e =
p2k−l

pk−dl/2e = pk+dl/2e−l

For p even the squaring argument shows that

(1 + pdl/2e+1)/(1 + pk) ⊂ N
(
(1 + P l)/(1 + P ek)

)
,

which gives a lower bound on the image. This gives the same result as
for the odd case, except for a factor of 2. �
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