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We consider the distribution of free path lengths, or the distance between
consecutive bounces of random particles, in an n-dimensional rectangular box.
If each particle travels a distance R, then, as R — oo the free path lengths
coincides with the distribution of the length of the intersection of a random
line with the box (for a natural ensemble of random lines) and we give an
explicit formula (piecewise real analytic) for the probability density function
in dimension two and three.

In dimension two we also consider a closely related model where each
particle is allowed to bounce N times, as N — oo, and give an explicit (again
piecewise real analytic) formula for its probability density function.

Further, in both models we can recover the side lengths of the box from
the location of the discontinuities of the probability density functions.

1. Introduction

We consider billiard dynamics on a rectangular domain, i.e., point shaped “balls” moving
with linear motion with specular reflections at the boundary, and similarly for rectangular
box shaped domains in three dimensions. We wish to determine the distribution of
free path lengths of ensembles of trajectories defined by selecting a starting point and
direction at random.

The question seems quite natural and interesting on its own, but we mention that it
originated from the study of electromagnetic fields in “reverberation chambers” under
the assumption of highly directional antennas 9. Briefly, the connection is as follows
(we refer to the forthcoming paper [5] for more details): given an ideal highly directional
antenna and a highly transient signal, then the wave pulse dynamics is essentially the
same as a point shaped billiard ball traveling inside a chamber, with specular reflection
at the boundary. Signal loss is dominated by (linear) “spreading” of the electromagnetic
field and by absorption occurring at each interaction (“bounce”) with the walls. The first
simple model we use in this paper neglects absorption effects, and models signal loss from
spreading by simply terminating the motion of the ball after it has travelled a certain



large distance. The second model only takes into account signal loss from absorption, and
completely neglects spreading; here the motion is terminated after the ball has bounced
a certain number of times.

We remark that the distribution of free path lengths is very well studied in the context
of the Lorentz gas — here a point particle interacts with hard spherical obstacles, either
placed randomly, or regularly on Euclidean lattices; recently quasicrystal configurations
have also been studied (cf. [24}7,/10,111|13}|15]/16].)

Let R > 0 be large and let a rectangular n-dimensional box K C R™ be given, where
n > 2. We send off a large number M > 0 of particles, each with a random initial position
p e K chosen with respect to a given probability measure u on K, and each with a
uniformly random initial direction v € S = {z € R": ||z|| = 1}, i =1,..., M, for
a total distance R each. Each particle travels along straight lines, changing direction
precisely when it hits the boundary of the box, where it reflects specularly. We record the
distance travelled between each pair of consecutive bounces for each particle. (Note in
particular that we obtain more bounce lengths from some particles than from others.) Let
Xwr,r be the uniformly distributed random variable on this finite set of bounce lengths
of all the particles. More precisely, a random sample of X/ r is obtained as follows: first
take a random i.i.d. sample of points (with respect to the measure p) pM, . pM e K,
and a random sample of directions v o) g snl (with respect to the uniform
measure). Each pair (p(i),v(i)) then defines a trajectory T° of length R, and each such
trajectory gives rise to a finite multiset B* of lengths between consecutive bounces.
Finally, with B = U, B’ denoting the (multiset) union of bounce length multisets
Bl ..., BM we select an element of B with the uniform distribution. (That is, with 15
denoting the integer valued set indicator function for B, and B’ = {z : 1p(x) > 1} we
select the element b € B” with probability 15(b)/ > ,cp 1B(2).)

We are interested in the distribution of X7 g for large M and R, and this turns out
to be closely related to a model arising from integral geometry. Namely, let d¢ denote
the unique (up to a constant) translation- and rotation-invariant measure on the set of
directed lines ¢ in R™, and consider the restriction of this measure to the set of directed
lines ¢ intersecting K, normalized such that it becomes a probability measure. Denote
by X the random variable X := length(¢ N K') where ¢ is chosen at random using this
measure.

Theorem 1. For any dimension n > 2, and for any distribution u on the starting points,
the random variable Xy g converges in distribution to the random variable X, as we take
R — oo followed by taking M — oo, or vice versa.

The mean free path length has a quite simple geometric interpretation. We have
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where Area(K) is the (n — 1)-dimensional surface area of the box K, Vol(K) is the
volume of the box K, I is the gamma function, and where [S"~!| = 27"/2/T'(n/2) is the
(n — 1)-dimensional surface area of the sphere S"~! C R™. The formula in has been



proven in a more general setting earlier (see e.g. formula (2.4) in [6]); for further details,
see Section For the convenience of the reader we give a short proof of formula in
our setting in Section

Throughout the paper, we will write pdf ; and cdfz for the probability density function
and the cumulative distribution function of Z, respectively, for random variables Z. We
next give explicit formulas for the probability density function of X in dimensions two
and three.

Theorem 3. For a box of dimension n = 2 with side-lengths a < b, the probability
density function of X is given by
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for 0 <t < +a?+b2.

Remark 4. We note that the probability density function in Theorem [3|is analytic on
all open subintervals of (0,v/a? + b?) not containing a or b. Moreover, it is constant on
the interval (0, min(a, b)) and has singularities of type (t — a)~'/2 and (¢ — b)~'/? just to
the right of a and b, respectively. See Figure [1| for more details. For an explanation of
these singularities, see Remark [26]
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Figure 1: Simulation (blue histogram) vs explicit probability density function (red line)
given by Theorem 3| for (a,b) = (1,2). (Simulation used 10° particles, each
starting at the origin with a uniformly random direction, going for a total
distance 1000 each.) The plot is cutoff at y = 1.3 since pdf x(¢) tends to infinity
ast— 1" and t — 2.



Theorem 5. For a box of dimension n = 3 with side-lengths a, b, ¢, the probability density
function of X is given by
F(a,b,c,t) + F(b,c,a,t) + F(c,a,b,t)

df x(t) =
pdix(?) 3mt3(ab + ac + be)

where F is the piecewise-defined function given by
F(a,b,c,t) =t*(8a — 3t)

for 0 <t < a, and by

F(a,b,c,t) = <6t4 —a' + 67m2bc) —4(b+ ¢)y/|t2 — a2|(a® + 2t7)
fora <t <+a?+b% and by
F(a,b,c,t) = 6ma’be + b* — 3t — 6a2b>+

V182 = a2 = 02de(a® + 12 + 262) +
T2 2
+4ay/|t2 — b2|(b* + 2t%) — 12a2bc - arctan(W) +

2 a2 — b2
—dey/|t2 — a?|(a® 4 2t7) — 12ab%c - arctan(’j’)

for va? + b2 <t <+va?+ b+ 2.
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Figure 2: Simulation (blue histogram) vs explicit probability density function (red line)
given by Theorem [5| for (a, b, c) = (3,4,6). (Simulation used 10° particles, each
starting at the origin with a uniformly random direction, going for a total
distance 1000 each.) The fact that pdfy () is not smooth at t = 5 is barely
noticeable.



Remark 6. We note that the probability density function in Theorem [5|is analytic on
all open subintervals of (0,v/a? + b? + ¢?) not containing any of the points

a,b,c, Va2 + b2, Va2 + 2, Vb2 + 2.

Moreover, it is linear on the interval (0, min(a, b, ¢)) and has positive jump discontinu-
ities at the points a,b,c. At the points {va? + b2, Va2 + c2,vb? + 2} \ {a,b, c}, it is
continuous and differentiable.

Note that the probability distribution Xy r gives a larger “weight” to some particles
than others, since some particles get more bounces than others for the same distance R.
One could also consider a similar problem where we send off each particle for a certain
number N > 0 of bounces, and then consider the limit as M — oo followed by taking
the limit N — oo, where M is the number of particles. This would give each particle
the same “weight”. Denote the finite version of this distribution by Yj; x and its limit
distribution as M — oo and then N — oo by Y. With regard to the previous discussion
about signal loss, we call the limit distribution X of X s g the spreading model and we
call the limit distribution of Y3; x the absorption model. Determining the probability
density function of the absorption model appears to be the more difficult problem, and
we give a formula only in dimension two:

Theorem 7. For a box of dimension n = 2 with side-lengths a < b, the random variable
Yy N converges in distribution to the random variable Y, as we take M — oo followed
by taking N — oo, where the probability density function pdfy-(t) is given by
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Figure 3: Probability density function for spreading model X (red line) from Theorem
vs absorption model (black dashed line) from Theorem [7} for (a,b) = (1,2).

See Figure [3] for a comparison between the probability density functions for the two
different models in dimension 2.

Remark 8. It is not a priori obvious that the two limit distributions should differ, and
it is natural to ask how much, if at all, they differ. We start by remarking that the
expression for pdfy (¢) does not simplify into the expression for pdfy(¢); indeed, for
(a,b) = (1,2) we have pdf y(t) = 1/3 but pdfy (t) ~ 0.32553 on the interval (0, 1). For
very skew boxes, with ¢ = 1 and b — oo, it is straightforward to show that

pdfy(b/ 2)

pdiy(b/2)

as b — oo.

1.1. Discussion

Given a closed convex subset C' C R™ with nonempty interior it is possible to define a
natural probability measure on the set of lines in R™ that have nonempty intersection
with C. The expected length of the intersection of a random line is then, up to a constant
that only depends on n, given by Vol(C')/ Area(C); this is known as Santalo’s formula in
the integral geometry and geometric probability literature (cf. [14, Ch. 3]).

A billiard flow on a manifold M with boundary 9M gives rise to a billiard map (roughly
speaking, the phase space (2 is then the collection of inward facing unit vectors v at each
point = € IM). Given (z,v) € Q we define the associated free path as the distance the
billiard particle, starting at x in the direction v, covers before colliding with dM again.
As the billiard map carries a natural probability measure v we can view the free path as
a random variable, and the mean free path is then just its expected value. Remarkably,



the mean free path (again up to a constant that only depends on the dimension) is then
given by Vol(M)/ Vol(OM) — even for non-convex billiards. This was deduced in the
seventies at the Moscow seminar on dynamical systems directed by Sinai and Alekseev
but was never published and hence rederived by a number of researchers. For further
details and an interesting historical survey, see Chernov’s paper [6, Sec. 2].

In spirit our methods are closely related to the ones used by Barra-Gaspard [1] in their
study of the level spacing distribution for quantum graphs, and this turns out to be given
by the distribution of return times to a hypersurface of section of a linear flow on a torus.
In particular, for graphs with a finite number of disconnected bonds of incommensurable
lengths, the hypersurface of section is the “walls” of the torus, and the level spacings of
the quantum graph is exactly the same same as the free path length distribution in our
setting when all particles have the same starting velocity. (In particular, compare the
numerator in for v fixed with |1, Equation (49)].)

In [12], Marklof and Strombergsson used the results by Barra-Gaspard to determine the
gap distribution of the sequence of fractional parts of {log; n},cz+. The gap distribution
depends on whether b is trancendental, rational or algebraic; quite remarkably the density
function P(s) for these gaps share a number of qualitative features with the density
function pdf y(s) for free paths in our setting. Namely, the density functions both have
compact support and are smooth apart from a finite number of jump discontinuities.
Further, in some cases the density function is constant for s small; compare Figure
(here d = 2) with [12, Figure 4] (here b = v/10). However, there are some important
differences: for P(s), left and right limits exist at the jump discontinuities, whereas for
d = 2, the right limit of pdfx(s) is +oo at the jumps (cf. Figure ) Further, despite
appearences, P(s) is not linear near s = 0 (cf. |12}, Figure 1] corresponding to b = e)
whereas for d = 3, pdf yx(s) is indeed linear near s = 0 (cf. Figure [2)).
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2. Proof of Theorem [1I

In this section, we prove Theorem For notational simplicity, we give the proof in
dimension three; the general proof for n > 2 dimensions is analogous.

Given a particle with initial position p and initial direction v, let N, be the number
of bounce lengths we get from that particle as it has travelled a total distance R > 0, and
let N po(t) be the number of such bounce lengths of length at most ¢t > 0. The uniform



probability distribution on the set of bounce lengths of M particles with initial positions
pM . pM) and initial directions v(!), ..., v™) has the cumulative distribution function

v Nrpo o Ng o) 40 (1)

1
M M Ei:l
St Np o @) M R Npg pi) 0
cdfx, . (t) = = : (9)
M,R M N N
2im1 Np pi) w0 Ly DRpOu0
M =1 R

(Note that the denominator is uniformly bounded from below, which follows from equation
below.) By the strong law of large numbers, the function @ converges almost surely
to

f f 5 NR,p,’U NR7pyv(t)
KSR NRpw

fic o 22 4 (0) ()

as M — oo, where du is the probability measure with which we choose the starting points,
and dS is the surface area measure on the sphere S?. By symmetry, we may restrict
the inner integrals to S2 := {(vz, vy, ;) € S? : vz, vy, v, > 0}. We now look at the limit
of as R — oo, and we note that since the integrands are uniformly bounded, we
may move the limit inside the integrals by the Lebesgue dominated convergence theorem.
Fix one of the integrands, and denote it by f(R,p,v,t). We will show that its limit
g(p,v,t) := limp_,o0 f(R,p,v,t) exists for all ¢+ and all directions v € S2. Moreover, if
p@ and v denote random variables corresponding to an initial position and an initial
direction, respectively, as above, then

dS(v) dp(p)

(10)

h(p(i), U(i),t) = lim NR’p(i)’v(i) NR’p(i)’v(i) ®)
R—00 R NR’p(i)w(i)

is a random variable with finite variance (and similarly for the terms in the denominator
of @; in particular recall it is uniformly bounded from below), and thus the strong law
of large numbers gives that the limit of @ as R — oo, and then M — oo almost surely
equals . This shows that limy o imp o0 cdfx,, (t) exists almost surely and is
equal to limp o0 limps o0 cdfx,, 4 ().

Consider a particle with initial position p and initial direction v = (vy,vy,v,) € Si.
By “unfolding” its motion with specular reflections on the walls of the box to the motion
along a straight line in R™ — see Figure [4 for a 2D illustration — we see that the
particle’s set of bounce lengths is identical to the set of path lengths between consecutive
intersections of the straight line segment {p + tv : 0 < t < R} with any of the planes
T =na,y =nb,z=nc, n € Z. Thus we see that

Nipo=RZ + R + R + 0(1) (11)
a b c
for large R, and therefore
Nva Vg Uy | Uy
hRpo  Pe Ty T2 12
R - a + b + c (12)
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Figure 4: From left to right: Unfolding a motion with specular reflection in a 2D box to
a motion the plane and then projecting back to the box.

as R — oo.

Now project the line {p+tv : 0 <t < R} to the torus R3/A where A = {(n1a, nab, n3c) :
ny,ng,n3 € Z} and let us identify the torus with the box K; see Figure |4 Each bounce
length corresponds to a line segment which starts in one of the three planes x =0, y =0
or z = 0 and runs in the direction v to one of the three planes x = a,y = b or z = c.
There are R** + O(1) line segments which start from the plane z = 0, and thus the
probability that a line segment starts from the plane z = 0 is

Uz
c

Ve 4 Yy | vz
a+b+c

as R — oco. By the ergodicity of the linear flow on tori (for almost all directions), the
starting points of these line segments become uniformly distributed on the rectangle
[0,a] x [0,b] x {0} for almost all v € S2 as R — oo; from here we will assume that v is
such a direction, and we will ignore the measure zero set of directions for which we do not
have ergodicity. Consider one of these line segments and denote its length by T and its
starting point by (xg,yo,0). For an arbitrary parameter ¢ > 0, we have T < ¢ if and only
if tvy, > a—xg or tv, > b—1yg or tv, > ¢; the starting points (zo,yo) € [0, a] x [0, b] which
satisfy this are precisely those outside the rectangle [0, a — tv,] x [0,b — tv,] assuming
that tv, < ¢ and otherwise it is the whole rectangle [0, a] x [0, b]. The area of that region
is

ab — (a — tvg) (b — tvy) (13)

if a > tv,,b > tvy,c > tv, and otherwise it is ab. Since the starting points (zo, o)
are uniformly distributed in the rectangle [0,a] x [0,b] as R — oo, it follows that the
probability that T' < t is

(@ —tvy) (b —tuy)
ab

1— X(a > tvg,b > tuy, ¢ > tv,),

where x(P) is the indicator function which is 1 whenever the condition P is true, and 0
otherwise. We get analogous expressions for the case when a line segment starts in the
plane x = 0 or y = 0 instead. Thus the proportion of all line segments with length at



most t as R — oo is

. Nepo(t) i (b — tv,)(c — tv,)
| \Ds — a 1-— y S to b >t > ¢
Rl—r>noo NR,p,U %+”Ty+v?z be x(ai Vgy 0 2 Ty, C 2 vz) -+
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v
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D 1- a > tvg,b > tv,,c>tv
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which can be written

x(a > tvg, b > tuy, c > tv,)
abe(% 4 3 4 %)

X (Ux(b — tvy)(c — tvy) + vy(a — tvg)(c — tv,) + v.(a — tvy) (b — tvy)). (14)

Recognizing that both integrands and are independent of the position p, we see
that the limit of as R — oo may be written as

1

im 1m cC XM,R( ) fSi (’Ube —+ avyC + abvz) dS(U)

R—oo M—o0

X

X /veSi ((abv, + avye + vybe) — 2t(avyv, + vebu, + vvye) + 3t2vv4v,) dS(v)  (15)

ve<a/t
vy <b/t
v <c/t

for all ¢ > 0. The corresponding formula in n dimensions is given by

/ vesn (Z v; H(ai - tvj)> dS(v)
vigai/t =1 J#i
for i=1,...,n

A i, () = 1= oy 1o
H a; / Z — | dS(v)
i=1 S g
for all t > 0, where the side-lengths of the box K are aq,...,a, and dS is the surface area

measure on §7 ' N [0,00)". (The denominator can be given explicitly by using Lemma
below.)

We have thus proved that the random variable Xj; g converges in distribution to a
random variable with probability density function given by as we take M — oo
followed by taking R — oo, or alternatively, first taking R — oo followed by taking
M — oo. It remains to prove that this distribution agrees with the distribution of the
random variable X defined in the introduction.

2.1. Integral geometry

We start by recalling some standard facts from integral geometry (cf. [8,[14].) The set
of directed straight lines ¢ in R? can be parametrized by pairs (v, q) where v € S? is a

10



unit vector pointing in the same direction as £ and ¢ € v is the unique point in ¢ which
intersects the plane through the origin which is orthogonal to v. The unique translation-
and rotation-invariant measure (up to a constant) on the set of directed straight lines in
R? is d¢ := dA(q) dS(v) where dA is the surface measure on the plane through the origin
orthogonal to v € S?, and dS is the surface area measure on S?.

Consider the set L . of directed straight lines in R3 which intersect the box K. Now,
since abv, + avyc + vybe is the area of the projection of the box K onto the plane vt for
v €S2, it follows that the total measure of Ly, with respect to d is

Cape = 8/2 (abv, + avyc + vzbc) dS(v) = 2m(ab + ac + be)
S+

where we used symmetry, and the integral may be evaluated by switching to spherical
coordinates. It follows that d¢ /C,y . is a probability measure on the set of directed
lines intersecting the box L, .. Let £ be a random directed line with respect to this
measure, and define the random variable X := length(¢ N K), as in the introduction. Let
us determine the probability that X < ¢ for an arbitrary parameter ¢ > 0. By symmetry
it suffices to consider only directed lines with v € Si. The set of all intersection points
between the rectangle [0,a] x [0,b] x {0} and the lines ¢ with X < ¢ and direction v € SZ.
has area ab — (a — tvy) (b — tvy)x(a > tvg, b > tvy, ¢ > tv.), as in (13), and its projection
onto the plane v has area

vzlab — (a — tvg) (b — tuy)x(a > tvg, b > tuy, ¢ > tv,)).

By symmetry it follows that the area of the set of directed lines ¢ € L, . with X <t
and direction v € Si projected down to v is

U(v,t) := vg[be — (b — tvy)(c — tv.)x(a > tvg, b > tvy, ¢ > tv,)]+
vylac — (a — tvg)(c — tvy)x(a > tug, b > toy, ¢ > tu,)]+
vz[ab — (a — tug) (b — tvy)x(a > tug, b > tuy, c > tv,)],

and it follows that

1 8
P X <tl= =
rob[X < 1] = o /X A= /S , U0 dS(0)

which we see is identical to , and we have thus proved that X, r converges in
distribution to X as we take M — oo and then R — oo. This concludes the proof of
Theorem [1l

2.2. Computing the mean value

We will determine the mean value of X; to do this we exploit the integral geometry
interpretation of the random variable X. By symmetry it suffices to restrict to directed
lines ¢ with v € S2. For fixed v € S%, denote by Q(v) = (K + span(v)) N vt the set of
q € v* such that the directed line ¢ parametrized by (v, q) intersects K. We note that

11



X dA(q) is a volume element of the box K for any fixed v € S2, and thus integrating
X dA(q) over all g yields the volume of the box. Hence the mean value is

8 8abe 2abc
Xl Cape /Si Qv) (4) dS(v) Cap,e /82 S() ab+ ac + be

+

2
the Lemma [28]in the Appendix, it follows that the mean value in n dimensions is
1 il IS*~1| Vol(K)
2" Vol(K =2
ol(K) 2n i IS Area(K)

In n dimensions we get a normalizing factor 2125) . gn Jgn—1 v dS(v), so with the aid of
+

E[X] =

on 1 ‘Sn’ Area(K)
— 1 Arealk)
m 2"

where Area(K) is the (n — 1)-dimensional surface area of the box K, and Vol(K) is the

volume of the box K.

3. Proof of Theorem [3
Using formula in dimension n = 2, we get

oo, (@b = tv,) + vy(a — t0,)) dS(0)
vp<a/t
vy <b/t

ab <vm + Uy) dS(v)
st b

a

Cdfx(t> =1-

We use polar coordinates v, = cosf,v, = sinf so that dS(v) = df. Then the above
becomes

sin™1 (min(b/t,1))
/ (bcosf + asin® — 2t sin b cos 0) df

os~1(min(a/t,1))

1- /2 -
/ (bcosf + asinf) df
0
1 . 9 sin~1 (min(b/t,1))
1-— > {b sin @ — a cos @ + t cos 0} cos—L(mmin(a/t,1))’ (17)

The numerator of the second term may be written

X(b<t)(b-i—a“l—ij+t<l—g)) +xb>t)b—a-0+1¢t-0)+
—X(a<t)(b1/1—?2—a-j+t-(zj> —x(a>t)(b-0—a+t)

which can be simplified to

x(b<t)(t—b—a\/1—lt)§) +X(a<t)(t—a—b\/1—?§) + (a+b—1).

Inserting this into and differentiating yields Theorem
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4. Proof of Theorem

We will evaluate the cumulative distribution function ((15)) and then differentiate. The
denominator of the second term of is

/2 (abv, + avyc + vybe) dS(v) = Z(ab + ac + be),
s

+

as may be evaluated by switching to spherical coordinates. Define

f(a,b,c):= bc/veSi vy dS(v),

vz<a/t
vy <b/t
v, <c/t

g(a,b,c) = —2tc/vegz+ V5 Uy dS(v),
vz<a/t
vy <b/t
v, <c/t
h(a,b,c) := 3t> /veSi VzUyv, dS(v).
vz<a/t

vy <b/t
v, <c/t

By symmetry, we have

f(e,a,b) =ab /”ESi vy dS(v) = ab /”ESi v, dS(v),

vz<c/t vz<a/t
vy<a/t vy <b/t
v, <b/t v, <c/t
f(b,c,a) =ac /veSi vy dS(v) = ac /veSi vy dS(v),
vz <b/t vz<a/t
vy<c/t vy <b/t
vy<a/t v, <c/t
g(c,a,b) = —2tb /veSi UzUy dS(v) = —2tb /veSi V0, dS(v),
vz<c/t vz<a/t
vy<a/t vy <b/t
v, <b/t v, <c/t
g(b,c,a) = —2ta /UES?&- U0y dS(v) = —2ta /UES?&- vy dS(v),
vz <b/t vz<a/t
vy<c/t vy <b/t
v.<a/t v.<c/t

and thus we can write the numerator in the second term of as
fla,b,e) + f(e,a,b) + f(b,c,a) + g(a,b,c) + g(c,a,b) + g(b,c,a) + h(a, b, c).

Exploiting the symmetries, it suffices to evaluate h(a,b,c), g(a,b,c) and f(b,c,a) (note
the order of the arguments to f). We will evaluate these integrals by switching to
spherical coordinates, but first we need to parametrize the part of the sphere inside the
box 0 < v, <a/t,0<wv, <b/t,0< v, <c/t.

13



Lemma 18. Fiz t € (0,va? + b% + ¢?). We have

ves? F(vg,vy,v,)dS(v) =

vz<a/t
vy <b/t
v.<c/t

71'/2 Omaz 7T/2 mazx 77/2 ~
A A A A A LT
min Oa B Pb

@) sinf dp db

for any integrable function F : S — R, where F(8, ) := F(sin# cos p,sin f sin @, cos §),

where

_1(c
0 nin = COS 1{75} ,

0o := max (0, sin 1{

0y := max (0, sin -1

)
)

6, = Sin—l{vazW }
1

| S+ D

t
©q i=cos ! ; 'a 7 (whenever a < tsin ),
sin
b
@p = sin o d (whenever b < tsin ).
sin

and where we have used the shorthand {u}, := min(u, 1).

Proof. We will parametrize the set of points v = (v, vy, v,) on the sphere S? such that

0 < vy <aft,
0 <, <b/t,
0 < v, <c/t.

(19)

Switch to spherical coordinates v, = sinf cos ¢, v, = sinfsinp,v, = cosf). The non-

negativity conditions of are equivalent to the condition 0,y € (0,7/2).

angles, the condition v, < ¢/t is equivalent to

cos_l{c} <4,
t)1

and the conditions v, < a/t,v, < b/t are equivalent to

cos_l{ a }< <sin_1{ b }
tsind 1_90_ tsinf J

14
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The interval is non-empty for precisely those 6 € (0,7/2) such that 6 < 0, since

a 2 b 2 a 2 b 2
1<{—— - — 1< — . —
_{tsin«9}1+{tsin0}1 - (tsin@) +(tsin9>
Va2 + b2 v&+m}
— _ .
1

sinf <
t

— 0< sin_l{

Thus we may restrict 6 to the interval given by the inequalities
emin S 0 S emax-
Note that we have Opin < Omax for all ¢t < va? + b2 + ¢2 since

o2 {%ﬂ+mF
—_— —
1

Hminggmax — 13{} +
t, ¢
2 /2 b2
1§C>+<(U+> — 2<d®++A
We conclude that we can write

Omax 1{ﬁ}1 ~ .
2 Vg, U ,'UZ , @) sm (0] .
vesz Fvg,vy,0:)dS(v F(6 0 de do 21
vl<a/t Omin {tsm@}l

vy <b/t

v, <c/t

For 0 € (0,7/2), note that cos™" 7z is defined precisely when sin™*{$} < 6 and
that sin—! tsibna is defined precisely when sin_l{b}l < 0. We have O, < 6, if and only

t
if t < Va2 + ¢2, and we have O, < 0, if and only if ¢ < Vb2 + ¢2. Moreover we note
that we always have 6,0y € [Omin, Omax)-

Let us rewrite the integration limits in the right-hand side of in terms of ¢, and
wp. A priori, we need to distinguish between the two cases 6, < 0, and 0, < 0,. If 8, < 6,
then we get

< Omax {ﬁ } o 71'/2 07) 7T/2 Omax Pb
o L ) = U L )

min { Tsin® } min a Pa 0b
< 7I'/2 max 71'/2 max 7'(/2 Omax 7I'/2 max

[ S S A S M A e A A B

mm 91; a 017 Qb
77/2 max 77/2 max 77/2
UL L) @
Omin a O ®b

If on the other hand 6, < 6, then
< Omax {ﬁ} ) ( 0 /2 0o b Omax  [Pb
o [ U L L)
Bmin cos™! { Tsin 0 }1 Omin O Pa
0 w/2 w/2 Omax /2 Omax  [7/2
A A A A N A e A
min O 0y Oa a b

15



which we see is identical to . Combining and we get the conclusion of the
lemma. O

Applying Lemma [T§ we get

h(a,b, c) = 3t /”egi Uy, dS(v) =

ve<a/t
vy <b/t
v, <c/t
Oa /2 Omax [7/2 Omax /2
3t? (/ / +/ / —/ / )(sin2¢90059cos<psingo) sinf dp df .
Omin 40 O Pa Oy b

An antiderivative of the integrand cos ¢ sin ¢-sin?  cos § with respect to ¢ is —% cos? ¢ sin3 6 cos 6,
and thus the above is

0a gmax emax 1
3t? / cos? ga‘ + / cos? gp‘ — / cos? cp’ —sin® 0 coshdh =
Omin =0 Oa P=pa 0 =0y | 2

2 ea emax a2 emax b2 1 5 0 9 dg
3t 1 4 AR R _
‘/amin - /Oa t2 Sin2 0 T /917 t2 Sin2 [ 9 [S184 CcOoS
Oq 0

3 max emax
</ 2 sin® 0 cos 0 dO + a®sin 0 cos 0 df + (b2 sin @ — t% sin® 19) cos d9> =
2 emin 0ﬂ 1917
3 1 90, 1 emax 1 1 Gmax
5 ({ 21 sin? 0] - + {&2 sin? 9} . + {b22 sin? § — 752Z sin’ .9] ., ) (23)
Next consider
g(a,b,c) = —2tc /”ESi UzUy dS(v) =
vz<a/t
vy <b/t
v, <c/t
O, /2 Omax [7/2 Omax /2
—2tc / / + / — / / (sin? @ cos psin @) sin 6 dy d6 .
min <0 0a Pa Gb ©®bp

An antiderivative of the integrand cos ¢ sin ¢ - sin® § with respect to ¢ is —% cos? psin3 0,

16



and thus the above is

g(a,b,c) = —2tc /”egi U0y dS(v) =

vz<a/t
vy <b/t
v,<c/t

0a 9 emax 9 emax 2
—tc / cos go‘ +/ oS np‘ —/ oS cp’ sin® 0 df =
Omin =0 Oa Y=pa 0 =y

b

—t 1 _° 1) )si —
¢ /Gmm * /6'a t2sin? 6 + /gb t2sin? 4 S

90, emax 2 g emax 2
—tc(/ sin® 0 df + ¢ :;nﬁ do+ <b LA 9) d@) -

emin 9a Qb t2
39 b cos 0 39 Omax
—tc ( [COZ —cosf L COZ + cos 9] .(24)

2

t "
We obtain g(b, ¢,a) and g(c, a,b) by switching the roles of a,b, ¢ in . We remark that
trying to obtain g(b, ¢, a) and g(c, a,b) directly, by integrating v,v. and v,v;, respectively,
by first integrating with respect to ¢, taking the limits ¢ — ¢, and ¢ — ¢, and then

finding an antiderivative with respect to 6, seem to result in much more complicated
expressions.

Finally consider

a

a2 emax
+ t—Q[— cos 0] +

emin

f(b,c,a) =ac /veSi vy dS(v) =
vz<a/t
vy <b/t
v, <c/t

Oa w/2 max  [7T/2 Omax [7/2
ac(/ / +/ / —/ / )(sin@sincp)sinﬁdgpd@.
emin 0 a Pa 917

¥b

An antiderivative of the integrand sin ¢ - sin? @ with respect to ¢ is — cos ¢ - sin? 6, and
thus the above is

ac </0i1 cos ¢|,_g + /ajmax cos |, — /G:m'dx cos <p|‘p%> sin’ 0 df =
o [l [ g [~ o=
ac (/: sm20d9+/99m asine do — gem \/sin26 — [Zzsmade> -
hnin a b
ac (;[0 — sin 6 cos H}Zi;n 4 [_QEOSG} ::m B /;max I — Z — cos2 0 sin 0 d&) (25)
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where the last integral inside the parentheses may be written as

1 2 2
1 9W+ Y | cos
2 t2 t2 b2

1-— ol cos2 6
1 / b? b? 0
—— | cosfy/sin20 — =+ |1 — = | tan™! __esY
2 t2 t2 b2
sin?f — =
12 i

whenever 0, < 7/2, by using the fact that %(IL‘\/C— x? + ctan_1< L

Ve—z2

emax

O

emax

O

)) is an an-

tiderivative of V¢ — 2 with respect to  when ¢ is a constant. We obtain f(b, ¢, a) and

f(e,a,b) by switching the roles of a,b, ¢ in .

It remains to insert the limits @iy, 0a, O, Omax into the antiderivatives , and
above. Noting that Omin, 0a, 0, Omax are expressed in terms of piecewise-defined
functions, the following manipulations will be useful. For any function v, we have

D (Brmin) = 1 <cos1 ;) Yo + (cos 1)(1 = ye)
= (o5 £) = 0(0) Jxe + (0)

where x. := x(t > ¢). Similarly,

Y(Omax) = (z/; (sin_1 M) — 1[)(7r/2)> Xab +U(7/2)

t

where xqp 1= x(Va? +b? > t), and

9(682) = (1= X)(m/2) + (ta — X (sin 1 1) + ot (o5 )

e+ ((cos ) —w(sin $)) xa (v (s S) ~vtm/2)) + w2

and similarly, 1)(0) can be written as

Xb,c * (w (COS1 ;) - 1/1(sin1 l;)) + Xb - (w (Sin1 i) - 1/1(%/2)) + (7 /2).

With this we can evaluate [1p]%* | [1/)]2;‘“”‘, [1#]2;““. But since we know that we will get

Gmin

a function symmetric with respect to the values a, b, ¢, it suffices to keep only those terms
with xq and x4, say, and then the other terms may be evaluated by just switching the

18



order of a,b,c. Upon inserting the limits and differentiating, one obtains (after tedious
calculations) that
F(a,b,c,t) + F(b,c,a,t) + F(c,a,b,t)

3mt3(ab + ac + be)

pdf x (t) =

where

F(a,b,c,t) := (8at® — 3t*)+

x(t > a) ((6754 — a" + 6ma’be) —(8at® — 3t") — 4(b + ) /12 — a2|(a® + 2t2)> +

x(t > Va2 +b?)

at 4+ bt — 9t — 6a%b? 4 /|12 — a2 — l)2|40(a2 +b% + 2t2)—|—

2 2 2 t? — a® — 7|
day/|t? — b2|(b” + 2t°) — 12a°be - arctan | ———
4by\/|t2 — a2|(a® + 2t%) — 12ab’c - arctan( )

Rewriting F' as a piecewise function, we get Theorem .

5. Proof of Theorem [7]

Consider the distribution of the random variable Y37 . Since we record the same number
of bounces for each choice of angle ¢ we may replace the M-particle system with a one
particle system Yy as follows: randomly select, with uniform distribution, the angle ¢
and generate N bounce lengths and randomly select one of these bounce lengths (with
uniform distribution); by the strong law of large numbers, Y3/ n converges in distribution
to Yy as M — oo.

We now determine the limit distribution of Y. As before, we first unfold the motion,
and replace motion in a box with specular reflections on the walls with motion in R?; see
Figure [dl The path lengths between bounces is then the same as the lengths between the
intersections with horizontal or vertical grid lines. To understand the spatial distribution,
we project the dynamics to the torus R?/A where A is the lattice

A = {(n1a,n2b) : n1,ne € Z},

and we may identify the torus with the rectangle [0,a] x [0, b].

Let us first consider the motion of a single particle with an arbitrary initial position,
and direction of motion given by an angle . Taking symmetries into account, we may
assume that ¢ € [0,7/2]. (Note that T‘f—}g gives a probability measure on these angles.) If
the particle travels a large distance R > 0, the number of intersections with horizontal,
respectively vertical, grid lines is % + O(1), respectively @ + O(1). Thus, in the
limit R — oo, the probability of a line segment beginning at a horizontal (respectively
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vertical) grid line is given by Py, respectively P, (here we suppress the dependence on ¢)
where

sin ¢ COs
. b R
Ph ) + cosp’ PU T sing _T_ cosp *
b a b a
The unfolded flow on the torus is ergodic for almost all ¢, and thus the starting points of

the line segments becomes uniformly distributed as R — oo for almost all ¢.
Let

T =T(p):=a/cosp.
Since sin ¢ = vVT? — a?/T, we obtain that

B T2 — a? P b
b+ VT2 —a2 " b4 VT?—a?

Let 0 = arctanb/a denote the angle of the diagonal in the box, and assume that
0 < ¢ < 6. We then observe the following regarding the line segment lengths.

First, if the segment begins at a horizontal line, it must end at a vertical line, and the
possible lengths of these segment lie between 0 and T'. We find that these lengths are
uniformly distributed in [0, 7] since the starting points of the segments are uniformly
distributed.

On the other hand, if the line segment begins at a vertical line, it can either end at a
vertical or horizontal line. Since the starting points are uniformly distributed, the former
happens with probability

Py

T2 _q2
atangp oYL= T2 — a2

b b b
and the length of the segment is again uniformly distributed in [0, 7], whereas the latter
happens with probability

b—atancp_l T2 — a2
b N b
in which case the segment is always of length T'.
Now, ¢ € [0, 6] implies that T € [a, va? + b?], and noting that
de a

T~ TVT? — @
we find that the probability of observing a line segment of length ¢ is the sum of a
“singular part” (the segment begins and ends on vertical lines; note that all such segments
have the same lengths) and a “smooth part” (the segment does not begin and end on
vertical lines). Moreover, the smooth part contribution equals

1 VaZ+b? |
—/ (Ph+Pvatan<’0)dwdT
7/2 Jmax(at) T b dr
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which, on inserting , equals

1 Vet g T2 — a? b atan a
7"'/2max(a,t)T.<b+m+b+m b )IT\/de:
1 Ve g T2 — a2 b T? — a2 a
7F/2/max(a,t)T.<b+m+b+m b >'deT:
1 [Ver+e? 2a dT
7['/2/max(a,t)b+m‘ﬂ.

On the other hand, the “singular part contribution”, provided ¢ > a, to the probability
of a segment having length t equals

Py, b—atanp dp 1 b L t2 — a? a B
w2 b A w2 b Ve @ b ) e

1 a
/2 th+ Ve —a)VE—d® (b

In case 6 < ¢ < /2, a similar argument (we simple reverse the roles of a and b) shows
that the smooth contribution equals

1 Vaertb? 2b dT
/2 Jmaxvt) a+ VT2 =52 T2
and that the singular contribution (if ¢ > b) equals
1 b
. a—VE—B2).
/2 tla+ V2 —b2)Vi2 — b2 ( )

Thus, if we let Pying(t) denote the “singular contribution” to the probability density
function we find the following: if ¢ < a, then

Piing(t) =0

VE—a),

if t € [a,b], then

L ab-vE— @)
Faing(t) = 75 tb+ VI — @)V — a2

and if ¢ € [b, Va? + b?], then

1 a(b—Vt? —a?) N bla — V2 —b?)

/2 \t(b+ V12 —a®)Vi2—a? tla+ V2 -2 —b2)
Remark 26. Note that Fin, has a singularity of type (¢t — a)*l/ 2 just to the right of

t = a (and similarly just to the right of ¢t = b). In a sense this singularity arises from the
singularity in the change of variables ¢ — T since g—? = T\/%—a? The reason for the

Fiing(t) =

singularities in the spreading model for n = 2 is similar, as the spreading model can be
obtained from the absorption model by a smooth change of the angular measure.
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Similarly, the “smooth part” of the contribution is (for ¢ € [0, Va2 + b2]) given by

- 4 - - .=
max(a,t) b+ v/ T2 -2 T? max(bt) @+ V T2 -2 T2

Hence the probability density function of the distribution of the segment length ¢ is
given by

T2

1 va?+b? 2a dT va?+b? 2b dT
Psmooth (t) / /

pde (t) = Psing (t) + Psmooth(t)-

We will now evaluate Psmooth(t). An antiderivative of W% . % with respect to T

for T € (a,Va? +b?) is

2a(vV/T? — a2 — b) N 2ab(tanh_1 (ﬁ) — tanh™! (%))

27
T(a2 + b2) (az + b2)3/2 ( )
where tanh™'(z) = 1 log 122 for |2| < 1. (A quick calculation shows that —VTQ_“;b Va?th?

1 whenever a < T < va? + b%.) We can rewrite as

bl (Va2+02+T) (Tb—v/T2—a2V/a2+b?)
2a(vVT? — a2 — b) N 4108\ (VaZ4o2—T) (Toi v TT—aZ/aZ 457 )
T(a? + b?) (a2 + b2)*/?

By I'Hopital’s rule we have

A e N S
lim = lim —a -
T2 402+ Vaz+b2-T T—v/a2 102+ -1 b

so the limit of as T — Va2 + b%+ is

bl (ﬁ) (Va?+0?+Va?+5%)
WO\t ) " (ovar b7 ovarr0?) _ 2ablog(})

(a2 + b2)3/2 (a2 +b2)%/%

The limit of as T — a+ is

—92b 2abtanh™! (\/arf?) '

(a® +b2) * (a2 + b2)*/?

Thus, assuming a < b, we can write § Pspootn(f) as

2(a+0) 2ab 1 a _1< b ))
— tanh —_— tanh —_—
(0/2 + b2) (CL2 + b2)3/2 ( an ( a2 n b2> + tan a2 n b2
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if t < a,b, or as

2ab + 2at — 2aV/t2 — a?
t(a? + b?)

2ab(— tanh_l(\/a;ﬁ) + tanh_l(@) — tanh_l(\/afW»
(a2 + b2)3/2

ifa<t<boras

22ab7 aVt2 — a2 — bVt2 — b2

t(a® + b?)
2ab(—2 tanh ! (\/a;W) + tanh ! (@) + tanh~! (WIPTW»

(a2 + b2)3/2

if a,b < t. Adding Piing(t) to this, we get Theorem

A. Calculation of an integral

Lemma 28. Write |S"!| for the (n — 1)-dimensional surface area of the sphere S*~1 C
R™. Then we have

1|s®
/ v, dS(v) = 1187 ‘
Si—l T 27’l

where S’fr_l :=S""1N(0,00)" is the part of the sphere S"~1 with positive coordinates.
Proof. We may parametrize v = (vy,...,v,) € Sﬁlr_l with

v1 = cos 01
v9 = sin 6 cos O

v3 = sin 64 sin Oy cos O3

Up—1 = Sinfq - --sinb,,_o cos 0,1

Uy, = Sinfy - --sinf,,_9sinb,,_1
for 01,...,0,—1 € (0,7/2). We have the spherical area element

dS(v) = sin" 2@y sin" 30y ---sin b, _odfy---db,_1 .

Thus we get
n—1 /2 )
/ vp dS(v) = H / sin” 174, do; .
S i=1 70
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Introducing an additional integration variable 6,,, we recognize the integrand as the
spherical area element in n + 1 dimensions, and thus the above is

1 2 : 1 |sm
— H/ s g gy = -1
0

I
07‘—/2 dan =1 7T/2 2t
since fS:i dS(v) = |S"|/2ntL. O
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