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Abstract. We study some counting questions concerning prod-
ucts of positive integers u1, . . . , un which form a nonzero per-
fect square, or more generally, a perfect k -th power. We ob-
tain an asymptotic formula for the number of such integers of
bounded size and in particular improve and generalize a result of
D. I. Tolev (2011). We also use similar ideas to count the discrim-
inants of number fields which are multiquadratic extensions of Q
and improve and generalize a result of N. Rome (2017).

1. Introduction

1.1. Background and motivation. Here we use a unified approach to
study two intrinsically related problems:

• we count the number of integer vectors which are multiplica-
tively dependent modulo squares or higher powers, in particular
we improve a result of Tolev [22];
• we obtains some statistics for towers of radical extensions and

extend and improve results of Baily [1] and Rome [19].

Our treatment of both problems is based on similar ideas, namely,
on multiplicative decompositions close to those used in [5], see (6.1)
and (6.2) in the proofs of Theorems 2.2 and 3.1, respectively, which are
our main results.

More precisely, we study the following two groups of questions.
For a fixed integer n > 2 we are, in particular, interested in the

distribution on n-dimensional vectors of positive integers

a = (a1, . . . , an) ∈ Nn
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whose nontrivial sub-product ai1 . . . aim , 1 6 i1 < . . . < im 6 n , is a
perfect square. This seems to be a natural analogue of the question of
counting multiplicatively dependent vectors [16].

Motivated by applications to integer factorisation algorithms a ques-
tion of the existence of such a perfect square amongst n randomly
selected integers of size at most H , has been extensively studied,
see [7, 17, 18]. More precisely, for the above applications it is crucial
to determine the smallest value of n (as a function of H ) for which at
least one such products is a perfect square with a probability close to
one; this question has recently been answered in a spectacular work of
Croot, Granville, Pemantle and Tetali [7].

Further motivation for this work comes from studying the multi-
quadratic extensions of Q , that is, fields of the form

(1.1) Q
(√

a
)

= Q (
√
a1, . . . ,

√
an)

with vectors a = (a1, . . . , an) ∈ Nn (or in Zn ), see, for example, [1,2,19]
and references therein. In particular we count the number of distinct
discriminants of such fields up a certain bound X , and we also count
the number of vectors a in a box for which Q

(√
a
)

has the largest
possible Galois group Gal(Q(

√
a)/Q) ' (Z/2Z)n . Finally, we also

consider towers of radical extensions of higher degree k > 2 and count
the number of vectors a in a box for which these extensions are of the
largest possible degree kn .

1.2. Our results. Our main focus is on products forming squares when
n is fixed, and thus it is easy to see that the existence of a square
product is a rare event. Furthermore, in this case, one can concentrate
on the case when such products include all numbers u1, . . . , un .

In particular, we are interested in counting such vectors and more
generally, vectors for which u1 . . . un is a perfect k -th power, for a fixed
integer k > 2 in the hypercube

(1.2) Bn (H) = [1, H]n,

where H ∈ N . In particular, we study the cardinality

N (k)
n (H) = #N (k)

n (H)

of the set

N (k)
n (H) =

{
(u1, . . . , un) ∈ Nn ∩Bn (H) : u1 · · ·un ∈ N(k)

}
,

where

N(k) = {sk : s ∈ N}
denotes the set of positive integers which are perfect k -th powers.
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We note that if τn,H(s) denotes the restricted n-ary divisor function
of s ∈ N , that is the number of representation u1 . . . un = s with
integers 1 6 u1, . . . , un 6 H then

N (k)
n (H) =

∑
s6Hn/k

τn,H(sk).

Here we obtain an asymptotic formula for N
(k)
n (H) and then make

it more explicit in the case of squares, that is for k = 2. In turn this
can be used to study multiquadratic extensions of Q as in (1.1).

In particular, a combination of our results with a result of Balasub-
ramanian, Luca and Thangadurai [2, Theorem 1.1] allows to get an
asymptotic formula for the number of vectors a ∈ Nn ∩Bn (H) where
Bn (H) is given by (1.2) for which

(1.3) [Q
(√

a
)

: Q] = 2n.

We also consider the more difficult questions of counting the discrimi-
nants of multiquadratic number fields

We recall that Rome [19], making the result of Baily [1, Theorem 8]
more precise, has recently given the asymptotic formula for the number
of distinct discriminants of size at most X coming from biquadratic
fields Q

(√
a,
√
b
)
, see also [6, Section 6.1]. We also refer to [3,6,13,24]

for other counting result for discriminants of quartic fields of different
types. More generally, using class field theory, Wright [25], extending
previous results of Mäki [15] on counting abelian extensions of Q , has
obtained asymptotic formulas for counting abelian extensions of global
fields, though without giving explicit leading constants and error terms.
We note that Mäki [15] gives some (but not full) information about the
main term and also obtains a power saving in the error terms, see, for
example [15, Theorems 10.5 and 10.6], which however are weaker than
our result. Here we obtain a generalisation of results of Baily [1] and
Rome [19] to multiquadratic extensions Q

(√
a
)

for arbitrary length
n > 2.

Furthermore, we also count distinct multiquadratic fields having
maximal Galois group, as well as the analogous question regarding
maximal degree extensions generated by higher odd index radicals (that
is, extension of the form Q

(
k
√
a
)

= Q
(
k
√
a1, . . . , k

√
an
)

for odd k > 2;
here k

√
ai can denote any k -th root of ai but it is convenient to always

take a real k -th root.)
Our method can easily be adjusted to count a ∈ Zn∩B±n (H) where

B±n (H) = ([−H,−1] ∪ [1, H])n .
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1.3. Notation. We recall that the notations U = O(V ), U � V and
V � U are all equivalent to the statement that |U | 6 cV holds with
some constant c > 0, which throughout this work may depend on the
integer parameters k, n > 1, and occasionally, where obvious, on the
real parameter ε > 0.

We also denote

N0 = N ∪ {0} and R+ = R ∩ [0,∞),

and it is convenient to define

Z∗ = Z r {0}.

Throughout the paper, the letter p always denotes a prime number.

2. Products which form powers

2.1. Products which are k -th powers. We obtain an asymptotic for-

mula, with a power saving in the error term, for N
(k)
n (H) for any integer

k > 2 which generalizes and improves a result of Tolev [22] that corre-
sponds to n = 2 and gives only a logarithmic saving. We always write
m = (m1, . . . ,mn) and introduce the sets

Mn,k = {m ∈ Nn
0 r {0} : k | m1 + . . .+mn},

Mn,k,i = {m ∈Mn,k : m1 + . . .+mn = ik},
M ∗

n,k = {m ∈Mn,k,1 : #{i : mi > 0} > 2},
En,k,i =

{
ε ∈ {0, . . . , k − 1}n : ε1 + . . .+ εn = ki

}
.

In particular, the set Mn,k,1 r M ∗
n,k consists of the n vectors m with

exactly one nonzero coordinate which equals k . We also denote

qn,k = #Mn,k,1 =

(
n+ k − 1

k

)
,

q∗n,k = #M ∗
n,k = #En,k,1 = qn,k − n =

(
n+ k − 1

k

)
− n.

(2.1)

We consider the vectors t ∈ R
q∗n,k
+ , with components indexed by ele-

ments of M ∗
n,k , and define In,k as the volume of the following polyhe-

dron:

In,k = vol

{
t = (tm)m∈M ∗

n,k
∈ R

q∗n,k
+ :∑

m∈M ∗
n,k

mjtm 6 1, 1 6 j 6 n

}
.

(2.2)
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Remark 2.1. Clearly the cube [0, 1/k]q
∗
n,k is inside of the region whose

volume is measured by In,k , Hence, we have

k−q
∗
n,k 6 In,k 6 1.

Using the results of [4], which we summarize in Section 4, we derive

the following asymptotic formula for N
(k)
n (H).

Theorem 2.2. Let n > 1 and k > 2 be fixed. There exists ϑn,k > 0 and
Qn,k ∈ R[X] of degree q∗n,k , given by (2.1), such that for any H > 2
we have

N (k)
n (H) = Hn/kQn,k(logH) +O(Hn/k−ϑn,k),

where the leading coefficient Cn,k of Qn,k satisfies

Cn,k = In,k
∏
p

(
1− 1

p

)q∗n,k (
1 +

∞∑
i=1

#En,k,i
pi

)
,

where the product is taken over all prime numbers and In,k is defined
in (2.2).

2.2. Products which are squares. We now give more explicit form of
Theorem 2.2 when k = 2; this is important for applications.

In this case we simplify the notation by setting

Nn(H) = N (2)
n (H), In = In,k, Cn = Cn,2, qn = qn,2 q∗n = q∗n,2.

We now have from (2.1)

qn =
n(n+ 1)

2
and q∗n =

n(n− 1)

2
.

Observing that

#En,2,i =

(
n

2i

)
,

we derive

Cn = In
∏
p

(
1− 1

p

)n(n−1)/2(
1

2

(
1 +

1

p1/2

)n
+

1

2

(
1− 1

p1/2

)n)
,

where the product is taken over all prime numbers.
Let H be the set of integers h ∈ [0, 2n−1] with exactly two nonzero

binary digits. In particular, the first element of H is 2 + 1 = 3 and
the largest element is 2n−1 + 2n−2 = 3 · 2n−2 .

Then we see that In can now be defined as the volume of the following
polyhedron:

In = vol

{
t ∈ RH

+ :
∑
h∈H

εj(h)th 6 1, 1 6 j 6 n

}
,
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where εj(h) denotes the j -th digit in the binary expansion of h .

Remark 2.3. For numerical calculations we can add another condition
t3 6 . . . 6 t3·2n−2 and then multiply by (n(n− 1)/2)! the resulting
integral. Thus, we have

I2 = 1, I3 = 6

∫
06t36t56t661−t5

dt = 6

∫ 1/2

0

t5(1− 2t5)dt5 = 1
4
.

We now see that for k = 2, Theorem 2.2 implies the following result.

Corollary 2.4. Let n > 1 be fixed. There exists ϑn > 0 and Qn ∈ R[X]
of degree n(n− 1)/2 such that for any H > 2 we have

Nn(H) = Hn/2Qn(logH) +O(Hn/2−ϑn),

where the leading coefficient Cn of Qn satisfies

Cn = In
∏
p

(
1− 1

p

)n(n−1)/2(
1

2

(
1 +

1

p1/2

)n
+

1

2

(
1− 1

p1/2

)n)
,

where the product is taken over all prime numbers.

In particular, for n = 2, we have

C2 = I2
∏
p

(
1− 1

p

)(
1

2

(
1 +

1

p1/2

)2

+
1

2

(
1− 1

p1/2

)2
)

=
∏
p

(
1− 1

p

)(
1 +

1

p

)
=
∏
p

(
1− 1

p2

)
= ζ(2)−1 =

6

π2
,

where ζ is the Riemann zeta-function.

3. Counting multiquadratic fields

3.1. Discriminants of multiquadratic fields. Let Fn(X) be the number
of distinct fields Q

(√
a
)

with a ∈ Zn of largest possible degree as
in (1.3) whose discriminant over Q satisfy

DiscrQ
(√

a
)
6 X.

Let us define

(3.1) tn =
n−1∏
k=0

(2n − 2k).
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Theorem 3.1. Let n > 1 and ε > 0 be fixed. There exists a polynomial
Pn of degree 2n − 2 with the leading coefficient

An =
4n + 5 · 2n + 10

23+(n−1)(2n−2)(2n + 1)(2n − 2)!tn∏
p

(
1− 1

p

)2n−1(
1 +

2n − 1

p

)
,

such that, for X > 2 ,

Fn(X) = X1/2n−1 (
Pn(logX) +Oε

(
X−ηn+ε

))
,

where

ηn =
3

2n−1(5 + 2n)
.

We remark that Rome [19] has obtained a special case of Theorem 3.1
for n = 2, however with a larger error term, see also [1,25]. A version of
Theorem 3.1 is also given by Fritsch [9]. His method is more elementary
and gives a weaker bound on error term, though also with a power
saving.

Let fn(d) be the number of distinct fields Q
(√

a
)

with a ∈ Nn of
largest possible degree as in (1.3) whose discriminants over Q satisfy
DiscrQ

(√
a
)

= d .
We now explicitly evaluate the generating series

gn(s) =
∞∑
d=1

fn(d)

ds
, s ∈ C.

For this we define

(3.2) hn(s) =
∏
p>2

(
1 +

2n − 1

ps

)
, s ∈ C, Re s > 1.

Theorem 3.2. Let n > 1 be fixed. For any s ∈ C with Re s > 1/2n−1

we have

gn(s) =
hn (2n−1s)

tn

(
1 +

2n − 1

22ns
+

2n+1 − 2

23·2ns +
4n − 3 · 2n + 2

22n+1s

)
.

3.2. Multiquadratic fields with maximal Galois groups. We also wish
to determine the number of distinct multiquadratic fields of the form
Q(
√
a) for a ∈ Nn ∩Bn (H), that have maximal Galois group

Gal(Q(
√
a)/Q) ' (Z/2Z)n,
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that is,

Gn(H)

= #
{
Q
(√

a
)

: a ∈ Nn ∩Bn (H) and # Gal
(
Q
(√

a
)
/Q
)

= 2n
}
.

Theorem 3.3. We have, as H →∞,

Gn(H) =

(
1

n!ζ(2)n
+O

(
e−(1+o(1))

√
(logH)(log logH)/2

))
Hn.

3.3. Higher index radical extensions with maximal degree. Let k > 3
be an odd integer. We can also determine the number of distinct fields

Ka = Q( k
√
a) = Q( k

√
a1, . . . , k

√
ak),

where k
√
ai always denotes the real k -th root of ai , for a ∈ Nn∩Bn (H),

that have maximal degree, that is

Gk
n(H) = #

{
Q
(
k
√
a
)

: a ∈ Nn ∩Bn (H) and [Q( k
√
a) : Q] = kn

}
.

Clearly Ka is never Galois since Ka ⊆ R and the Galois closure of Ka

must contain the k -th cyclotomic extension Zk = Q(ζk), where ζk is
some fixed primitive k -th root of unity.

Theorem 3.4. Let k > 3 be an odd integer. Then, as H →∞,

Gk
n(H) =

(
1

n!ζ(k)n
+O

(
e−(1+o(1))

√
(logH)(log logH)/2

))
Hn.

We remark that the general case of adjoining any choice of k -th roots
(possibly complex) to Q follows easily from the case of real roots.
Namely, for extensions of maximal degree, Kummer theory, see, for
example, [8, Section 14.7] or [14, Chapter VI, Sections 8–9], implies
that the absolute Galois group acts transitively on the set of n-tuples
of the form

(
ζe1k

k
√
a1, . . . , ζ

en
k

k
√
an
)
, as e1, . . . , en ranges over integers in

[1, k] .
Further, since Ka(ζk) is the normal closure of Ka , it follows from

Kummer theory (cf. Section 6.5) that Gal(Ka(ζk)/Q) is maximal if
and only if [Ka : Q] = kn . In particular, Theorem 3.4 also allows us
to count fields Ka such that the normal closure has maximal Galois
group. In fact, it is not difficult to show that the number of a =
(a1, . . . , an) ∈ Nn ∩ Bn (H) such that a1, . . . , an are multiplicatively
dependent modulo k -th powers is o(Hn), so Theorem 3.4 easily yields
an asymptotic formula for the number of distinct fields Ka , as well
as an asymptotic formula for the number of distinct normal closures
Ka(ζk), as a ranges over elements in Nn ∩Bn (H).
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4. Sums of arithmetical functions of several variables

4.1. Setup. We say that f is a multiplicative function of Nm if

(4.1) f(e1, . . . , em)f(d1, . . . , dm) = f(e1d1, . . . , emdm)

for all pairs of tuples of positive integers with

gcd(e1 · · · em, d1 · · · dm) = 1.

We next recall some results of La Bretèche [4, Theorems 1 and 2], which
for a nonnegative multiplicative function f , links the sum

(4.2) Sβ(X) =
∑

16d16Xβ1

. . .
∑

16dm6Xβn

f(d1, . . . , dm),

where β = (β1, . . . , βm) ∈ Rm , to the behavior of the associated mul-
tiple Dirichlet series

F (s1, . . . , sm) =
∞∑
d1=1

. . .
∞∑

dm=1

f(d1, . . . , dm)

ds11 · · · dsmm
.

The goal is to understand analytic properties of F in order to obtain
a tauberian theorem for multiple Dirichlet series. This is for instance
possible when F can be written as an Euler product. As in the one
dimensional case, this is equivalent to the multiplicativity of f .

In that case, formally we have

F (s) =
∏

p prime

∑
ν∈Nm0

f(pν1 , . . . , pνm)

pν1s1+···+νmsm

 ,

where ν = (ν1, . . . , νm).
To state the relevant results from [4] we need further notations. We

denote by Lm(C) the space of linear forms

`(X1, . . . , Xm) ∈ C[X1, . . . , Xm].

Let {ej}mj=1 be the canonical basis of Cm and let be
{
e∗j
}m
j=1

the

dual basis in Lm(C). We denote by LRm(C) the set of linear forms
of Lm(C) such that their restriction to Rm maps to R . We define
LR+

m(C) similarly with respect to the set R+ of nonnegative real num-
bers.

As usual, we use ‖ · ‖1 to denote the L1 -norm and use 〈·〉 to denote
the inner product of vectors from Rm .

We view Rm as a partially ordered set using the relation d > e if
and only if this inequality holds component-wise for d, e ∈ Rm .

We also apply the notations Re and Im , for the real and imaginary
part, to vectors in the natural component-wise fashion.
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4.2. Asymptotic formula. We are now able to state [4, Theorem 1]
which gives an asymptotic formula for the sums Sβ(X) given by (4.2).

Lemma 4.1. Let f be a nonnegative arithmetical function on Nm and
F be the associated Dirichlet series

F (s) =
+∞∑
d1=1

· · ·
+∞∑
dm=1

f(d1, . . . , dm)

ds11 · · · dsmm
.

We assume that there exists α ∈ Rm
+ such that F satisfies the following

properties:

(P1) F (s) is absolutely convergent for s such that Re(s) > α.

(P2) There exists a family of N nonzero linear forms L =
{
`(i)
}N
i=1

of LR+
m(C) and a family of R nonzero linear forms

{
h(r)
}R
r=1

of LR+
m(C) and δ1, δ3 > 0 such that the function H from Cm

to C defined by

H(s) = F (s + α)
N∏
i=1

`(i)(s)

can be analytically continued in the domain

D(δ1, δ3) =
{
s ∈ Cm : Re

(
`(i)(s)

)
> −δ1, ∀i, and

Re
(
h(r)(s)

)
> −δ3,∀r

}
(P3) There exists δ2 > 0 such that, for all ε1, ε2 > 0 the following

upper bound

H(s)�
N∏
i=1

(
| Im

(
`(i)(s)

)
|+ 1

)1−δ2 min{0,Re(`(i)(s))}
(1 + ‖ Im(s)‖ε11 )

holds uniformly in the domain D(δ1 − ε2, δ3 − ε2).

Let J(α) = {j ∈ {1, . . . ,m} : αj = 0}. We set r = #J(α) and let
`(N+1), . . . , `(N+r) be the r linear forms e∗j where j ∈ J(α). Then, un-
der previous hypotheses (P1), (P2) and (P3), there exists a polynomial
Q ∈ R[X] of degree less or equal to N + r− rank({`(i)}N+r

i=1 ) and a real

ϑ > 0, that depends on L ,
{
h(r)
}R
r=1

, δ1 , δ2 , δ3 , α and β , such that,
for all X > 1, we have

Sβ(X) = X〈α,β〉
(
Q(logX) +O(X−ϑ)

)
.

We remark that in (P2) of Lemma 4.1 we have shifted the argument
of F by α so that the critical point is s = 0 .
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Furthermore, the exact value of the degree of Q is given by [4, The-
orem 2], which we state in a form which is sufficient for our purpose.
When L =

{
`(i)
}n
i=1

is a finite subset of LR+
m(C), we define

Conv∗(L ) =
∑
`∈L

R∗+`.

Lemma 4.2. Let f be an arithmetical function satisfying all the hy-
potheses of Lemma 4.1. Let J(α) = {j ∈ {1, · · · ,m} : αj = 0}. We
set r = #J(α) and `(N+1), . . . , l(N+r) the r linear forms e∗j where

j ∈ J(α) as before. If rank({`(i)}N+r
i=1 ) = m, H(0, . . . , 0) 6= 0 and

m∑
j=1

βje
∗
j ∈ Conv∗({`(i)}N+r

i=1 ),

then Q is a polynomial

• of degree D = N + r −m,
• with the leading coefficient H(0, . . . , 0)I , where

I = lim
X→+∞

X−〈α,β〉(logX)−D
∫

y∈[1,∞)N∏N
i=1 y

`i(ej)

i 6Xβj

16j6m

N∏
i=1

y
`i(α)−1
i dy.

with y = (y1, . . . , yN).

5. Towers of quadratic extensions

5.1. Degree. We now recall a result of Balasubramanian, Luca and
Thangadurai [2, Theorem 1.1] which gives an explicit formula for the
degrees of the fields (1.1).

For a = (a1, . . . , an) ∈ Zn∗ we define the products

(5.1) bJ =
∏
j∈J

aj.

Define γa as the number of subsets J ⊆ {1, . . . , n} with

bJ ∈ N(2).

Note that since the empty set J is not excluded, we always have
γa > 1.

Furthermore, we say that a is multiplicatively independent modulo
squares if none of the products bJ with J 6= ∅ is a square (that is,
if γa = 1).
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Lemma 5.1. For a = (a1, . . . , an) ∈ Zn∗ we have

[Q
(√

a
)

: Q] =
2n

γa
.

Note that γa is a power of 2 as examining prime factorisation of
a1, . . . , an we see that this is the size of the kernel of some matrix over
the field of two elements, see also [2, Lemma 2.1]. Hence the right hand
side of the formula of Lemma 5.1 is indeed an integer number.

Corollary 5.2. For a = (a1, . . . , an) ∈ Zn∗ the field Q
(√

a
)

satis-
fies (1.3) if and only if a1, a2, . . . , an ∈ Z∗ are multiplicatively inde-
pendent modulo squares.

Alternatively, since Q contains all roots of unity of order two, Corol-
lary 5.2 also follows from Kummer theory, cf. [8, Proposition 37, Chap-
ter 14] or [14, Theorem 8.1, Chapter VI, Section 8].

5.2. Discriminant. First we recall that for a square-free a ∈ Z∗ we
have

(5.2) DiscrQ
(√

a
)

=

{
a, if a ≡ 1 (mod 4),

4a, if a ≡ 2, 3 (mod 4).

We now examine the discriminant DiscrQ
(√

a
)

of the field Q
(√

a
)

over Q . Since this is of independent interest and also for future ap-
plications we establish a formula for DiscrQ

(√
a
)

which applies to
a ∈ Zn rather than only for a ∈ Nn .

Lemma 5.3. Let a1, a2, . . . , an ∈ Z∗ be multiplicatively independent
modulo squares. Then

DiscrQ
(√

a)
)

=
∏

J⊆{1,...,n}
J 6=∅

Discr Q
(√

bJ

)
> 0,

where the integers bJ are defined by (5.1).

Proof. First we establish the positivity of DiscrQ
(√

a
)

for n > 2.
Indeed, if a ∈ Nn then there is nothing to prove. Otherwise we see
that all embeddings of Q

(√
a
)

are complex, and thus, recalling the
multiplicative independence condition and Corollary 5.2, we see their
number r2 is given by

r2 =
1

2
[Q
(√

a
)

: Q] = 2n−1.



PERFECT POWER PRODUCTS AND MULTIQUADRATIC EXTENSIONS 13

Since n > 2 we see that r2 is even and by Brill’s theorem (see [23,
Lemma 2.2]), for the sign of the discriminant, we obtain

sign
(
Discr

(
Q
(√

a
)))

= (−1)r2 = 1.

Next, we show the product on the right hand side of the desired
formula is also positive. Assume that the vector a has k negative and
m positive components. If k = 0 there is nothing to prove. If 0 < k ≤
n , we have exactly 2n−1 negative values among bJ , J ⊆ {1, . . . , n} ,
and since n ≥ 2 we have the desired positivity again.

Hence the desired equality is equivalent to∣∣DiscrQ
(√

a
)∣∣ =

∏
J⊆{1,...,n}

J 6=∅

∣∣∣DiscrQ
(√

bJ

)∣∣∣ ,
which is a simple consequence of the conductor-discriminant formula
(see, for example, [23, Theorem 3.11]).

Namely, given a Dirichlet character χ , let fχ denote its conductor,
and given a group X of Dirichlet characters, let K be the number field
associated with X . Then the discriminant of K is given by

DiscrK = (−1)r2
∏
χ∈X

fχ,

where, as before, r2 is the number of are complex embeddings.
We apply this to K = Q(

√
a1, . . . ,

√
an), under the assumption that

G = G(K/Q) = (Z/2Z)n and hence X = Ĝ is the dual group. We first

note that any nontrivial character χ ∈ Ĝ is quadratic, and its kernel
ker(χ) can be identified with an index two subgroup of G . Hence
the fixed field Kker(χ) is a quadratic extension of Q , and any such
character χ can be identifed with a Dirichlet character associated with
the quadratic extension Kker(χ)/Q .

Using the conductor-discriminant formula twice, we find that∣∣DiscrKker(χ)
∣∣ = fχ, ∀χ ∈ Ĝ,

(note that fχ = 1 if χ = χ0 is trivial), as well as

|DiscrK| =
∏
χ∈Ĝ

fχ =
∏

χ∈Ĝ\{χ0}

∣∣d(Kker(χ))
∣∣ .

Now, {Kker(χ)) : χ ∈ Ĝ\{χ0}} is exactly the set of quadratic extension
of Q , contained in K , which in turn are parametrised by the elements
of the set {Q(

√
bJ ) : J ⊆ {1, . . . , n}, J 6= ∅} . ut
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5.3. Maximal Galois groups. Let F2 denote the finite field with two
elements. Given H ∈ R+ we consider an arbitrary F2 -vector space
VH , of dimension π(H), where, as usual, π(H) denotes the number of
primes p 6 H .

Let S ⊆ N denote the set of square-free positive integers. Define a
map ϕH : (S ∩ [1, H])→ VH by

(5.3) ϕH(a) = (ep mod 2)p6H ,

where
a =

∏
p6H

pep ,

and we identify VH with π(H)-tuples of elements in F2 , indexed by
primes p 6 H .

We now show that Gal
(
Q
(√

a
)
/Q
)

is maximal if and only if the
vectors ϕH(a1), . . . , ϕH(an) are linearly independent over F2 .

Lemma 5.4. Given a ∈ (S ∩ [1, H])n we have Gal
(
Q
(√

a
)
/Q
)
'

(Z/2Z)n if and only if

dimF2 (Span (ϕH(a1), . . . , ϕH(an))) = n.

Proof. The statement follows immediately from Kummer theory (cf. [8,
Section 14.7] or [14, Chapter VI, Sections 8–9]) since the relevant roots
of unity, namely ±1, are in Q . ut

6. Proofs of main results

6.1. Proof of Theorem 2.2. As usual, for a prime p and an integer
m > 0 and y 6= 0, we use pm ‖ y to denote that

pm | y and pm+1 - y.
For m ∈Mn,k and u = (u1, . . . , un) ∈ Nn we set

um =
∏

pmj ‖uj
∀j

p

(that is, a prime p is included in the above product if and only if
pmj ‖ uj for every j = 1, . . . , n , and thus the product is finite since
m ∈Mn,k implies that mj > 0 for at least one j ).

Then we parametrize the solutions of u1 · · ·un = wk as follows:

(6.1) uj =
∏

m∈Mn,k

umjm , 1 6 j 6 n.

We note that this parametrisation resembles the one used in [5], yet
it is different in that no coprimality condition is imposed.
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We observe that

N (k)
n (H) = #

(um)m∈Mn,k
:

∏
m∈Mn,k

umjm 6 H, j = 1, . . . , n

 ,

where the vectors (um)m∈Mn,k
are formed from all possible vectors u =

(u1, . . . , un) ∈ Nn .
We now define f(d1, ..., dn) as the number of vectors (um)m , m =

(m1, . . . ,mn) ∈Mn,k , for which we simultaneously have

dj =
∏

m∈Mn,k

umjm , j = 1, . . . , n.

Clearly f(d1, . . . , dn) is multiplicative as in (4.1).
The multiple Dirichlet series associated to this counting problem is

F (s) =
∑

(um)m∈Mn,k

n∏
j=1

 ∏
m∈Mn,k

umjm

−sj

=
∏
p

1 +
∑

m∈Mn,k

1

pm1s1+...+mnsn

 .

Let {`m}m∈Mn,k,1
defined by

`m(s) =
n∑
j=1

mjsj.

There exists a holomorphic function G(s), which for any fixed ε is
uniformly bounded in the domain{

s ∈ Cn : Re `m(s) > 1
2

+ ε, m ∈Mn,k,1

}
such that

F (s) =
∏

m∈Mn,k,1

ζ (`m(s))G(s).

To see this, note that this domain is in fact equal to{
s ∈ Cn : Re sj > 1+2ε

2k
, j = 1, . . . , n

}
,

and for all s in this domain, G(s) is a product of terms of the form
P ({p−`m(s)}m∈Mn,k

) where P is the polynomial defined by

P ({Xm}m∈Mn,k
) =

1 +
∑

m∈Mn,k

Xm

 ∏
m∈Mn,k,1

(1−Xm).
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When one develops the product, the only monomial of degree 1 cor-
responds to m ∈ Mn,k,j with j > 2. Further, for any j > 2 and
m ∈Mn,k,j , we have Re `m(s) > 1 + 2ε for all s in the domain, and it
is then easy to deduce the boundedness of G(s).

We have

G

(
1

k
, . . . ,

1

k

)
=
∏
p

(
1− 1

p

)qn,k (
1 +

∞∑
i=1

#Mn,k,i

pi

)
.

We write mj = εj + khj , where εj ∈ {0, k − 1} and hj ∈ N0 ,
j = 1, . . . , n . We have

1 +
∞∑
i=1

#Mn,k,i

pi
=

(
1− 1

p

)−n(
1 +

∞∑
i=1

#En,k,i
pi

)
.

We observe that k | m1 + . . . + mn is equivalent to k | ε1 + . . . + εn .
Then we have

G

(
1

k
, . . . ,

1

k

)
=
∏
p

(
1− 1

p

)qn,k−n(
1 +

∞∑
i=1

#En,k,i
pi

)
.

The Dirichlet series F satisfies the hypotheses of Lemma 4.1 with

α = (α1, . . . , αn) =

(
1

k
, . . . ,

1

k

)
, and β = (β1, . . . , βn) = (1, . . . , 1).

One can check the hypothesis P3 by using the bound

ζ(1 + s)s� (1 + | Im s|)1−Re(s)/3+ε, for Re s ∈
[
−1

2
, 0
]
.

which holds for any fixed ε > 0.
Then there exists ϑn,k > 0, Qn,k ∈ R[X] such that

N (k)
n (H) = Hn/kQn,k(logH) +O(Hn/k−ϑn,k).

We now apply Lemma 4.2 with N = #Mn,k,1 = qn,k ,

{`(i)}16i6N = {`m}m∈Mn,k,1

and see that degQn,k = q∗n,k since `(j)(s) = ksj ∈ {`m}m∈Mn,k,1
for all

1 6 j 6 n . Then the set Mn,k∗ is the subset of Mn,k,1 which avoids
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the forms {`(i)}16i6N . Moreover

Qn,k(logH) ∼
G
(
1
k
, . . . , 1

k

)
Hn/k

∫
(zm)∈[1,∞)

#Mn,k,1∏
m∈Mn,k,1

z
mj
m 6H

dz

∼ G
(
1
k
, . . . , 1

k

) ∫
(zm)∈[1,∞)

qn,k∏
m∈M∗

n,k
z
mj
m 6H

dz∏
m∈M ∗

n,k
zm

∼ G
(
1
k
, . . . , 1

k

)
In,k(logH)q

∗
n,k ,

as H → ∞ , where In,k is defined in (2.2). This defines the leading
coefficient of Qn,k and gives the desired result.

6.2. Proof of Theorem 3.1. Let K be a field counted by Fn(X). There
are 2n− 1 quadratic extensions of Q in K . We write them as Q(

√
cj)

with 1 6 j 6 2n − 1 where cj is square-free.
We now recall that tn is defined by (3.1). Then, clearly, there are

tn ways to choose (j1, . . . , jn) such that K = Q
(√

a
)

with the vector
a = (cj1 , . . . , cjn) ∈ Zn . The other cj can be calculated from a by
choosing for each of the remaining j some unique set J ⊆ {1, . . . , n}
of cardinality #J > 2 and calculating∏

k∈J

cjk = cjd
2
j .

Then we have

Fn(X) =
1

tn
#
{

(a1, . . . , an) ∈ Zn : µ2(ak) = 1,

Discr
(
Q
(√

a
)
,Q
)
6 X, [Q

(√
a
)

: Q] = 2n
}
.

Given square-free a1, . . . , an ∈ N , we write

(6.2) aj = σj2
νj

∏
16h62n−1

z
εj(h)
h , j = 1, . . . , n,

where σj ∈ {−1, 1} , νj ∈ {0, 1} , j = 1, . . . , n , and zh are some odd
positive integers., h = 1, . . . , 2n − 1.

To see that the decomposition in (6.2) is possible, following [5], we
number all nonempty subsets Jh ⊆ {1, . . . , n} and define zh as the
greatest common divisor of aj , j ∈Jh .

Since a1, . . . , an are square-free, the numbers zh are coprime. For
J ⊆ {1, . . . , n} , and bJ as in (5.1) we have

bJ =
∏
j∈J

aj = 2nJ sJ

∏
j∈J

σj
∏

16h62n−1

z
∑
j∈J εj(h)

h

= 2nJ sJ cJ d2J ,

(6.3)
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where, as before, εj(h) denotes the j -th digit in the binary expansion
of h ,

nJ =
∑
j∈J

νj and sJ =
∏
j∈J

σj,

and cJ is odd and square-free. We have

cJ =
∏

16h62n−1∑
j∈J εj(h)≡1 (mod 2)

zh.

We write

DiscrQ (
√
a1, . . . ,

√
an) = 2WD,

where D is odd.
Using Lemma 5.3 and the formula (5.2), we derive from (6.3) that

D =
∏

J⊆{1,...,n}
J 6=∅

cJ =
∏

16h62n−1

zδhh

with

δh = 2n−s(h)
∑

06k6s(h)
k≡1 (mod 2)

(
s(h)

k

)
= 2n−1, 1 6 h 6 2n − 1,

and where

s(h) =
n∑
j=1

εj(h)

denotes the sum of digits in the binary expansion of h .
Then D is the largest odd divisor of

lcm (a)2
n−1

= lcm (a1, . . . , an)2
n−1

.

Let

• r1,4(J ) be the number of j ∈J such that aj ≡ 1 (mod 4),
• r3,4(J ) be the number of j ∈J such that aj ≡ 3 (mod 4),
• r2,8(J ) be the number of j ∈J such that aj ≡ 2 (mod 8),
• r6,8(J ) be the number of j ∈J such that aj ≡ 6 (mod 8).

We have

r1,4(J ) + r3,4(J ) + r2,8(J ) + r6,8(J ) = #J .

We now calculate v2
(
Discr(Q(

√
bJ ),Q)

)
, where bJ is as in (5.1) and

v2(m) denotes the largest power of 2 dividing an integer m 6= 0.
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Then we have

v2

(
Discr

(
Q(
√
bJ ),Q

))

=


3, if r2,8(J ) + r6,8(J ) ≡ 1 (mod 2),

2, if r3,4(J ) + r6,8(J ) ≡ 1 (mod 2),

and r2,8(J ) + r6,8(J ) ≡ 0 (mod 2),

0, otherwise.

We now set ρk1,k2 = rk1,k2({1, . . . , n}). We observe that

ρ1,4 + ρ3,4 + ρ2,8 + ρ6,8 = n.

The number U3 of J such that v2
(
Discr(Q(

√
bJ ),Q)

)
= 3 is

U3 =

{
2ρ1,4+ρ3,4+ρ2,8+ρ6,8−1 = 2n−1 if ρ2,8 + ρ6,8 > 1,

0 if ρ2,8 = ρ6,8 = 0.

The number U2 of J such that v2
(
Discr(Q(

√
bJ ),Q)

)
= 2 is

U2 =



2ρ1,4+ρ3,4+ρ2,8+ρ6,8−2 = 2n−2 if ρ3,4 + ρ6,8 > 1,

ρ2,8 + ρ6,8 > 1, ρ2,8 + ρ3,4 > 1,

2ρ3,4−1 = 2n−1 if ρ3,4 > 1, ρ2,8 = ρ6,8 = 0,

0 if ρ3,4 = ρ6,8 = 0

or ρ6,8 > 1, ρ2,8 + ρ3,4 = 0.

Using that

W = 3U3 + 2U2

we now deduce that

W =


2n+1 if ρ3,4 + ρ6,8 > 1, ρ2,8 + ρ6,8 > 1, ρ2,8 + ρ3,4 > 1,

3 · 2n−1 if ρ3,4, ρ6,8 = 0, ρ2,8 > 1, or ρ3,4, ρ2,8 = 0, ρ6,8 > 1,

2n if ρ3,4 > 1, ρ2,8, ρ6,8 = 0,

0 if ρ3,4, ρ2,8, ρ6,8 = 0.

Let Cn(W ) the number of possible configurations of the vectors a
corresponding to the four possibilities

1 (mod 4), 3 (mod 4), 2 (mod 8), 6 (mod 8)

which correspond to a given value W . Furthermore when z and a
configuration is fixed the signs σ1, . . . , σn are also uniquely defined.

In particular ∑
W∈{2n+1,3·2n−1,2n,0}

Cn(W ) = 4n.
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More precisely, we have

Cn(W ) =


4n − 3 · 2n + 2 if W = 2n+1,

2n+1 − 2 if W = 3 · 2n−1,
2n − 1 if W = 2n,

1 if W = 0.

Let

Tn(x) =
∑
z∈Z

µ2

( ∏
16h62n−1

zh

)
,

where

Z = {z ∈ N2n−1 : z1, . . . , z2n−1 odd and z1 . . . z2n−1 6 x}.
Then

(6.4) Fn(X) =
1

tn

∑
W∈{2n+1,3·2n−1,2n,0}

Cn(W )Tn

(
X1/2n−1

2W/2n−1

)
.

We have

(6.5) Tn(x) =
∑
m6x
m odd

µ2(m)(2n − 1)ω(m).

By standard methods, there exists a polynomial Qn of degree 2n−2
such that for

κn = 3/(5 + 2n)

we have

Tn(x) =
1

(2n − 2)!
x
(
Qn(log x) +O(x−κn+ε)

)
for any ε > 0. Moreover the leading coefficient of Qn is

Bn =
2

2n + 1

∏
p

(
1− 1

p

)2n−1(
1 +

2n − 1

p

)
.

Indeed, the associated Dirichlet series is hn(s) which is given by (3.2).

It can be written as hn(s) = ζ(s)2
n−1h̃n(s) where h̃n can be analytically

continued until Re s > 1
2
. For more details, see [21, Exercise 194].

From (6.4), we deduce that there exists a polynomial Pn of degree
2n − 2 such that

Fn(X) = X1/2n−1
(
Pn(logX) +O

(
X−κn/2

n−1+ε
))

for any ε > 0. Moreover the leading coefficient of Pn is

An =
4n + 5 · 2n + 10

24+(n−1)(2n−2)(2n − 2)!tn
Bn.
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6.3. Proof of Theorem 3.2. Using fn(d) = Fn(d)−Fn(d−1) and (6.4),
we write

gn(s) =
1

tn

∑
W∈{2n+1,3·2n−1,2n,0}

Cn(W )

∞∑
d=1

1

ds

(
Tn

(
d1/2

n−1

2W/2n−1

)
− Tn

(
(d− 1)1/2

n−1

2W/2n−1

))
.

(6.6)

Note that if there is an integer m with

d1/2
n−1

2W/2n−1 > m >
(d− 1)1/2

n−1

2W/2n−1

then d > 2Wm2n−1
> d − 1. Hence this is possible if and only if

d = 2Wm2n−1
. We now see from (6.5) that

Tn

(
d1/2

n−1

2W/2n−1

)
− Tn

(
(d− 1)1/2

n−1

2W/2n−1

)

=

{
µ2(m)(2n − 1)ω(m), if d = 2Wm2n−1

with m ∈ N,
0, otherwise.

Substituting this in (6.6), we easily obtain

gn(s) =
1

tn

∑
W∈{2n+1,3·2n−1,2n,0}

Cn(W )
∞∑
m=1

1

(2Wm2n−1)s
µ2(m)(2n − 1)ω(m)

and the result follows.

6.4. Proof of Theorem 3.3. As, usual we say that an integer a is Q-
friable if all prime divisors of a do not exceed Q . Let ψ(H,Q) denote
the number of positive Q-friable integers up to H , and let

u =
logH

logQ

By [20, Part III, Theorem 5.13] and Hildebrand’s theorem [11] for H >
Q > 2 we have

(6.7) ψ(H,Q)� Hu−u

for logQ > (log logH)5/3+ε and any fixed ε > 0.
Furthermore, we recall the classical asymptotic formula

(6.8) # (S ∩ [1, H]) =
1

ζ(2)
H +O

(
H1/2+o(1)

)
.
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where as before S is the set of square-free integers, see [10, Theo-
rem 334] (note that using the currently best known result of Jia [12]
with 17/54 instead of the exponent 1/2 does not affect our final result).

Finally, for Q 6 H , we have the trivial bound

# {a ∈ Bn (H) : pw-gcd(a) > Q} 6 n(n− 1)

2
Hn−2

∑
d>Q

bH/dc2

� HnQ−1,

(6.9)

where for a = (a1, . . . , an) ∈ Nn we define the pair-wise greatest com-
mon divisor pw-gcd(a) as

pw-gcd(a) = max
16i<j6n

gcd(ai, aj).

For a real Q > 2 we define

Tn(H,Q)

= {a ∈ S n ∩Bn (H) : pw-gcd(a) 6 Q and no ai is Q-friable}.

Combining (6.7), (6.8) and (6.9), we derive

(6.10) #Tn(H,Q) = Hn

(
1

ζ(2)n
+O

(
H−1/2+o(1) + u−u +Q−1

))
.

We now claim that if a,b ∈ Tn(H,Q) generate the same multi-
quadratic field (with full Galois group), then they agree up to a per-
mutation of coordinates.

We see this as follows: applying the map ϕH , given by (5.3), com-
ponentwise, we may regard a,b as two F2 matrices, with n rows
and π(H) columns. Moreover, by the nonfriability assumption on
a ∈ Tn(H,Q) (together with the assumption of square-freeness), each
ϕH(ai) has a one in some p-indexed column for some prime p > Q .

Moreover, for p > Q , using the condition on pw-gcd(a), we note
that there can be at most one nonzero element in each column. That
is, each ai gives rise to some pi > Q such that the pi -column has a
one in row i , and zeros elsewhere. Recalling Lemma 5.4, this implies
that for any a ∈ Tn(H,Q) we have Gal

(
Q
(√

a
)
/Q
)
' (Z/2Z)n .

Now, if the fields are the same, we must have ramification at the
same primes. In particular, we see from Lemma 5.3 that for each
i = 1, . . . , n there must exist some ji , 1 6 ji 6 n , such that pi | bji .
Thus, after permuting rows in the matrix associated with b , and using
that the conditions pw-gcd(b) 6 Q , also holds for b , we find that the
matrices associated to a and b are identical in the columns indexed by
p1, . . . , pn ; by permuting the rows of the two matrices, both restrictions
to these columns are in fact the identity matrix.
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Using that the fields Q
(√

a
)

and Q
(√

b
)

are the same if and only
if the associated F2 -vectors generated by the map ϕH have the same
span, there must exist some matrix M ∈ GLn(F2) that maps the ma-
trix associated with a into the matrix associated with b ; comparing
columns indexed by p1, . . . , pn we find that M is in fact the identity
matrix, provided that we have permuted the rows as above (note that
reordering the rows amounts to reordering the entries in a,b .)

Thus, after permuting the rows in b as described above we find that
a and b are the same.

Hence

(6.11) Gn(H) >
1

n!
#Tn(H,Q) +O(Hn−2Q),

where the error term comes from vectors a with two identical compo-
nents (which cannot exceed Q).

It is also obvious that alternatively we can define Gn(H) using only
vectors a with square-free components, that is, as

Gn(H)

= #
{
Q
(√

a
)

: a ∈ S n ∩Bn (H) and # Gal
(
Q
(√

a
)
/Q
)

= 2n
}
.

Thus, recalling (6.8), we immediately obtain

(6.12) Gn(H) 6 Hn

(
1

n!ζ(2)n
+O

(
H−1/2+o(1)

))
.

Combining (6.10) and (6.11) with (6.12), we obtain

Gn(H) = Hn

(
1

n!ζ(2)n
+O

(
H−1/2+o(1) + u−u +Q−1 +H−2Q

))
.

Choosing

(6.13) Q = exp
(√

(logH)(log logH)/2
)

so that u =
√

2(logH)/(log logH), we conclude the proof.

6.5. Proof of Theorem 3.4. First recall that Zk = Q(ζk) denotes the
k -th cyclotomic field. We use Kummer theory to analyze the extension
ZkKa/Zk and then use the fact that [ZkKa : Zk] = kn implies that
[Ka : Q] = kn . By Kummer theory, (cf. [8, Section 14.7] or [14, Chap-
ter VI, Sections 8–9]) we see that Gal(ZkKa/Zk) is isomorphic to

(〈a1, . . . , an〉(Z×k )k)/(Z×k )k,

where (Z×k )k denotes the k -th powers in Z×k . We begin by showing that
any relation, modulo k -th powers in Z×k , must already be a relation
modulo k -th powers in Q× .



24 R. DE LA BRETÈCHE, P. KURLBERG, AND I. E. SHPARLINSKI

Lemma 6.1. If k > 3 is an odd integer then the map

Q×/(Q×)k → Z×k /(Z
×
k )k

is injective. In particular, an element α ∈ Q× is a k -th power in Zk
if and only if α ∈ Q×k

Proof. We first recall that tk − α is irreducible over Q (cf. [14, Theo-
rem 9.1, Chapter VI, Section 9]) provided that α is not a p-th power
of some rational number, for all prime divisors p | k .

Now, let α denote a element in the kernel of the above map, and
assume that α is not a k -th power of any element in Q . If α = αp1
for some p|k and α1 ∈ Q , write k = pr and note that tpr − αp1 =∏p

i=1(t
r − ζ ipα1). Thus, if tk − αp1 has a root in Zk , there exists i such

that tr− ζ ipα1 has a root in Zk which, as ζ ip = ζ irk , implies that tr−α1

has a root in Zk . Repeating this procedure a finite number of times, we
may thus reduce to the case of showing that the irreducible polynomial
tr` −α` does not have any roots in Zk , for α` ∈ Qr {±1} , and α` not
a p-th power for any prime p | r` | k . However, by [14, Theorem 9.4,
Chapter VI, Section 9], the Galois group of tr` − α` is nonabelian,
and hence the roots cannot be contained in Zk since the cyclotomic
extension Zk/Q is abelian. ut

Thus, to count fields Ka with maximal degree is the same as counting
a = (a1, . . . , an) such that the group < a1, . . . , an > (Q×)k/(Q×)k has
cardinality kn — in other words, counting tuples (a1, . . . , ak) such that
a1, . . . , ak are independent modulo k -th powers in Q× .

With Sk denoting the set of k -free integers, we have

# (Sk ∩ [1, H]) =
1

ζ(k)
H +O

(
H1/k

)
.

As in the case of squares, we can define Gk
n(H) using only vectors a

with k -free components, that is, as

Gk
n(H) = #

{
Q
(√

a
)

: a ∈ S n
k ∩Bn (H) and [Q

(
k
√
a
)

: Q] = kn
}
.

Restricting to the set of “nice” a as in the argument for multi-
quadratic fields (that is, to the set of vectors a having no Q-friable
component ai , as well making sure any pairwise greatest common di-
visor is at most Q), the argument is essentially the same except for
one small caveat: if k is not prime, we cannot use linear algebra over a
finite field, but must rather work with the finite ring Z/kZ . However,
as End((Z/kZ)n) ' Matn(End(Z/kZ)) and the set of invertible endo-
morphisms can be identified with GLn(Z/kZ) the previous argument
applies also for k not prime.

Choosing Q as in (6.13), we conclude the proof.
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26 R. DE LA BRETÈCHE, P. KURLBERG, AND I. E. SHPARLINSKI
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