ON THE NUMBER OF PRODUCTS WHICH FORM PERFECT
POWERS AND DISCRIMINANTS OF MULTIQUADRATIC
EXTENSIONS

REGIS DE LA BRETECHE, PAR KURLBERG, AND IGOR E. SHPARLINSKI

ABSTRACT. We study some counting questions concerning prod-
ucts of positive integers wuq,...,u, which form a nonzero per-
fect square, or more generally, a perfect k-th power. We ob-
tain an asymptotic formula for the number of such integers of
bounded size and in particular improve and generalize a result of
D. I. Tolev (2011). We also use similar ideas to count the discrim-
inants of number fields which are multiquadratic extensions of QQ
and improve and generalize a result of N. Rome (2017).

1. INTRODUCTION

1.1. Background and motivation. Here we use a unified approach to
study two intrinsically related problems:

e we count the number of integer vectors which are multiplica-
tively dependent modulo squares or higher powers, in particular
we improve a result of Tolev [22];

e we obtains some statistics for towers of radical extensions and
extend and improve results of Baily [1] and Rome [19].

Our treatment of both problems is based on similar ideas, namely,
on multiplicative decompositions close to those used in [5], see (6.1)
and (6.2) in the proofs of Theorems 2.2 and 3.1, respectively, which are
our main results.

More precisely, we study the following two groups of questions.

For a fixed integer n > 2 we are, in particular, interested in the
distribution on n-dimensional vectors of positive integers

a=(ay,...,a,) € N"
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whose nontrivial sub-product a;, ...a;, , 1 <4 < ... <1, <n,isa
perfect square. This seems to be a natural analogue of the question of
counting multiplicatively dependent vectors [16].

Motivated by applications to integer factorisation algorithms a ques-
tion of the existence of such a perfect square amongst n randomly
selected integers of size at most H, has been extensively studied,
see [7,17,18]. More precisely, for the above applications it is crucial
to determine the smallest value of n (as a function of H ) for which at
least one such products is a perfect square with a probability close to
one; this question has recently been answered in a spectacular work of
Croot, Granville, Pemantle and Tetali [7].

Further motivation for this work comes from studying the multi-
quadratic extensions of Q, that is, fields of the form

(1) Q(va) = Q(var,..., an)

with vectors a = (ay,...,a,) € N (orin Z"), see, for example, [1,2,19]
and references therein. In particular we count the number of distinct
discriminants of such fields up a certain bound X, and we also count
the number of vectors a in a box for which Q (\/5) has the largest
possible Galois group Gal(Q(y/a)/Q) =~ (Z/2Z)". Finally, we also
consider towers of radical extensions of higher degree k > 2 and count
the number of vectors a in a box for which these extensions are of the
largest possible degree k™.

1.2. Our results. Our main focus is on products forming squares when
n is fixed, and thus it is easy to see that the existence of a square
product is a rare event. Furthermore, in this case, one can concentrate
on the case when such products include all numbers uq, ..., u,.

In particular, we are interested in counting such vectors and more
generally, vectors for which u; ... u, is a perfect k-th power, for a fixed
integer k£ > 2 in the hypercube

(1.2) B, (H)=[1,H]",
where H € N. In particular, we study the cardinality
NP(H) = #4," (H)

n

of the set
N E(H) = {(u1,...,u,) EN"NB, (H): uy---u, € NP}

where
N® = {sF: s €N}

denotes the set of positive integers which are perfect k-th powers.
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We note that if 7,, z(s) denotes the restricted n-ary divisor function
of s € N, that is the number of representation u;...u, = s with
integers 1 < uy,...,u, < H then

NOH) = ) man(sh).

ngn/k

Here we obtain an asymptotic formula for NT(Lk)(H ) and then make
it more explicit in the case of squares, that is for £ = 2. In turn this
can be used to study multiquadratic extensions of Q as in (1.1).

In particular, a combination of our results with a result of Balasub-
ramanian, Luca and Thangadurai [2, Theorem 1.1] allows to get an
asymptotic formula for the number of vectors a € N* N5, (H) where
B, (H) is given by (1.2) for which

(1.3) Q(v&): Q) =2"

We also consider the more difficult questions of counting the discrimi-
nants of multiquadratic number fields

We recall that Rome [19], making the result of Baily [1, Theorem 8]
more precise, has recently given the asymptotic formula for the number
of distinct discriminants of size at most X coming from biquadratic
fields Q(\/E, \/5), see also [6, Section 6.1]. We also refer to [3,6,13,24]
for other counting result for discriminants of quartic fields of different
types. More generally, using class field theory, Wright [25], extending
previous results of Méki [15] on counting abelian extensions of @Q, has
obtained asymptotic formulas for counting abelian extensions of global
fields, though without giving explicit leading constants and error terms.
We note that Maki [15] gives some (but not full) information about the
main term and also obtains a power saving in the error terms, see, for
example [15, Theorems 10.5 and 10.6], which however are weaker than
our result. Here we obtain a generalisation of results of Baily [1] and
Rome [19] to multiquadratic extensions Q (y/a) for arbitrary length
n>=2.

Furthermore, we also count distinct multiquadratic fields having
maximal Galois group, as well as the analogous question regarding
maximal degree extensions generated by higher odd index radicals (that
is, extension of the form Q (\’“/3_1) =Q (\’C/a_l, cee W) for odd k > 2;
here {/a; can denote any k-th root of a; but it is convenient to always
take a real k-th root.)

Our method can easily be adjusted to count a € Z"NB= (H) where

SB?; (H) = ([_Hv _1] U [17H]>n'



4 R. DE LA BRETECHE, P. KURLBERG, AND I. E. SHPARLINSKI

1.3. Notation. We recall that the notations U = O(V), U < V and
V' > U are all equivalent to the statement that |U| < ¢V holds with
some constant ¢ > 0, which throughout this work may depend on the
integer parameters k,n > 1, and occasionally, where obvious, on the
real parameter € > 0.

We also denote

Ny =NuU {0} and R,y =RNJ[0,00),
and it is convenient to define
Z. =7~ {0}.

Throughout the paper, the letter p always denotes a prime number.

2. PRODUCTS WHICH FORM POWERS

2.1. Products which are k-th powers. We obtain an asymptotic for-
mula, with a power saving in the error term, for NP (H) for any integer
k > 2 which generalizes and improves a result of Tolev [22] that corre-
sponds to n = 2 and gives only a logarithmic saving. We always write
m = (mq,...,m,) and introduce the sets

My ={m € NG {0} K[+ mal,
My ={m € Mpg: mi+ ...+ my, =ik},

v =A{me My #{imi >0} > 2},
fn,k,i:{ge{o,...,k—l}”; 81—|—__.—|—gn:]€7;}_

In particular, the set .4, ;1 \ 4, consists of the n vectors m with
exactly one nonzero coordinate which equals k. We also denote

n+k—1>

Qn.k = #%n,k,l = < L

(21) +k—1
n —_
@kzﬁanz#&mfwM—n=( )—n

We consider the vectors t € ]Ri’“’“, with components indexed by ele-
ments of .Z;, , and define I,,; as the volume of the following polyhe-
dron:

L, = vol {t = (tm)me.s:, € BT

(2.2)
> mjtm <1, 1<j<n}.

meA)
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Remark 2.1. Clearly the cube [0,1/k]%* is inside of the region whose
volume s measured by I, Hence, we have

ke < Loy < L.

Using the results of [4], which we summarize in Section 4, we derive
the following asymptotic formula for N,sk)(H ).
Theorem 2.2. Let n > 1 and k > 2 be fizred. There exists ¥, > 0 and
Qnk € R[X] of degree q},,., given by (2.1), such that for any H > 2
we have
NW(H) = H"*Q, 1 (log H) + O(H"*nr),
where the leading coefficient Cy, . of Qi satisfies

Cor = L [ [ (1 - z%)q"’k (1 + i #ifn’» |
p i=1

where the product is taken over all prime numbers and I,y s defined

in (2.2).

2.2. Products which are squares. We now give more explicit form of
Theorem 2.2 when k = 2; this is important for applications.
In this case we simplify the notation by setting

No(H)=NP(H), In=Ilwk, Co=Cnz Gu=1tn2 € =0o.
We now have from (2.1)
n(n+1)

2
n
éﬂn i )
* 2 (2@)
we derive

n(n—1)/2 n n
1 1 1 1 1
c=tll(-3) Glrgm) 2 0-5m) )

where the product is taken over all prime numbers.

Let S be the set of integers h € [0,2" —1] with exactly two nonzero
binary digits. In particular, the first element of 77 is 2+ 1 = 3 and
the largest element is 27! 42772 = 3. 2772,

Then we see that I,, can now be defined as the volume of the following
polyhedron:

0" = n(n—1)

Observing that

I, = vol {teR{f: > et < 1, 1<j<n},
heA’
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where ¢;(h) denotes the j-th digit in the binary expansion of h.

Remark 2.3. For numerical calculations we can add another condition
ts < ... < tzon-2 and then multiply by (n(n —1)/2)! the resulting
integral. Thus, we have

1/2
I, =1, [3:6/ dt:6/ t5(1—2t5)dt5:i
0<t3<ts<te<l—t5 0

We now see that for k£ = 2, Theorem 2.2 implies the following result.

Corollary 2.4. Let n > 1 be fized. There exists ¥, > 0 and Q,, € R[X]
of degree n(n — 1)/2 such that for any H > 2 we have

N,(H) = H"*Q,(log H) + O(H"*~"),
where the leading coefficient C,, of Q, satisfies

1 n(n—1)/2 1 1 n 1 1 n
C%:”Ilé‘ﬁ) (05m) w2 (5m) )

where the product is taken over all prime numbers.
In particular, for n = 2, we have

1\ (1 1\* 1 1\?
@ZQH(“5>G(“QW)+5@‘WQ)

p

- T-3) -2

where ( is the Riemann zeta-function.

3. COUNTING MULTIQUADRATIC FIELDS

3.1. Discriminants of multiquadratic fields. Let F,,(X) be the number
of distinct fields Q (\/5) with a € Z" of largest possible degree as
in (1.3) whose discriminant over Q satisfy

Discr Q (\/5) < X.
Let us define

(3.1) t, = [ 2" —2").
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Theorem 3.1. Let n > 1 and € > 0 be fixed. There exists a polynomial
P, of degree 2™ — 2 with the leading coefficient

4" 4+5-2"+10
23+(n—1)(2"—2)(2n + 1)(2n _ 2)!tn

me-5) (),

p

A, =

such that, for X > 2 |
Fn(X) — Xl/zn—l (Pn<lOgX> + Oz—: (annJrE)) ’
where
B 3
= on=1(5 4 gn)”

We remark that Rome [19] has obtained a special case of Theorem 3.1
for n = 2, however with a larger error term, see also [1,25]. A version of
Theorem 3.1 is also given by Fritsch [9]. His method is more elementary
and gives a weaker bound on error term, though also with a power
saving.

Let f,(d) be the number of distinct fields Q (y/a) with a € N™ of
largest possible degree as in (1.3) whose discriminants over Q satisfy

Discr Q (va) = d.

We now explicitly evaluate the generating series
o - d
ne =320 e
d=1
For this we define

(3.2) hn<s):H(1+2n_1>, s€eC, Res> 1.

S
p>2 p

Theorem 3.2. Let n > 1 be fived. For any s € C with Res > 1/2"!
we have

hn(2”‘1s)< on 1 ontl_9 4n—3-2”+2)
(1 + .

gn(5> - 22ms 23-2ns + 92n+ls

3.2. Multiquadratic fields with maximal Galois groups. We also wish
to determine the number of distinct multiquadratic fields of the form
Q(v/a) for a € N*NB, (H), that have maximal Galois group

Gal(Q(va)/Q) ~ (Z/2Z)",
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that is,
G, (H)
=#{Q(va): aeN"NB, (H) and # Cal (Q (va) /Q) =2"}.

Theorem 3.3. We have, as H — oo,

1
- —(1+0(1))+/(log H)(loglog H) /2 n
G (H) = (—n!<<2)n+0(e v ))H .

3.3. Higher index radical extensions with maximal degree. Let k£ > 3
be an odd integer. We can also determine the number of distinct fields

Ka=Q(Va) = Q(Vay,- .., Yar),

where {/a, always denotes the real k-th root of a,, for a € N*"N8,, (H),
that have maximal degree, that is

Gi(H) = #{Q(Ya) : ae N"NB, (H) and [Q(Va): Q] = k"}.

Clearly K, is never Galois since K, C R and the Galois closure of K,
must contain the k-th cyclotomic extension Z; = Q((x), where (j is
some fixed primitive k-th root of unity.

Theorem 3.4. Let k > 3 be an odd integer. Then, as H — o0,

GF(H) = ( 1 L0 (e—(1+o(1))\/(logH)(loglogH)/2>) H"
" nl¢(k)n

We remark that the general case of adjoining any choice of k-th roots
(possibly complex) to Q follows easily from the case of real roots.
Namely, for extensions of maximal degree, Kummer theory, see, for
example, [8, Section 14.7] or [14, Chapter VI, Sections 8-9], implies
that the absolute Galois group acts transitively on the set of n-tuples
of the form ( an, .G W) ,as ey, ..., e, ranges over integers in
1, k].

Further, since K,({) is the normal closure of Kj,, it follows from
Kummer theory (cf. Section 6.5) that Gal(K,((x)/Q) is maximal if
and only if [K, : Q] = k™. In particular, Theorem 3.4 also allows us
to count fields K, such that the normal closure has maximal Galois
group. In fact, it is not difficult to show that the number of a =
(ay,...,a,) € N* N B, (H) such that ai,...,a, are multiplicatively
dependent modulo k-th powers is o(H™), so Theorem 3.4 easily yields
an asymptotic formula for the number of distinct fields K,, as well
as an asymptotic formula for the number of distinct normal closures
Ka((k), as a ranges over elements in N" N5, (H).
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4. SUMS OF ARITHMETICAL FUNCTIONS OF SEVERAL VARIABLES

4.1. Setup. We say that f is a multiplicative function of N™ if
(41) f(el, ey em)f(dl, Ce >dm) = f(eldh e 7€mdm)

for all pairs of tuples of positive integers with
ged(ey e, dy -+ - dy) = 1.

We next recall some results of La Breteche [4, Theorems 1 and 2], which
for a nonnegative multiplicative function f, links the sum

(4.2) Sa(X)= > .. ) fld..dw),

1<d1 <X P 1<dpm <X Bn

where 8 = (f1,...,0m) € R™, to the behavior of the associated mul-
tiple Dirichlet series

(dy, ...
Flono o) =303 L)
di=1  dp=1

The goal is to understand analytic properties of F' in order to obtain
a tauberian theorem for multiple Dirichlet series. This is for instance
possible when F' can be written as an Euler product. As in the one
dimensional case, this is equivalent to the multiplicativity of f.

In that case, formally we have

ro - 1| X M),

p prime \ veNJ

where v = (v1,...,Un).
To state the relevant results from [4] we need further notations. We
denote by .Z,,(C) the space of linear forms

(X1, .. Xp) € C[Xy, ... X,y

Let {ej};.nzl be the canonical basis of C™ and let be {e}f};n:l the

dual basis in .Z,,(C). We denote by ZR,,(C) the set of linear forms
of Z,,(C) such that their restriction to R™ maps to R. We define
ZR (C) similarly with respect to the set Ry of nonnegative real num-
bers.

As usual, we use || -||; to denote the L'-norm and use (-) to denote
the inner product of vectors from R™.

We view R™ as a partially ordered set using the relation d > e if
and only if this inequality holds component-wise for d,e € R™.

We also apply the notations Pie and Jm, for the real and imaginary
part, to vectors in the natural component-wise fashion.
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4.2. Asymptotic formula. We are now able to state [4, Theorem 1]
which gives an asymptotic formula for the sums Sg(X) given by (4.2).

Lemma 4.1. Let f be a nonnegative arithmetical function on N™ and
F be the associated Dirichlet series

-3y )
dsl N Sm ’
di=1  dp=1
We assume that there exists o € RY' such that F' satisfies the following
properties:

(P1) F(s) is absolutely convergent for s such that Re(s) > .

(P2) There ezists a family of N nonzero linear forms & = {E(i)}i]il
of LR} (C) and a family of R nonzero linear forms {h(r)}le
of LR} (C) and 61,93 > 0 such that the function H from C™
to C defined by

N

H(s) = F(s+a) [ [ (“(s)

i=1
can be analytically continued in the domain
D(61,03) = {s € C™: Re (¢(V(s)) > —01, Vi, and
Re (h"(s)) > —d3,Vr}

(P3) There ezists 0o > 0 such that, for all €1,e9 > 0 the following
upper bound

o mnOR (OO (| es))

<<H]Jm ) [+1

holds uniformly in the domain 2(d; — 2,93 — €3).
Let J(a) ={j e {l,....m}: «a; =0}. We set r =#J(a) and let
(NHD AN be the v linear forms € where j € J(cx). Then, un-
der previous hypotheses (P1), (P2) and (P3), there exists a polynomial
Q € R[X] of degree less or equal to N +1r —rank({¢W}N*") and a real
¥ > 0, that depends on L, {h(r)}le, 01, 02, 03, a and B3, such that,
for all X > 1, we have

Sp(X) = X P (Q(log X) + O(X ™)) .

We remark that in (P2) of Lemma 4.1 we have shifted the argument
of F' by a so that the critical point is s = 0.
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Furthermore, the exact value of the degree of @ is given by [4, The-
orem 2|, which we state in a form which is sufficient for our purpose.
When £ = {E(i)}?zl is a finite subset of ZR (C), we define

Conv* (L) = Y "R L.

les

Lemma 4.2. Let f be an arithmetical function satisfying all the hy-
potheses of Lemma 4.1. Let J(a) = {j € {1,---,m} : a; = 0}. We
set v = #J(a) and (VY AN ghe v linear forms € where
j € J(a) as before. If rank({{D}NF) =m, H(0,...,0) #0 and

Zﬁ]e € Conv* ({£W}NAm),

then @ is a polynomml

e of degree D =N +1r—m
e with the leading coefficient H(O,...,0)I, where

I= lim X P (logX)™” / yelloo)N Hgf @)=
N

X—+o0 o
Yy, yfz(ej)gxﬁg i=1
1<jsm

with y = (y1, ..., Yn) -

5. TOWERS OF QUADRATIC EXTENSIONS

5.1. Degree. We now recall a result of Balasubramanian, Luca and
Thangadurai [2, Theorem 1.1] which gives an explicit formula for the
degrees of the fields (1.1).

For a = (ay,...,a,) € Z? we define the products

(5.1) by =] a
je s
Define 7, as the number of subsets ¢ C {1,...,n} with
b, €N,

Note that since the empty set # is not excluded, we always have
Ya = 1.

Furthermore, we say that a is multiplicatively independent modulo
squares if none of the products b , with _# # @ is a square (that is,

if 7o =1).
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Lemma 5.1. For a = (ay,...,a,) € Z" we have
27’1/
[Q(Va): Q] = .

Note that 7, is a power of 2 as examining prime factorisation of
ai,...,a, we see that this is the size of the kernel of some matrix over
the field of two elements, see also [2, Lemma 2.1]. Hence the right hand
side of the formula of Lemma 5.1 is indeed an integer number.

Corollary 5.2. For a = (a1,...,a,) € ZI the field Q(\/ﬁ) satis-
fies (1.3) if and only if ay,aq,...,a, € Z. are multiplicatively inde-
pendent modulo squares.

Alternatively, since Q contains all roots of unity of order two, Corol-
lary 5.2 also follows from Kummer theory, cf. [8, Proposition 37, Chap-
ter 14] or [14, Theorem 8.1, Chapter VI, Section 8|.

5.2. Discriminant. First we recall that for a square-free a € Z, we
have

(5.2) Discr Q (va) = {

a, ifa=1 (mod4),
4a, ifa=2,3 (mod4).

We now examine the discriminant Discr Q (\/5) of the field Q (\/5)
over Q. Since this is of independent interest and also for future ap-
plications we establish a formula for Discr Q (\/5) which applies to
a € Z" rather than only for a € N”.

Lemma 5.3. Let ay,as,...,a, € Z, be multiplicatively independent
modulo squares. Then

Discr Q (\/5)) = H Discr Q <,/b/) >0,
S C{L,...,n}
740

where the integers b ; are defined by (5.1).

Proof. First we establish the positivity of Discr Q (\/5) for n > 2.
Indeed, if a € N™ then there is nothing to prove. Otherwise we see
that all embeddings of Q (\/5) are complex, and thus, recalling the
multiplicative independence condition and Corollary 5.2, we see their
number ry is given by

Lo (va) @ =2,

7’225
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Since n > 2 we see that ry is even and by Brill’s theorem (see [23,
Lemma 2.2]), for the sign of the discriminant, we obtain

sign (Discr (Q (\/5))) =(-1)" =1

Next, we show the product on the right hand side of the desired
formula is also positive. Assume that the vector a has k negative and
m positive components. If £ = 0 there is nothing to prove. If 0 < k£ <
n, we have exactly 2"~ negative values among b ,, # C {1,...,n},
and since n > 2 we have the desired positivity again.

Hence the desired equality is equivalent to

‘Discr(@ (\/5)‘ = H ‘Diser(@ (@) ,
S C{L,.n}
I+
which is a simple consequence of the conductor-discriminant formula
(see, for example, [23, Theorem 3.11]).
Namely, given a Dirichlet character x, let f, denote its conductor,
and given a group X of Dirichlet characters, let K be the number field
associated with X. Then the discriminant of K is given by

Diser K = (—1)™ H Iy

xeX

where, as before, ry is the number of are complex embeddings.
We apply this to K = Q(y/aq,...,+/a,), under the assumption that

G = G(K/Q) = (Z/2Z)" and hence X = G is the dual group. We first
note that any nontrivial character y € G is quadratic, and its kernel
ker(x) can be identified with an index two subgroup of G. Hence
the fixed field K**®) is a quadratic extension of Q, and any such
character y can be identifed with a Dirichlet character associated with
the quadratic extension K*0)/Q.

Using the conductor-discriminant formula twice, we find that
}Diser Kker(X)| = frv Vx € @,
(note that f, =1 if x = xo is trivial), as well as
Disce K| = [[ fv= [ [|a@&*®)].
xeG x€G\{xo}

Now, {K*r0)): y € G\{xo}} is exactly the set of quadratic extension
of Q, contained in K, which in turn are parametrised by the elements

of the set {Q(y/b,): Z C{1,....n}, # #@}. 0
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5.3. Maximal Galois groups. Let Fy denote the finite field with two
elements. Given H € R, we consider an arbitrary Fy-vector space
Vi, of dimension 7(H), where, as usual, 7(H) denotes the number of
primes p < H.

Let . C N denote the set of square-free positive integers. Define a
map ¢y : (L NI, H]) = Vg by

(5.3) vu(a) = (e, mod 2),<p,
where
a=1]»"
p<H

and we identify Vg with 7(H)-tuples of elements in Fy, indexed by
primes p < H.

We now show that Gal (Q (y/a) /Q) is maximal if and only if the
vectors wg(ay),...,¢n(a,) are linearly independent over Fs.

Lemma 5.4. Given a € (. N [1, H])" we have Gal (Q (va) /Q) ~
(Z)27)" if and only if

disz (Span (@H(al)a SRR @H(an») = n.
Proof. The statement follows immediately from Kummer theory (cf. [8,

Section 14.7] or [14, Chapter VI, Sections 8-9]) since the relevant roots
of unity, namely +1, are in Q. O

6. PROOFS OF MAIN RESULTS

6.1. Proof of Theorem 2.2. As usual, for a prime p and an integer
m >0 and y # 0, we use p™ || y to denote that

p"ly and  p"tiy
For m € A, and u = (uy,...,u,) € N* we set

P |u;
vj
(that is, a prime p is included in the above product if and only if
p™ || u; for every j = 1,...,n, and thus the product is finite since
m € .4, implies that m; > 0 for at least one j).
Then we parametrize the solutions of u; - - - u, = w”* as follows:

(6.1) uj= ] ww, 1<j<n
mG.///n,k

We note that this parametrisation resembles the one used in [5], yet
it is different in that no coprimality condition is imposed.
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We observe that

Nr(zk)(H) = # (um)me//mk : H ij < H, j=1,...,n,,

me'/{n,k

where the vectors (um)me/{m . are formed from all possible vectors u =
(ug,...,u,) € N",

We now define f(dy,...,d,) as the number of vectors (tm)m, m =

(ma,...,my) € Mnpy, for which we simultaneously have
I ww. Jj=1..n
mei///nyk

Clearly f(di,...,d,) is multiplicative as in (4.1).
The multiple Dirichlet series associated to this counting problem is

re)= > I I ww

(Um)mejf[n k Jj=1 m€>ﬂn,k

- H 1 + Z mls1+ AMmnsn

mG/fn k

Let {¢m}me.z,,, defined by

n
S) = Z ijj.
j=1

There exists a holomorphic function G(s), which for any fixed ¢ is
uniformly bounded in the domain

{s€eC": Relm(s)>1+e, me My}

—5;

such that
Fis)= JI ¢(tm(s)Gls).
me///n,k,l
To see this, note that this domain is in fact equal to
{seC": Res; > = j=1,...,n},

and for all s in this domain, G(s) is a product of terms of the form
P({p~m® e y,,) Where P is the polynomial defined by

P({Xmbmen,) = [ 1+ D X | [[ (1—Xw)

mé.ﬁn,k mE.//lnyk,l
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When one develops the product, the only monomial of degree 1 cor-
responds to m € ., ,; with j > 2. Further, for any j > 2 and
m € M, ;, we have Re ly,(s) > 1+ 2¢ for all s in the domain, and it
is then easy to deduce the boundedness of G(s).

We have

1 1\ 1 — # M
G(E7...7E>—H(1_§) <1+; pZ >.

p

We write m; = ¢; + kh;, where ¢; € {0,k — 1} and h; € Ny,
7=1,...,n. We have

Z Hllri ( 1) - ( < #é"n,k,i>
1+ = = (1= 1+ A :
izl P’ p Zl P

We observe that k | my + ...+ m, is equivalent to k | e1 + ...+ ¢,.
Then we have

1 1\ 1\ e o HEn ki
G(E,...,E)_H(l—];) (H;T)

p

The Dirichlet series F' satisfies the hypotheses of Lemma 4.1 with

o= (... )= (%%) and B = (Br, ... 3) = (1,....1).

One can check the hypothesis P3 by using the bound
C(1+5)s < (1+ | Tms|)tRe()/3+e for Res e [—1,0].

which holds for any fixed ¢ > 0.
Then there exists 0, > 0, Q,x € R[X] such that

Nr(lk)(H) = Hn/kak(lOg H) + O(Hn/k_ﬂ"”“),
We now apply Lemma 4.2 with N = #4411 = ¢k,
{g(i)}lgigN = {lm}tmety 11

and see that deg @, = g}, since (9 (s) = ks; € {lm}tme.s,, , for all
1 < j < n. Then the set ., ;* is the subset of .#, ;, which avoids
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the forms {¢}, ;<. Moreover

G(% ..., L
Qni(logH) ~ % /zm)e[l,oo)#/”"”“’l dz

J
Hme‘/ﬂn,k,l Zm” SH

dz
~ G (%’ ey %) /(zm)e[l,oo)q”vk _

[me.ar . sz <H Hme,/l;;k “m
~ G (%,...,1) Ly(log H)™r,
as H — oo, where I, is defined in (2.2). This defines the leading
coefficient of (), and gives the desired result.

6.2. Proof of Theorem 3.1. Let K be a field counted by F,(X). There
are 2" — 1 quadratic extensions of Q in K. We write them as Q(,/c;)
with 1 < j < 2" — 1 where ¢; is square-free.

We now recall that ¢, is defined by (3.1). Then, clearly, there are
t, ways to choose (ji,...,j,) such that K = Q (y/a) with the vector
a = (¢j,...,cj,) € Z". The other ¢; can be calculated from a by
choosing for each of the remaining j some unique set ¢ C {1,...,n}
of cardinality # _¢# > 2 and calculating

2
H Cjp = cjdj.
ke 7

Then we have

Fo(X) = ! #{(ar,...,a,) €Z": pP(ar) =1,

Tt
Discr (@ (va) @) < X, [0 (va) : @ = 2'}.

Given square-free aq,...,a, € N, we write
q ) ) n )
_ v; ej(h) C
(6.2) a; = 0;2" H 2, j=1,...,n,
1<h<2n—1

where 0; € {—1,1}, v; € {0,1}, j = 1,...,n, and z, are some odd
positive integers., h=1,...,2" — 1.

To see that the decomposition in (6.2) is possible, following [5], we
number all nonempty subsets #, C {1,...,n} and define 2, as the
greatest common divisor of a;, j € 7.

Since aq,...,a, are square-free, the numbers z, are coprime. For
# CH{l,...,n},and b, asin (5.1) we have

by = HajZZnJS/ ng H Zgjjejaj(h)

(6.3) jes jes  Ish<en—1
= an SfC/dig,
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where, as before, £;(h) denotes the j-th digit in the binary expansion

of h,
n;zZuj and s/:Haj,
i€t i€t
and c¢ y is odd and square-free. We have

C/ = H Zh-
1<hL2™—1
Zjej gj(h)=1 (mod 2)

We write

Discr Q (y/ay, - .., v/an) = 2D,
where D is odd.
Using Lemma 5.3 and the formula (5.2), we derive from (6.3) that

I} 1<h<2m—1
I #O
with
__ on—s(h) S(h) __ on—1 n_
5 =2 Z) <k ="l 1<h<2"—1,

0<k<s(h
k=1 (mod 2)

and where
s(h) = &;(h)
j=1

denotes the sum of digits in the binary expansion of h.
Then D is the largest odd divisor of

lem (a)zn_1 = lem (ayq, . . . ,an)2n_1
Let
e r14(_#) be the number of j € # such that a; =1 (mod 4),
e r34(_#) be the number of j € ¢ such that a; =3 (mod 4),
e 795(_#) be the number of j € # such that a; =2 (mod 8),
o 7653(_7) be the number of j € # such that a; =6 (mod 8).
We have

ra( ) +r3a(F) +ras( ) +r6s( ) = # .7
We now calculate vy (Diser(Q(1/b »),Q)), where b 4 is as in (5.1) and

vo(m) denotes the largest power of 2 dividing an integer m # 0.
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Then we have

o (e (@1y5.))

3, ifres( 7)) +16s(F)=1 (mod 2),
2, ifrsa( F)+res(F)=1 (mod 2),
and ro8(_ 7 ) +res(Z) =0 (mod 2),

0, otherwise.
We now set pg, ky = Tk 6, ({1, ..,1}). We observe that
P14+ P34+ P2g+ Psg="n.
The number Us of _# such that vy (Discr(Q(y/b »),Q)) =3 is
geratesatprst sl = 90 ot pg > 1,
Us = {0 if pag = pss = 0.
The number U; of _# such that vy (Discr(Q(y/b »),Q)) =2 is

(OP1,4+p3,.4+tp28tpe8—2 — 9n—=2  f P34+ Pos > 1’

P28+ pes =1, pag+p3a =1,

Uy = { 2p3471 = on—1 if p3ga>1, prg=pss =0,
0 if p34=pes =0
L or peg = 1, pag+ p34a=0.
Using that
W = 3U; + 20U,

we now deduce that

on+1 if psa+pes =1, pas+pss =1, pas+psa>1,
3.2 if pgu,pes =0, pag =1, or p3a, pas =0, peg > 1,
on if p3a>1, pas,pes =0,

0 if p34, P28, pes = 0.

W:

Let C,(W) the number of possible configurations of the vectors a
corresponding to the four possibilities

1 (mod 4), 3 (mod 4), 2 (mod 8), 6 (mod 8)

which correspond to a given value W. Furthermore when z and a
configuration is fixed the signs oy, ..., 0, are also uniquely defined.
In particular
> C(W) = 4",

We{2n+1 3.9n—1 2n 0}
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More precisely, we have

An—3.0m 42 if W = 2n+L,

g+l 9 if 7 = 3. 2n-!
Co(W) = ) ’
on 1 if W =2,
1 if W =0.
Let
1) = 3 ( 0 ) |
Z2€¥ 1<h<2n—1
where
Z={zeN""1: 2, ..  zm joddand z;...20 1 < 2}
Then

1/2n—1
(6.4) Fo(X) = tl > C,(W)T, <‘§W/T) .

n W€{2n+1 73,2n71 ’27L 70}

We have
(6.5) To(z) = > p’(m)(2" — 1)~
m<x
m odd

By standard methods, there exists a polynomial @,, of degree 2™ —2
such that for

kn =3/(5+42")
we have

T (z) = @ (Qn(logz) + Oz %))

(2r—2)
for any € > 0. Moreover the leading coefficient of @), is

) 1\*! o _
B, = H(l——) <1+ )
27 + 1 i, P P

Indeed, the associated Dirichlet series is h,(s) which is given by (3.2).
It can be written as h,(s) = ((s5)*" ~'h,(s) where h,, can be analytically
continued until Res > % For more details, see [21, Exercise 194].

From (6.4), we deduce that there exists a polynomial P, of degree
2™ — 2 such that

Fo(X) = XY (P log X) + 0 (X /2744

for any € > 0. Moreover the leading coefficient of P, is
B 4" 452"+ 10
o 24+(n—1)(2”—2)(2n _ 2)!tn

A, B,.
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6.3. Proof of Theorem 3.2. Using f,(d) = F,,(d)— F,(d—1) and (6.4),

we write

W=+ X aw)

" We{an+1 3.9n—1 2n 0}

o0 1 d1/2n71 (d . 1)1/2'”71
; = 1, W | T, )]

Note that if there is an integer m with

n—1 n—1
d1/2 I (d _ 1)1/2
ow/an-1 = ow/2n-1

(6.6)

then d > 2Wm?"' > d — 1. Hence this is possible if and only if
d=2"m?""" . We now see from (6.5) that

d1/2n71 (d o 1)1/27171
1, W | T, oW

p2(m) (2" — 1) if d =2Wm?" with m e N,
0, otherwise.

Substituting this in (6.6), we easily obtain

o0

gn(s) = ti Z Cn (W) m/f(m)@" — 1)‘“(7”)

n We{2n+1,3,2n7172n70} m=1

and the result follows.

6.4. Proof of Theorem 3.3. As, usual we say that an integer a is Q-
friable if all prime divisors of a do not exceed Q). Let ¥(H, Q) denote
the number of positive @)-friable integers up to H, and let

_log H
‘T 10gQ

By [20, Part III, Theorem 5.13] and Hildebrand’s theorem [11] for H >
@ > 2 we have

(6.7) W(H,Q) < Hu™

for log @ > (loglog H)®/3*¢ and any fixed & > 0.
Furthermore, we recall the classical asymptotic formula

(6.8) # (N[, H]) = ﬁH + 0O (H'Y2reW)
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where as before .7 is the set of square-free integers, see [10, Theo-

rem 334] (note that using the currently best known result of Jia [12]

with 17/54 instead of the exponent 1/2 does not affect our final result).
Finally, for @) < H, we have the trivial bound

#lae B, (H): peged(a) > Q) < "t S i ja
(6.9) d>Q

< H"Q7,
where for a = (ay,...,a,) € N* we define the pair-wise greatest com-
mon divisor pw-ged(a) as
pw-ged(a) = max ged(a;, aj).

1<i<g<n

For a real () > 2 we define

Tn(H, Q)
={aec"NB, (H): pw-ged(a) < Q and no q; is Q-friable}.

Combining (6.7), (6.8) and (6.9), we derive

o (L “1/240(1) |, -u _1>
(6.10) #7,(H,Q)=H <<(2)n (H +u "+ Q) ).

We now claim that if a,b € J,(H,Q) generate the same multi-
quadratic field (with full Galois group), then they agree up to a per-
mutation of coordinates.

We see this as follows: applying the map g, given by (5.3), com-
ponentwise, we may regard a,b as two [y matrices, with n rows
and w(H) columns. Moreover, by the nonfriability assumption on
ac€ 7,(H,Q) (together with the assumption of square-freeness), each
vn(a;) has a one in some p-indexed column for some prime p > Q.

Moreover, for p > @, using the condition on pw-ged(a), we note
that there can be at most one nonzero element in each column. That
is, each a; gives rise to some p; > @) such that the p;-column has a
one in row %, and zeros elsewhere. Recalling Lemma 5.4, this implies
that for any a € 7,(H,Q) we have Gal (Q (va) /Q) ~ (Z/2Z)".

Now, if the fields are the same, we must have ramification at the
same primes. In particular, we see from Lemma 5.3 that for each
i =1,...,n there must exist some j;, 1 < j; < n, such that p; | b;,.
Thus, after permuting rows in the matrix associated with b, and using
that the conditions pw-ged(b) < @, also holds for b, we find that the
matrices associated to a and b are identical in the columns indexed by
D1, - - -, Pn; by permuting the rows of the two matrices, both restrictions
to these columns are in fact the identity matrix.




PERFECT POWER PRODUCTS AND MULTIQUADRATIC EXTENSIONS 23

Using that the fields Q (\/5) and @(\/B) are the same if and only
if the associated Fy-vectors generated by the map ¢y have the same
span, there must exist some matrix M € GL,(F2) that maps the ma-
trix associated with a into the matrix associated with b; comparing
columns indexed by p1,...,p, we find that M is in fact the identity
matrix, provided that we have permuted the rows as above (note that
reordering the rows amounts to reordering the entries in a, b.)

Thus, after permuting the rows in b as described above we find that
a and b are the same.

Hence

(6.11) G (H) > %#%(H, Q) + O(H™2Q),

where the error term comes from vectors a with two identical compo-
nents (which cannot exceed Q).

It is also obvious that alternatively we can define G, (H) using only
vectors a with square-free components, that is, as

Gn(H)
=#{Q(Va): ac .Y "NV, (H) and # Gal (Q (Va) /Q) =2"}.

Thus, recalling (6.8), we immediately obtain

n 1 —1/240(1)
(6.12) G.(H)< H <—n!<(2)n +0 (H** )) .
Combining (6.10) and (6.11) with (6.12), we obtain
1 — o —u — —
Gn(H):H”(WJrO(H L2tel) 4y +Q1+H2Q)).
Choosing
(6.13) Q) = exp (\/(log H)(log log H)/Q)

so that u = /2(log H)/(loglog H), we conclude the proof.

6.5. Proof of Theorem 3.4. First recall that Z;, = Q((;) denotes the
k-th cyclotomic field. We use Kummer theory to analyze the extension
ZiKa/Z) and then use the fact that [Z,K, : Z;] = k™ implies that
[Ka: Q] = k™. By Kummer theory, (cf. [8, Section 14.7] or [14, Chap-
ter VI, Sections 8-9]) we see that Gal(ZyKa/Z) is isomorphic to

({ar, - an)(Z2)5) /(2
where (Z)* denotes the k-th powers in Z,*. We begin by showing that

any relation, modulo k-th powers in Z;, must already be a relation
modulo k-th powers in Q.
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Lemma 6.1. If k > 3 is an odd integer then the map

Q*/(Q)" — Z; /(Zy)"
15 injective. In particular, an element o € Q* is a k-th power in Z
if and only if o € Q**

Proof. We first recall that t* — « is irreducible over Q (cf. [14, Theo-
rem 9.1, Chapter VI, Section 9]) provided that « is not a p-th power
of some rational number, for all prime divisors p | k.

Now, let a denote a element in the kernel of the above map, and
assume that « is not a k-th power of any element in Q. If a = of
for some p|k and «; € Q, write &k = pr and note that t*" — of =

Y (t"—=Clon). Thus, if ¥ — of has a root in Zj,, there exists i such
that t" — (loy has a root in Z, which, as ¢} = ¢}", implies that " —a;
has a root in Z;. Repeating this procedure a finite number of times, we
may thus reduce to the case of showing that the irreducible polynomial
t" — oy does not have any roots in Zj, for ap € Q. {£1}, and oy not
a p-th power for any prime p | r, | k. However, by [14, Theorem 9.4,
Chapter VI, Section 9], the Galois group of t"* — «, is nonabelian,
and hence the roots cannot be contained in Z; since the cyclotomic
extension Z;/Q is abelian. O

Thus, to count fields K, with maximal degree is the same as counting
a = (ay,...,a,) such that the group < ay,...,a, > (Q*)*/(Q*)* has
cardinality k" — in other words, counting tuples (ay, ..., ax) such that
ai,...,a are independent modulo k-th powers in Q*.

With .7} denoting the set of k-free integers, we have

4 (A NLH) = ——H+0(H).
¢(k)

As in the case of squares, we can define G¥(H) using only vectors a

with k-free components, that is, as
Gi(H)=#{Q(va): a€ #'NB,(H) and [Q (¥a) : Q] =k"}.

Restricting to the set of “nice” a as in the argument for multi-
quadratic fields (that is, to the set of vectors a having no @Q-friable
component a;, as well making sure any pairwise greatest common di-
visor is at most (Q), the argument is essentially the same except for
one small caveat: if k£ is not prime, we cannot use linear algebra over a
finite field, but must rather work with the finite ring Z/kZ. However,
as End((Z/kZ)") ~ Mat,,(End(Z/kZ)) and the set of invertible endo-
morphisms can be identified with GL,(Z/kZ) the previous argument
applies also for k£ not prime.

Choosing @ as in (6.13), we conclude the proof.
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