VARIATION OF THE NAZAROV-SODIN CONSTANT FOR RANDOM PLANE WAVES AND
ARITHMETIC RANDOM WAVES

PAR KURLBERG AND IGOR WIGMAN

ABSTRACT. This is a manuscript containing the full proofs of results announced in [KW], together with
some recent updates. We prove that the Nazarov-Sodin constant, which up to a natural scaling gives the
leading order growth for the expected number of nodal components of a random Gaussian field, genuinely
depends on the field. We then infer the same for “arithmetic random waves”, i.e. random toral Laplace
eigenfunctions.

1. INTRODUCTION

Form > 2,let f : R™ — R be a stationary centred Gaussian random field, and 7 : R™ — R its
covariance function

ri(z) = E[f(0) - f(2)] = E[f(y) - f(z +y)].

Given such an f, let p denote its spectral measure, i.e. the Fourier transform of r¢ (assumed to be a
probability measure); note that prescribing p uniquely defines f by Kolmogorov’s Theorem (cf. [CL,
Chapter 3.3].) In what follows we often allow for p to vary; it will be convenient to let f, denote a
random field with spectral measure p. We further assume that a.s. f, is sufficiently smooth, and that the
distribution of f and its derivatives is non-degenerate in an appropriate sense (a condition on the support

of p).

1.1. Nodal components and the Nazarov-Sodin constant. Let A'(f,; R) be the number of connected
components of f,71(0) in By(R) (the radius-R ball centred at 0), usually referred to as the nodal compo-
nents of f,; N'(fp; R) is a random variable. Assuming further that f, is ergodic (equivalently, p has no
atoms), with non-degenerate gradient distribution (equivalent to p not being supported on a hyperplane
passing through the origin), Nazarov and Sodin [So, Theorem 1] evaluated the expected number of nodal
components of f, to be asymptotic to

(1.1) EN(fo; B)] = ens(p) - VOI(B(1)) - R™ + o(R™),

where cys(p) > 0 is a constant, subsequently referred to as the “Nazarov-Sodin constant” of f,, and
Vol(B(1)) is the volume of the radius-1 m-ball B(1) C R™. They also established convergence in
mean, i.e., that

(1.2) H N(fp§R)

Vol(B(1))- R™ ch(p)H - 0;

it is a consequence of the assumed ergodicity of the underlying random field f,. In this manuscript we
will consider ¢y 5 as a function of the spectral density p, without assuming that f), is ergodic. To our best
knowledge, the value of ¢y g(p), even for a single p, was not rigorously known heretofore.

For m = 2, p = pg the uniform measure on the unit circle S* C R? (ie. dp = & on S, and
vanishing outside the circle) the corresponding random field frwwm is known as random monochromatic
wave; according to Berry’s Random Wave Model [Bel], frwm serves as a universal model for Laplace
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eigenfunctions on generic surfaces in the high energy limit. The corresponding universal Nazarov-Sodin
constant

df
(1.3) CRWM = CNS (2 ) >0
™

was proven to be strictly positive [NS2]]. Already in [BS], Bogomolny and Schmit employed the per-
colation theory to predict its value, but recent numerics by Nastacescu [Nal], Konrad [Kol| and Beliaev-
Kereta [BK], consistently indicate a 4.5 — 6% deviation from these predictions.

More generally, let (M, g) be a smooth compact Riemannian manifold of volume Vol(M). Here
the restriction of a fixed random field f : M — R to growing domains, as was considered on the
Euclidean space, makes no sense. Instead we consider a sequence of smooth non-degenerate random
fields { f.} e (for £ C R some discrete subset), and the total number N (f7,) of nodal components of
f1, on M (the case M = T? will be treated in § L will then be a subset of the Laplace spectrum for
T?). Here we may define a scaled covariance function of f;, around a fixed point = € M on its tangent
space T, (M) = R™ via the exponential map at =, and assume that for a.e. z € M the scaled covariance
and a few of its derivatives converge, locally uniformly, to the covariance function of a limiting stationary
Gaussian field around x and its respective derivatives; let p, be the corresponding spectral density. For
the setup as above, Nazarov-Sodin proved [So, Theorem 4] that as L — oo,

EN(fL)] = ens - Vol(M) - L™ + o(L™),

for some ¢y g > 0 depending on the limiting fields only, or, more precisely,

CNS = /CNS(Px)dm
M
is the superposition of their Nazarov-Sodin constants. This result applies in particular to random band-
limited functions on a generic Riemannian manifold, considered in [SW/, with the constant cxg > 0
strictly positive.

1.2. Statement of results for random waves on R2. Let P be the collection of probability measures
on R? supported on the radius-1 standard ball B(1) C R2, and invariant under rotation by 7. We note
that any spectral measure can without loss of generality be assumed to be 7-rotation invariant, hence the
collection of spectral measures supported on B(R) can, after rescaling, be assumed to lie in P.

Our first goal (Proposition [I.1] below) is to extend the definition of the Nazarov-Sodin constant for
all p € P, in particular, we allow spectral measures possessing atoms. We show that one may define
cng on P such that the defining property (I.1) of cyg is satisfied, though its stronger form (1.2)) might
not necessarily hold. Further, the limit on the Lh.s. of (I.2) always exists, even if it is not vanishing
(Proposition [I.2] below, cf. §[7). Rather than counting the nodal components lying in discs of increasing
radius, we will count components lying in squares with increasing side lengths; by abuse of notation
from now on N'(f,; R) will denote the number of nodal components of f, lying in the square

Dg = [-R, R]* C R*.

Though the results are equivalent for both settings (every result we are going to formulate on domains
lying in squares could equivalently be formulated for discs), unlike discs, the squares possess the extra-
convenience of tiling into smaller squares. This obstacle could be easily mended for the discs using the
ingenious “Integral-Geometric Sandwich” (which can be viewed as an infinitesimal tiling) introduced by
Nazarov-Sodin [So].

Proposition 1.1. Let f, be a plane random field with spectral density p € P. The limit

ens(p) = lim W
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exists and is uniform w.r.t. p € ‘P. More precisely, for every p € P we have
(1.4) EIN(f,; R)] = cns(p) - AR* + O(R)
with constant involved in the ‘O’-notation absolute.

As for fluctuations around the mean a la (I.2)), we have the following result:

Proposition 1.2. The limit

W - CNS(p)H

(“Nazarov-Sodin discrepancy functional”) exists for all p € P.

(1.5) dys(p) = lim E [

However, the limit is not uniform w.r.t. p € P, so in particular, an analogue of does not
hold for dyg(-). For had (1.3) been uniform, a proof similar to the proof of Theorem [I.3| below would
yield the continuity of dyg(-); this cannot holcﬂ, since on one hand it is possible to construct a measure
p € P with dyg > 0 (see §[7), and on the other hand it is possible to approximate an arbitrary measure
p € P with a smooth one p’ (e.g. by convolving with smooth mollifiers), so that f, is ergodic, and
dns(p') = 0.

We believe that the uniform rate of convergence is of two-fold independent interest. First, for
numerical simulations it determines the value of sufficiently big radius R to exhibit a realistic nodal
portrait with the prescribed precision. Second, it is instrumental for the proof of Theorem below, a
principal result of this manuscript.

Theorem 1.3. The map cns : P — R, given by

cns : p = ens(p)

is a continuous functional w.r.t. the weak-* topology on P.

To prove Theorem|[I.3]we follow the steps of Nazarov-Sodin [So] closely, controlling the various error
terms encountered. One of the key aspects of our proof, different from Nazarov-Sodin’s, is the uniform

version (1.4)) of (1.1)).

Giving good lower bounds on ¢y g(p) appears difficult and it is not a priori clear that cy g (p) genuinely
varies with p. However, it is straightforward to see that cyg(p) = 0 if p is a delta measure supported at
zero, and we can also construct examples of monochromatic random waves with cys(p) = 0 when p is
supported on two antipodal points. (See §[I.3|for some further examples of measures p satisfying stronger
symmetry assumptions, yet with the property that ¢y s(p) = 0.) This, together with the convexity and
compactness of P, easily gives the following consequence of Theorem [1.3]

Corollary 1.4. The Nazarov-Sodin constant cyg(p) for p € P attains all values in an interval of the
form [0, cax| for some 0 < cpax < 0.

Corollary sheds no light on the value of cp,.; see § for some intuition and related conjectures.

1.3. Statement of results for toral eigenfunctions (arithmetic random waves). Let .S be the set of all
integers that admit a representation as a sum of two integer squares, and let n € S. The toral Laplace
eigenfunctions f,, : T? = R2/Z? — R of eigenvalue —4m2n may be expressed as

(1.6) falw) = ) are®™ o
IX[2=n
\ezZ?

I We are grateful to Dmitry Beliaev for pointing it out to us
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for some complex coefficients {a) } satisfying a_) = @x. We endow the space of eigenfunctions with a
Gaussian probability measure by making the coefficient a) i.i.d. standard Gaussian (save for the relation
a_y = ay).

For this model (“arithmetic random waves”) it is known [KKW, [RW] that various local properties
of fn, e.g. the length fluctuations of the nodal line £, 1(0), the number of nodal intersections against
a reference curve, or the number of nodal points with a given normal direction, depend on the limiting
angular distribution of {\ € Z? : ||A||> = n}. For example, in [RW2] the nodal length fluctuations
for generic eigenfunctions was shown to vanish (this can be viewed as a refinement of Yau’s conjecture
YL Y2]]), and in [KKW] the leading order term of the variance of the fluctuations was shown to depend
on the angular distribution of {\ € Z? : ||\||> = n}. To make the notion of angular distribution precise,
forn € S let

1
1.7 n=— Sx/ /i
(1.7) Hn =) ”A%::n v

where d,, is the Dirac delta at -, be a probability measure on the unit circle S' C R2. It is then natural
(or essential) to pass to subsequences {n;} C S such that s, ; converges to some 4 in the weak-x
topology, a probability measure on S', so that the various associated quantities, such as the nodal length
variance Var(f, 1(0)) exhibit an asymptotic law. In this situation we may identify . as the spectral
density of the limiting field around each point of the torus when the unit circle is considered embedded
S!' C R? (see Lemma ; such a limiting probability measure y necessarily lies in the set Pgymm of
“monochromatic” probability measures on S!, invariant w.r.t. 7/2-rotation and complex conjugation
(i.e. (z1,22) = (21, —x2)). In fact, the family of weak-* partial limits of {x,, } (“attainable” measures)
is known [KW?2] to be a proper subset of Pgymm.

Let N(f,,) denote the total number of nodal components of f,, on T2. On one hand, an application of
[So, Theorem 4] yieldsﬂ that if, as above, ji,; = p for p a probability measure on S 1. we have

(1.8) EN(fn,)] = ens(p) - nj 4 o(ny),

with the leading constant cjyg (1) same as for the scale-invariant model (I.1)), cf. [Rol Theorem 1.2]. On
the other hand, we will be able to infer from Proposition [1.1|the more precise uniform statement (1.11)),
by considering f,, on the square [0,1]? via the natural quotient map ¢ : R? < T? (see the proof of

Theorem [I.5] part T)).

For ;1 € Psymm We can classify all measures y such that cyg(p) = 0, in particular classify when the
leading constant on the r.h.s. of (I.8)) vanishes. Namely, for § € [0, 27] let

2(0) := (cos(f),sin(h)) € S' C R?,

3

1
(1.9) o= > b.hrs2)
k=0
be the Cilleruelo measure [Cil], and
13
(1.10) o= 7D Ou(/akn/2)
k=0

be the tilted Cilleruelo measure; these are the only measures in Psymm supported on precisely 4 points.
In addition to the aforementioned classification of measures /1 € Peymm With cyg(p) = 0 we prove the
following concerning the rate of convergence (1.8)), and the range of possible constants ¢y s(1) appearing

2Considering cn s in the more general sense as in Proposition and making the necessary adjustments in case p does not
fall into the class of spectral measures considered by Nazarov-Sodin.
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on the r.h.s. of (I.8). (Note that the Nazarov-Sodin constant on the r.h.s. of (I.T1) is associated with i,
as opposed to the r.h.s. of (I.8)), which is associated with the limiting measure y.)

Theorem 1.5. (1) We have uniformly forn € S
(L.11) EN(fn)] = ens(pn) -1+ O(Vn),

with the constant involved in the ‘O’-notation absolute.
(2) If pn; = p for some subsequence {n;} C S, where i has no atoms, then convergence in mean
holds:

(1.12) E HN(f”) - ch(mH = 0,(1).

U
(3) For jt € Pyymm, cns(p) = 0 if and only if p = vg or pp = 1.
(4) For p in the family of weak-* partial limits of { i, }, the functional cys(p) attains all values in
an interval of the form Ing = [0, dpaq] with some dyq, > 0.

It is opportune to mention that D. Beliaev has informed us that he, together with M. McAuley and S.
Muirhead, recently obtained a full classification the set of measures p € P for which cyg(p) = 0.
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2. DISCUSSION AND OUTLINE OF KEY IDEAS

2.1. Continuity of the number of nodal domains. Theorem (1.3 a principal result of this paper, states
that the expected number [E [N( f,; R)] of nodal domains of f, lying in a compact domain of R?, properly
normalized, is continuous in the limit R — oo, namely cyg(p). We believe that it is in fact continuous
without taking the limit, i.e. for R fixed, the function

p = EIN(fp R)]
is a continuous function on P.

2.2. Maximal Nazarov-Sodin constant. As for the maximal possible value of cyg, it seems reason-
able to assume that, in order to maximize the nodal domains number for p € P, one had better maximize
the weight of the highest possible wavenumber. That is, to attain cp .y as in Corollary @] the measure
p should be supported on S' C R?, i.e. the random wave f, must be monochromatic. Among those
measures p € P supported in S we know that the more concentrated ones (i.e. those supported on two
antipodal points, or, for p € Psymm, Cilleruelo measure 1 supported on 4 symmetric points %1, %) min-
imize the nodal domains number (Theorem[I.5] part3)); (tilted) Cilleruelo measure is known to minimize
other local quantities [KKWI| when the uniform measure maximizes it, or vice versa.
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For example, it is easy to see that E[N(f, R)] is bounded above by the expected number of points

x = (x1,x2) € Dg such that

0 0
f@=0= L@+ L),

and this expectation can be shown to be minimal for the Cilleruelo measure. Now, as the upper bound
expectation is not invariant with respect to change of coordinates via rotation it is natural to chose the
optimal rotation. That is, given a spectral measure p one should optimize by choosing a rotation that
minimizes the above upper bound. The Cilleruelo measure, as well as the twisted one, has a minimal
optimized upper bound, whereas the uniform measure has a maximal optimized upper bound.

It thus seems plausible that the uniform measure p = % on S! corresponding to the Nazarov-Sodin
constant cry s in (1.3) maximizes the Nazarov-Sodin constant; since it happens % € Psymm to lie in
Psymm, and is also a weak-x limit of {11, } in (I.7)), it then also maximizes the Nazarov-Sodin constant re-
stricted as in Theorem|[I.5] The above discussion is our motivation for the following conjecture regarding
the maximal possible values cpax (resp. dmax) of the Nazarov-Sodin constant.

Conjecture 2.1. (1) For ft € Psymm that are weak-* limits of {4}, the maximal value dpax is
uniquely attained by ¢y s(ug1), where g1 is the uniform measure on St C R2. In particular,

dmax = CRWM-
(2) For p € P, the maximal value cpayx is uniquely attained by cys(p) for p the uniform measure
on S' C R2. In particular
Cmax = @max = CRWM-
2.3. Cilleruelo sequences for arithmetic random waves. On one hand Theorem[I.5]shows that, if one
stays away from the Cilleruelo measure, it is possible to infer the asymptotic behavior of the toral nodal

domains number N( f,,) from the asymptotic behavior of N( f,; -) where p = py, is the spectral measure
of f,, when considered on R2. On the other hand, if {nj} C S'is a Cilleruelo sequence, i.e.,

(2.1) Hn; = Vo,
then from part 3 of Theorem [I.5| we can only infer that
E[N(fn,
i BN
Jj—00 nj

with no further understanding of the true asymptotic behavior of E[N( fy,)].

It is possible to realize the Euclidean random field f,, : R> — R as a trigonometric polynomial
(for more details, see (6.3) or (6.4)), with only 4 nonzero coefficients (see the 1st proof of Lemma [6.1]
below); a typical sample of the corresponding nodal pictures are shown in Figure 2] (cf. §[6.2]) We may
deduce that a.s. N(f,,;-) = 0, i.e. there are no compact domains of f,, at all and all the domains are
either predominantly horizontal or predominantly vertical, occurring with probability % The analogous
situation on the torus occurs for n = m? with

1
go:m(x) = —= - (a1 - cos(m - &1 + 1) + ag - cos(m - x3 +12)) ,

V2

where a1, as are Rayleigh(1) distributed independent random variables, and 7y, 72 € [0, 27) are random
phases uniformly drawn in [0, 27); in this case the nodal components in Figure [2] all become periodic
with nontrivial homology, and their number is of order of magnitude

(2.2) N(go) ~ m =~ /n.

Since the Nazarov-Sodin constant does not vanish outside of the (tilted) Cilleruelo measure, for every
finite instance f,, with n € S one would expect for more domains as compared to (2.2)), whether or not



VARIATION THE NAZAROV-SODIN CONSTANT 7

n is a square, i.e., N'(f,) > y/n. The above intuition has some reservations. A fragment of a sample
nodal portrait of f,, with n corresponding to a measure p,, close to Cilleruelo is given in Figure
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FIGURE 1. Left: Plot of a fragment of a random “Cilleruelo” type eigenfunc-
tion, nodal curves in black. Right: corresponding spectral measure. Here n =
9676418088513347624474653 and r2(n) = |{(z,y) € Z% : 2% + y?> = n}| = 256;
for this particular choice of n, the corresponding lattice points, shown in red, are con-
centrated around 4 antipodal points.

It exhibits that, just as in Figure 2] the nodal domains are all predominantly horizontal or vertical, but
the suggested effect of the perturbed Cilleruelo shows that the periodic trajectories sometime connect
in some percolation-like process, and transform from horizontal to vertical and back. Judging from the
small presented fragment it seems difficult to determine to what extent this procedure decreases the total
number of nodal domains, in particular whether the expectation is bounded or not. For a higher resolution
picture, as well as some further examples of Cilleruelo eigenfunctions, see Appendix [A]

In any case it is likely that the genuine asymptotic behavior of E[N/( fn;)] depends on the rate of
convergence (2.1)), hence does not admit a simple asymptotic law. With all our reservations, the above
discussion is our basis for the following question.

Question 2.2. Is it true that for an arbitrary Cilleruelo sequence,

lim inf E[N(fp,)] — oo,
j—00

or, even stronger

E[N(fa,)] 3 /757

If, as we tend to think, the answer to the latter question is “yes”, then a simple compactness argument

yields that for the full sequence n € S we have

lim EN(f,)] = cc.

n—oo
2.4. The true nature of the Nazarov-Sodin constant. Motivated by the fact that various local quanti-
ties, such as the nodal length variance [KKW]|, or the expected number of “flips” (see (3.6)) or critical
points, only depends on the first non-trivial Fourier coefficient of the measure, we raise the following
question.

Question 2.3. Is it true that ¢ g(p) with p1 € Peymm only depends on finitely many Fourier coefficients,
e.g. fi(4) or (B(4), A(8))?
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2.5. Key ideas of the proof of Theorem[1.3} To prove the continuity of ¢ g in Theorem[I.3|we wish to
show that [cns(p)—cns(p’)|is small for two “close” spectral measures p, p'. To this end we show that for
alarge R there exists a coupling between the random fields f, and f,/, and that N'(f,, R) and N'(f,s, R)
are very likely to be close (in fact, that f, and f, are C'-close and that they have essentially the same
nodal components). Of key importance is that both f, and f,/ are not only C L_close, but also likely to
be “stable” in the sense that small perturbations do not change the number of nodal components, except
near the boundary. However, we can only prove stability, and the desired properties of the coupling, for
square domains Dpg for R fixed, and it is thus essential to have bounds on the difference

N (fo. R)/(4R?) — ens(p)

that are uniform in both p and R.

To obtain uniformity in R we tile a “huge” square with a fixed “large” square, and count nodal domains
entirely contained in the fixed large square. By translation invariance, the expectation over all large
squares is the same, hence the scaled number of components in the large square (i.e., scaling by dividing
by the area of the square) is the same as the scaled number of components of the huge square, up to
an error involving the (scaled) number of nodal components that intersect a boundaries of at least one
large square. This in turn can be uniformly bounded (in terms of p) by using Kac-Rice type techniques
to uniformly bound the expected number of zeros of f, lying on a curve (the bound of course depends
on its length), cf. Lemma[3.2]

In case the huge square cannot exactly be tiled by large squares, we make use of the following ob-
servation: the number of nodal domains entirely contained in some region is bounded from above by
the number of “flip points”, i.e., points = = (1, z2) where f = g—afl = 0, and the expected number of
such points is, up to a uniform constant, bounded by the area of the region. To show this we again use a
Kac-Rice type “local” estimates, cf. Lemma [3.4]and its proof.

Nazarov and Sodin assume that the support of p is not contained in a line, in order for non-degeneracy
of (fp, Vf,) to hold. Now, if p; = p and the limiting measure p is non-degenerate, there exists € > 0
such that p is outside a small neighborhood P, of the degenerate measures within P defined in §[3]below
(see . The outlined approach above yields continuity of ¢ g around p in the complement P \ P..

On the other hand, if the limit p is degenerate we use a separate argument. First we show that
cns(p) = 0 by showing that f,, almost surely, has no bounded nodal domains; similarly this shows
that we may assume that all p; gives rise to non-degenerate fields. As non-degeneracy holds along the
full sequence, we can then use Kac-Rice type local argument giving that E(N(f,,; R))/R* — 0 as
i — 00.

3. KAC-RICE PREMISE

We begin with collecting some notational conventions. Given a smooth function f on R? let f; =

of = g—gfl, fo = 8%, and fio = 010af = 8325;2 (etc), where & = (21, 22) € R?; and similarly for
smooth functions f : T? — R.

The Kac-Rice formula is a standard tool for computing moments of various local properties of random
(Gaussian) fields, such as, for example, number of nodal intersections against a reference curve, number
of critical points etc. For our purposes we will not require any result beyond the expectation of the
number of zeros Zp of a stationary Gaussian field F' : D — R"™ on a compact domain D C R" (closed
interval for n = 1), with the sole intention of applying it in the 2d case. For x € D define the zero

density as the conditional Gaussian expectation
(3.1) Ky (z) = Kyp(2) = 6p(2)(0) - B[ det Jp(2)|| F () = 0],

where ¢, is the probability density function of the Gaussian vector F'(x) € R", and Jr(x) is the Ja-
cobian matrix of F' at . The Kac-Rice meta-theorem states that, under some non-degeneracy conditions
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on I,

(3.2) E(Zr] = [ Ki(x)da;
/

to our best knowledge the mildest sufficient conditions for the validity of (3.2)), due to Azais-Wschebor [AW),
Theorem 6.3], is that for all € D the distribution of the Gaussian vector F'(x) € R™ is non-degenerate.
As for the zero density K (z) in (3.1), since (3.I) is a Gaussian expectation depending on the law of
(F(x), JJp(x)), itis in principle possible to express K in terms of the covariance of F'. For F' a derived
field of f, (if, for example, F' is a restriction of f, on the reference curve C in Lemma below, or
F = (fp,01f,) in Lemma 3.4 below) it is possible to express K () in terms of the covariance function

ro(x,y) = Elfp(2) - fo(y)]

and its various derivatives, or, what is equivalent, its spectral measure p, supported on B(1):

33) rla) = | elle.)dolo),
B(1)

where
e(t) — 627rit.

In case I is stationary (see Lemmabelow), Ki.p(z)in is independent of x; in this case to prove
a uniform upper bound we only need to control it in terms of F'.

For the Kac-Rice method to apply it is essential that the field is nondegenerate. In order to analyze
certain degenerate limit measures we introduce the following notation. Given a stationary Gaussian field
[, with spectral measure p, let C'(p) denote the positive semi-definite covariance matrix

. Var(01 f,(0)) Cov (91 £,(0),02£,(0))
34 Clo) = <cov(a1 LOL0f0)  Var(dafy(0)) )

and let A(p) > 0 denote the smallest eigenvalue of C'(p). As the map p — C|(p) is continuous, the same
holds for p — A(p). Thus, if we are given € > 0 define

(3.5) Po:={peP:Ap) <e}
we find that P \ P, is a closed subset of P. Abusing notation slightly it is convenient to let
Po:={peP:Ap) =0}

denote the set spectral measures giving rise to degenerate fields. (We may interpret the covariance matrix
C'(p) as a matrix representing a positive semi-definite quadratic form; non-degeneracy is then equivalent
to the form being positive definite. As quadratic forms in two variables can be diagonalised by a rotation,
degeneracy implies that after a change of coordinates by rotation, we have Var(d f) = [ &2 dp(€) = 0,
and hence the support of p must be contained in the line &; = 0.)

As we intend to apply the Kac-Rice formula on f,, for p € P\ P, for some € > 0, and some derived
random fields (see lemmas [3.2] and [3.4] below) we will need to collect the following facts.

Lemma 3.1. (1) For every unit variance random field F' : D — R, and © € D, the value F(x) is
independent of the gradient V F ().
(2) The variances Var(01f,), Var(02f,) of the first partial derivatives is bounded away from 0,
uniformly for p € P\ P..

The proof of Lemma [3.1] will be given in §
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3.1. Intersections with curves and flips. We begin with a bound on expected number of nodal inter-
sections with curves, whose proof will be given in §[3.4]

Lemma 3.2. Let C C R? be a smooth curve of length L, and N ( f»,C) the number of nodal intersections
of fpwithC, p € P. Then
EN(f,,C)] = O(£)

with constant involved in the ‘O’-notation absolute.

The notion of “nodal flips” will be very useful for giving uniform upper bounds on the number of
nodal domains.

Notation 3.3. For D C R? a nice closed domain we denote the number of vertical and horizontal nodal
flips

S1(fp; D) =#{x € D: fy(x) = O fy(x)
So(fp; D) =#{x €D fy(x) = afy(x)

(3.6)

respectively.

Lemma 3.4. Forall p € P\ Py, we have

E[S1(f5i D)] = O (Area(D) - Var(af,) )
(3.7)
E[Sa2(fp; D) = <Area(D) -Var((?lfp)l/z) ,

and consequently
max(E[S1(f,; D)), E[S2(fp; D)]) = O(Area(D))
with constants involved in the ‘O’-notation absolute.
Lemma [3.4] will be proved in §[3.4] As it was mentioned above, for p € P. we may arrange that, after

rotating if necessary, either Var (0 f,,) or Var(02 f,) is at most e. To treat the degenerate case p € Py we
record the following fact.

Lemma 3.5. If p € Py then N'(f,;-) = 0. In particular in this case (L.4) holds with cys(p) = 0.

Proof. After changing coordinates by a rotation, we may assume that Var(9; f) = 0. Hence, almost
surely, we have f(x1,z2) = g(x2) for some function g, and thus f has no compact nodal domains, and
in particular cyg(p) = 0. O

3.2. Proof of Proposition[L.1}

Proof. First, we may assume that p € P\ Py by the virtue of Lemma so that we are eligible to apply
Lemma on f,. Now let Rz >> R1 >> 0 be a two big real numbers; for notational convenience we
will at first assume that

(3.8) Ry = kR,

is an integer multiple of Ra, k > 1. We divide the square Dg, = [—Ra, Ro]? into 4k? = 4%% smaller
1

squares

{DRosijtij=1..2k
of side length R, disjoint save to boundary overlaps. Every nodal component lying in Dpg, is either
lying entirely in one of the Dg,; ; or intersects at least one of the vertical or horizontal line segments,
{r =i-T, |yl < Re},i =—k,...k,or{y = j-T,|z| < Ra}, j = —k,...,k respectively. Let
N (fp; DRry:ij) be the number of nodal components of f, lying in Dg,.; j, and Z(f,; R2,x = iR1),
Z(fp; Ra2,y = jR1) be the number of nodal intersections of f, against a finite vertical or horizontal line
segment as above.
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The above approach shows that

k
(fpaRQ Z pr7DR2, 2,] +O<Z Z fp7R27'T—/LRl)>

1<4,5<2k i=—k
(3.9) N
+0 | Y Z(fy; Ra,y = jR1)
j=—k

We now take expectation of both sides of (3.9); using the translation invariance of f,, and Lemma
we find that

(3.10) E[N(fy; R2)] = 4k - E[N(f»; R1/2)] + O(kRy),

where the constant involved in the ‘O’-notation is absolute. A simple manipulation with (3.10), bearing
in mind (3.8)), now implies

3.11) ‘E[N(meQ)] E[N(fp§R1/2)]‘ 0 (1)

2 o 2
4R35 Ry Ry
with the constant involved in the ‘O’-notation absolute, with (3.11).
In case Rs is not an integer multiple of 12, in the above argument we leave a small rectangular corridor
of size at most R; X Ry (in fact, two such corridors). In this case the estimate (3.11)) should be replaced

by

(3.12) ’E[N(fp;Rz)] EW(fp;Rl/2)]‘ _0 <1 n R1>

4R3 - R? Ri Ry

with O(%) coming from the contribution of the small rectangular leftover corridor thinking of R much
bigger than R1; here we used Lemma|3.4] valid since we assumed p € P \ P. The latter estimate (3.12)
shows that {W} satisfies the Cauchy convergence criterion (if R; and Ry are of comparable size

then we use the triangle inequality, after tiling both Dy, and Dp, / with much finer mesh size), we then
denote its limit by

ons(p) = fim EEG

Now that the existence of the limit ¢y g(p) is proved, we may assume that Ry is an integer multiple of
R, and take the limit Ry — oo in (3.11)); it yields

@13 PRI st =0 ()

again with the constant in the‘O’-notation on the r.h.s. absolute. We conclude the proof of Proposition

[1.1]by noticing that (3:13) is a restatement of (T.4) (e.g. replace Ry by R/2).
([

3.3. Proof of Proposition[1.2]

Proof. Again, for p € Py there is nothing to prove here thanks to Lemma [3.5] so that from this point on
we assume that p € P\ Py. Let

(3.14) = elo) = timint || — )|
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in what follows we argue that, in fact, £ is the limit. Let ¢ > 0 be given and Ry = Ri(p, €) > 0 such that

HN fpaRl/Q)

(3.15) cNS(p)H <é+e

Following the proof of Proposition [I.1] let Ry > R1 > 0 be a large real number; as before we divide
the square Dy, = [—R2, R2)? into the smaller squares {DR,,i,j }1<i j<ok of side length R; leaving a
couple of corridors of size at most R; X Ra, and write (cf.

k
0 < N(fp; R2) — Z N (fpi DRysij) < Z Z(fp; Ra2,z = iRy)

(3 16) 1<4,j <2k i=—k

+ Z fpvR27 _jR1)+N(fp;fR2,R1)7
j=—k

where we denoted Fg, g, to be the union of the two leftover rectangular corridors, and N'(f,, Fr,.r,)
the corresponding number of nodal domains lying entirely inside Fr, g, .

Taking the expectation of both sides of and dividing by 4R2 we have that (using the non-
negativity of the Lh.s. of (3.16))

N(f ;RQ) 1 N(f i Dr,-i ) 1 Ry
(3.17) E P72772. Z % —0(—+ ),
AR2 | R? R Ry

thanks to Lemma 3.4} valid for p € P\ Py. On the other hand, by (3-13), the triangle inequality, and the
translation invariance of f,, we have that

1 N f ;DR 30,7
@ . Z ( PR2 2 ]) —CNS(P)
1<4,j<2k 1
1 N(fy; D
(3.18) < 102 Hp fait ’]) - CNS(P)H
1<7,]<2k
N(fy; R1/2
prl/) ch(p)H <E+te
We have then
N (fp; R2) N (fp; R2) 1 N (fp; DRysij)
] <o 1 5 D
AR2 4R2 4k2 1<WZ;2 i R?
(3.19) T
1<4,j<2k 1 1 2

by Lemma 3.4 (3.17), (3.18), and, again, the triangle inequality. Since € > 0 on the r.h.s. of (3.19) is
arbitrary, fixing Ry > 0 satisfying (3.13) arbitrarily big, and taking lim sup of both sides of (3.19) yields

RQA)OO

M st <6

comparing the latter equality with (3.14)) finally yields the existence of the limit (I.5]).

limsup E [

R—o0
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3.4. Proofs of the local estimates.

Proof of Lemma3.1] Letrp(x,y) = E[F(x)-F(y)] be the covariance function of F, by the assumptions
of Lemma 3.1l we have that

(3.20) E[f(x)- f(z)] =rp(z,z) = 1.

The independence of F'(x) and V F(x) then follows upon differentiating concluding the first part
of Lemma The second part of Lemma is obvious from the definition of C(p) bearing in
mind the aforementioned diagonalisation of C'(p) by a rotation (see the interpretation of C(p) and P
immediately after (3.3)).

O

Proof of Lemma[3.2} Lety : [0, £] — R? be an arc-length parametrization of C, and
9(t) = gep(t) = fo(v(1))

be the restriction g : [0,£] — R of f, along C. The process g is centred Gaussian, with covariance
function

(3.21) rg(t1,t2) = 7p(y(t2) — y(t1))

with r, the covariance function of f,.

The number of nodal intersections of f, against C is then a.s. equal to N'(f,,C) = Z,, the number of
zeros of g on [0, £]. Since f,, has unit variance, so does g; therefore (Lemma 3.1)) for every ¢ € [0, ] the
value ¢(t) is independent of the derivative ¢'(¢). We then have by Kac-Rice [AW], Theorem 6.3]

where

1 | 9%
Ki(t) = Kuyy(t) = — i
1(t) 179(t) ﬂm

is the zero density of g. The statement of Lemma will follow once we show that the mixed second

2
derivative 517(;’22 of r4 is uniformly bounded by an absolute constant, independent of v and p € P.
To this end we differentiate (3.21]) to compute

O, Oryrg(tr,ta) = —3(t1) - Hy, (v(t2) — (1)) - 4(t2)",
where H,., is the Hessian of r,. That
atl 8152 T'g (t17 t2)

is bounded by an absolute constant then follows from the fact that

1D = 17E)l = 1,
and that H,, is bounded follows by differentiating (3.3)), using the bounded support of p.
O

Proof of Lemma[3.4] To prove the first assertion we record the following useful fact about nondegen-
erate centred Gaussians: with (X, Y, Z) denoting components of a nondegenerate multivariate normal
distribution having mean zero, we have

(3.22) Var(X|Y = Z = 0) < Var(X).

While it is easy to validate (3.22)) by an explicit computation, it is also a (very) particular consequence
of the vastly general Gaussian Correlation Inequality [Roy].
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Now, by Kac-Rice [AW, Theorem 6.3] it follows that, if for all x € D, the Gaussian distribution of
(3.23) F(z) == (fo(2), 01f,(x))
is non-degenerate (holding by both parts of Lemma [3.1)), then (3.2)) is satisfied with
Ki(z) = Ky;p(w)
the appropriately defined flips density with F' given by (3.23), and by stationarity we have

(3.24) Ki(x) = K1(0).
Now from (3.24]) and (3.2)) it then follows that
(3.25) E[S1(fy; D)] = K1(0) - Area(D),

and it is sufficient to show that
K1(0) =0 (Var(82 fp)1/2) .
Upon recalling that F' is given by (3.23) we have that
(3.26) K1(0) = ¢p(0)(0,0) - E[| det J(0)|| £,(0) = 01 £,(0) = 0],
where ¢ (o) is the probability density of the Gaussian vector

F(O> = (fp(o)valfp(o))a

_ (01fp(x)  Oafy(x)
Jrp(x) = <8ffp($) 8132fp($)>

and

is the Jacobian matrix of F'.
Conditioned on 01 f,(0) = 0 we have that

det(Jp(z)) = —Baf,(x) - D2 f, (),

hence is
_ 1 . . ) )
K,(0) = 2m+/ Var(01 f,(0)) E[|02f,(0) - 01 fp(O)pr(O) — O11,(0) = 0]
1
327 < 2 Var(alfp(o)) : \/Val"(anp(O)‘fp(O) = 81fp(0) _ 0) %

x \/Var(82 £,(0)]£,(0) = 81 £,(0) = 0)
o (warwzfpw)) x warw%fp(o»)
Var(01 f,(0))

by Cauchy-Schwartz and the above mentioned bound (3.22) on the conditional variance.
Now, differentiating (3.3 we have that

(3.28) Var (01 £,(0)) = (27)? /

B(1)

y2dp(y) and Var(8a1,(0)) = (21)? / y2dp(y).
B(1)

showing in particular the uniform bound
(3.29) Var(02f,(0)) = O(1).

Differentiating (3.3)) in a similar fashion we obtain the analogous expression

(3.30) Var(92£,(0)) = (27)" /B o)



VARIATION THE NAZAROV-SODIN CONSTANT 15

for Var(9? f,(0)). The identity (3.30) together with (3.28)) imply that the ratio

2
(3.31) Var0ifpo(0) _ 5y
Var(0 f,(0))

is uniformly bounded, since y < y3 for all y € B(1). Finally (3.31) together with (3:29) imply that the
r.h.s. of is uniformly bounded, sufficient for the first assertion of Lemma [3.4] via (3.25).

The second assertion of Lemma [3.4]can be deduced from the first by changing coordinates via rotating
by 7 /2. The final assertion follows immediately from the two first.

O

4. PROOF OF THEOREM|[IL.3l CONTINUITY OF THE NAZAROV-SODIN CONSTANT

We shall treat the case of limiting spectral measures p lying in Py separately, and we begin with the
following result.

Lemma 4.1. If p € Py and p; = p (convergence in weak-* topology), then

ens(pi) = ens(p) = 0.

Proof. By Lemma we have cyg(p) = 0. Moreover, the same holds for those j such that p; € Py
and hence it is enough to treat the case that p; ¢ Py for all j. Now, as p; — p and p € Py, we find that
given € > 0 there exist J such that p; € P, for all j > J. Thus, after making a (possibly j-dependent)
rotational change of variables, we may assume that Var(d; f,;) < € and Lemma then implies that
ens(pj) = O (Ve) for j > J. The result follows.

O

4.1. Preliminary results.

4.1.1. Perturbing the random field. The following proposition, proved in §[5] below, will be used in the
proof of Theorem|[I.3]

Proposition 4.2. Let R > 0 be sufficiently big, € > 0, £ > 0, and let {p;} C P \ Pe be a sequence of
probability measures, weak-x convergent to py € P\ Pe. There exists a number jo = jo(€;{p;}; R, &) >
0 such that for all j > jo there exists a coupling of f,, and f,, and an event Qg = Qo(po, pj; R, &) of
probability P(Qo) < & such that on Q \ Qo we have

“.1 N(fp;i R=1) S N(fpo; B) SN (fp;; R+ 1).
4.1.2. Small domains. For smooth (deterministic) function F' : R? — R, R > 0 and a small parameter

d € (0, 1] we denote Ns_ g, (F'; R) to be the number of domains of area < § (“d-small domains™) lying
entirely inside B(R). Accordingly, let

N&—big(F; R) :N(F7R) _N(i—sm(F; R)

be the number of “d-big domains” (a more appropriate, though cumbersome, term would be “d-not-
small”). We have the following bound for the expected number of §-small domains of f,.

Lemma 4.3 (Cf. [NS2]]; [SW|] Lemma 4.12). For every € > 0 there exist constants co(€),Co(€) > 0
such that the expected number of §-small domains satisfies

p E[Né—sm(fp; R)]

R>10 R?

< Cyle) - seole)

uniformly for all p € P\ P-.
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Proof. If p € P\ Py then the non-degeneracy conditions of [NS2, Lemma 9] (or [SW, Proposition
4.12]) are satisfied, hence these imply that in this case there exist constants Cy(p) and ¢o(p), depending
continuously on p € P\ Py, so that

E 3 .
sup [N5 SIT%nQ(me)] < OO(p) . 560(0).
R>10

The uniformity for choice of C'(€), c¢(¢) then follows from the compactness of P \ Pe C P \ Py.

4.2. Proof of Theorem 1.3

Proof of Theorem[1.3] Let {p;};>1 C P be a sequence of probability measures weak-* converging to
po € P; the statement of Theorem|[I.3]is that in this situation the corresponding Nazarov-Sodin constants

(4.2) ens(pj) — ens(po)

converge to the Nazarov-Sodin constant of py.

The case of py € Py follows from Lemmad.1] For py & Py, we have py € P\ Po for some € > 0
and thus we may assume that p; € P \ P for all sufficiently large j; without loss of generality we may
assume that p; € P\ P, for all j.

Proposition [I.T] yields that given o > 0 there exists

Ry = Ry (a) >0
sufficiently big so that for all R > Ry and all p € P we have
EN (fp, B)]

4R?

in particular (@.3) applies to p = p; with j > 1 or p = pg. We now apply Proposition[4.2] with R > Ry,
and £ > 0 small, so that it yields a number j, sufficiently big such that for all j > jj there exists an event
Qo = Qo(R, j, &) of probability

4.3) —ens(p)| < a;

(4.4) P(0) > 1-¢,
such that on 2y we have
(4.5) N(fpo;i BR=1) S N(fpo; B) SN (fp R+ 1).

We are now going to show that the difference
EN(fp;; R4+ 1)] = EN(f,,; R—1)] >0
is small (compared to R?) for R — oo; this would also imply that
EN (fo;5 B)] = EIN (fp; R)]
is small (compared to R?), and thus c ~Ns(pj) — ens(po) is small via (#.3). Recall that Dy, is the square
Dpg := [-R, R]* C R?,

and denote

Apr = Dpry1 \ Int(Dr-1)

to be the strip lying inside the 2( R+ 1)-side square, outside the 2( R —1)-side square. If for some p € P a
nodal domain of f, is lying entirely inside Dr. but not Dr_1, then that nodal domain is either entirely
lying inside AR or intersects the boundary 0Dpr_1 of the smaller of the squares. In either case that nodal
domain necessarily contains either a horizontal or a vertical flip lying in Ag, i.e. a point x € Ag such
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that either f,(x) = fy1(x) = 0or f,(z) = fy2(x) = 0, that is, recalling the notation (3.6) of nodal flips
numbers, we have

0< N(fp§R +1) *N(fp;R -1) < Sl(fp?-AR) + S2(fp§-'4R)a
and upon taking the expectations of both sides of the latter inequality we obtain

4.6)  O<EN(fp R+ 1] —EN(fp; R—1)] <E[S1(fp; Ar) + S2(fp; Ar)] < C1 - R

by Lemma/[3.4] with C; > 0 an absolute constant.
Now let § > 0 be a small parameter and recall the definition of d-small and §-big domains counts in
§ We invoke (@4.3)) via (4.6), together with Lemma[4.3] and obtain that (for j > jo)

E [|N(fy;: R) = N (fpi R)]]

< Cy | R+ R*6™ + / (Ns—big(foo; 2R) + Ni—pig(fo,;2R)) dP(w)
Q\Q0
< Cy (R + B2 4 %RQ PO\ QO)> .
for C' > 0 an absolute constant. Recalling the above implies
E s R) — ;
HN(fpyR) N(fpoaR)H SCZ <-l];2_’_500_’_8€>

R? 4]

Now using the triangle inequality with (.3)) applied on p; and po implies that for j > jo one has

1 8
4.7) lens(pj) —ens(po)| < Co (R + 0 + % + 2a> )

Since the r.h.s. (and thus the L.h.s.) of can be made arbitrarily small by first choosing the parameters
« and 0 sufficiently small, and then R > Ry(«) sufficiently large, and finally £ sufficiently small, and in
light of the fact that the 1.h.s. of does not depend on R, this yields (4.2). As mentioned above, this
is equivalent to the statement of Theorem [I.3]

O

Remark 4.4. The above argument can be simplified in the case of monochromatic waves, as here small
domains do not exist by an application of the Faber-Krahn inequality [Mal, Theorem 1.5], so there is no
need to invoke Lemma[4.3]to bound their contribution.

5. PROOF OF PROPOSITION[4.2]

The ultimate goal of this section is giving a proof for Proposition [4.2] Towards this goal we first
construct the exceptional event €2y in (5.4) below; it will consist of various sub-events defined in §
that would guarantee that on 2 \ g both fields f,, and f,. (for j sufficiently big) are “stable” in the
sense that a small perturbation of our function has a minor effect on its nodal structure, and that the
perturbation f,, — f,, is small in a sense to be made precise. That {)g is rare is established in §
Proposition .2 will be finally proved in §[5.3assuming some auxiliary results that will be established in

§5.4
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5.1. Constructing the exceptional event (2.

Definition 5.1. (1) For R > 0 big parameter, 3 > 0 small parameter, and p € P we define the
“unstable” event
(s, .0) 1= {_min, max{[£,( IV < 26},

i.e., that there exists a point in the ball B(2R) such that both f, and its gradient are small.
(2) For R, M > 0 big parameters, p € P we define

Qo(fp; R, M) == {||follc2(Bar)y = M} .

(3) Let p,p’ € P be two measures and f,, f; copies of the corresponding random fields on R?
defined on the same probability space 2. For R > 0, 8 > 0 define

Q3(fp fs B, B) = {1 — Folcr(ry) = B}

5.2. The exceptional event is rare. We present the following auxiliary lemmas [5.2}{5.4 which together
imply that the exceptional event is rare. Lemmas [5.2}{5.4] will be proved in §[5.4]

Lemma 5.2 (Cf. [Sol, Lemma 5). Forevery p € P\ Pe, R > 0, M > 0and & > 0 there exists a number
B = B(e p; R, &) > 0 such that the probability of Q1 (f; R, ) outside of Qa( fp; R, M) is

Lemma 5.3. (1) For every p € P, R > 0and § > 0 there exists a number M = M(f,; R,§) so
that
P(Qa2(fp; R, M)) <&.
(2) Let R > 0 be sufficiently big, £ > 0, and a sequence {p;} C P of probability measures, weak-
convergent to py € P. Then there exists a number M = M (po; R, &) > 0and jo = jo(fpe; R, €)
such that for all j > jo we have

P(Qa(fp;; B, M)) <€

Lemma 5.4 (Cf. [So], Lemma 4). Let R > 0 be sufficiently big, M > 0, § > 0, £ > 0, and a
sequence {p;} C P of probability measures, weak-+ convergent to py € P. There exists a number
jo = jo({p;}; R,&) > 0 such that for all j > jo there exists a coupling of Jp; and fp, such that the
probability of Q3(fy,, fp;; R, B) outside
Q2 (fpo; B, M) U Qa(fp,; R, M)

is

P(Qs(fpos fo;3 By B) \ (Q2(fpos B, M) U Qa(fp: R, M))) <&
5.3. Proof of Proposition [4.2] For consistency with the earlier works the various events €; in §
are defined in terms of properties of the relevant random fields imposed on balls of large radius; this is
slightly inconsistent to the nodal counts N (-; -) in our main results that are defined on large squares. This
however will not require any extra work due to the fortunate fact that the squares are contained in slightly
bigger balls.

The following lemma states that, under the “stability assumption” on a function, its nodal components
are stable.

Lemma 5.5 ( [Soll, lemmas 6-7). Let 3 > 0 be a small number,
D = Dpy1 C R?
the side-2(R + 1) square, and f € C(B) be a smooth function on D such that
min max{f(z), [V f(2)[} > 5.
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Suppose that g € C(D) is a continuous function on D such that

sup |g(z)| < B.
zeB

Then every nodal component v of f lying entirely in Dy generates a unique nodal component ~ of (f+g)
lying in D1 with distance d(,7) < 1 from 5 (in fact, the stronger statement

¥ C v ={2 € Dry1: d(z,7) <1}
holds); different components of f correspond to different components of (f + g).

Proof of Propositiond.2] Let R > 0,& > 0, {p;} C P, and py € P be given. An application of Lemma
parton (po, R,&/4) and parton ({pj}, po; R,&/8) yield a number M > 0 (a priori two different
numbers that could be replaced by their maximum) such that both

§

5.0) P(Qa(po; R, M) < & and P((pys B, M) < &

ga
for j > jo sufficiently big. An application of Lemma on (po, R, M,£/4) yields a number 5 > 0
sufficiently small so that

52 P (fpi B B) < &+ P(Oalfi M) < 5,

by (3.1). Finally, an application of Lemma on ({p;}, po; R, M, 3,&/4) yields a coupling of (fy,, f5;)
such that for all j > jo we have

63 POl St B B) < &4 POt B M) + POa(fy 1 M)) < 5,
again by (3.1).
Let
(5.4) Qo = U (foo; R, B) UQ3(fpg, fo,;3 R, B)
of probability
(5.5) P(Qo) < ¢

by (5.2) and (5.3), provided that j is sufficiently big. On 2\ € the function f,, is stable in the sense
that

. i >
56) i (), 190} 2 25,
and
(5.7) {Ilfo0 = foslcr By < B} -
Together (5.6) and (5.7) imply the stability of f,, i.e., that
58) iy wax{|f, (@)} [V 5, @]} = 6

via the triangle inequality. Note that for R > 0 sufficiently big Dr11 C B(2R) so that all the above
inequalities are satisfied in D 1.

Now an application of Lemma[5.5| with f = f,, and g = f,; — fs,, and upon bearing in mind (5.6)
and (5.7) yields on Q \ Qg the r.h.s. of the inequality (#.I). The same argument now taking f = f,.
and g = f,, — fp,, this time employing (5.8) and (5.7) yields on € \ Qg the Lh.s. of (#.I). The above
shows that (4.T)) holds on 2 \ Q, and in addition (5.3) provided that j is sufficiently big. The proof of
Proposition #.2]is concluded.

[l
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5.4. Proofs of the auxiliary lemmas We begin with the following simple lemma.

Lemma 5.6. Let p1, p2,... € P be a sequence of spectral measures such that py, = p, with the limiting
measure p € P. Then

pr(&) = p(§)
locally uniformly, i.e. r,, (x) — r,(x), uniformly on compact subsets of R2. Moreover, the same holds
for any (fixed) finite number of derivatives.

Proof. Let D be the closure of the support of the spectral measure; we recall the assumption that D
is compact (this certainly holds for band-limited random waves, as well as for monochromatic waves.)
Further, let K C R? be compact. We note that the functions £ — e(¢ - ), as x ranges over elements in
K is a uniformly continuous family. Moreover, as D is compact and we consider probability measures
on D, we find that

€= 76) = [ elé-2)dpla)
D
is uniformly continuous for all probability measures p on D, and that the Lipschitz estimate
6(&) = (&) = Op (1€ — ¢))
holds for all p.

Let o > 0 be given. Given £ € K, choose k(&) such that |pr(£) — p(€)| < « holds for all & > k(§).
Further, for each { € K there exists an open ball B centred at § such that

19k (§) = pr(©)] < a
for all ¢ € B¢ and all k, and the same estimate holds for p.
As {B¢}eek is an open cover of the compact set K, we find that K C UZ‘I:1B£¢ for some finite

collection of points &1, . ..,&;. Define k = max{k(§;),i = 1,...,I}. If £ € K there exist ¢ such that
§ € By,, and thus, for [ > k,

(&) — p(E)] = (&) — pi (&) + (&) — P(&i) + p(&) — p(E)| < 3a
and hence the convergence is uniform in £. Finally, a similar argument gives that the same holds for a

finite number of derivatives of 7, .
O

Proof of Lemma The proof is very similar to the proof of [So, Lemma 5] presented in [So, p. 23].
The independence of (f,(x), V f,(x)) in Lemma [3.1{as well as the determinant of C'(p) in being
bounded away from 0 play a crucial role at the end of the proof presented in [So, p. 23] in showing that
both f(z) and V f(x) being small is very rare. O

Proof of Lemmal[5.3] The proof is very similar to the proof of [SW, Lemma 6.6]. Here to use the
Sudakov-Fernique Comparison Inequality we invoke Lemma so that the supremum of f,. and its
derivatives over a compact domain is controlled by the supremum of f,, and its respective derivatives
over the same domain.

O

Proof of Lemma We employ [Sol Lemma 4] which states that the conclusion of Lemma|[5.4]holds if
Tp; — Tp, locally uniformly together with their finitely many derivatives, i.e. that for all multi-index J,
and |J| bounded,

sup [0yrp, (x) — Oyrpy(x)| = 0.
|zl <2R

That this is so in our case follows from Lemmal[3.6
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6. PROOF OF THEOREM [I.3 NODAL COUNT FOR ARITHMETIC RANDOM WAVES

6.1. Proof of Theorem([I.5] We begin by the following lemma asserting that the Nazarov-Sodin constant
vanishes for the (tilted) Cilleruelo measure.

Lemma 6.1. The Nazarov-Sodin constant of the Cilleruelo measure (1.9) vanishes, i.e.,
CNS (Vo) = 0.
Before proving Lemma 6.1]in §[6.2] we present the proof of Theorem

Proof of Theorem|[l.5| assuming Lemma Proof of part[l} We use the natural quotient map ¢ : R? —
T? and define the scaled random fields g,, : R> — R as

gn(y) = fn(Q(y/\/ﬁ))

Then g, is a centred Gaussian random field with spectral measure i, on S!, as in (one could also
write g, = f,, though we will refrain from doing it to avoid confusion). It is then clear that the nodal
domains of g, lying inside the square D 5 = [—v/1/2,/n/ 2]2 are in a 1 — 1 correspondence with the
nodal domains of f,, that do not intersect the image q(9([—1/2,1/2]%)) C T? of the boundary of the
fundamental domain of T2. Hence, under the notation of Lemma we have

(6.1) (N (fn) = N(gns Vn/2)| < N (g, Cn),
where C,, is the boundary curve C,, = 9[—+/n/2,/n/2] of the side-\/n square. An application of
Lemma [3.2] then yields
N(fun,Cn) = O(v/n).
This, together with (I.4) and finally yields (T.TT).

Proof of part 2}

Since p € Pgymm and p is assumed to have no atoms, then /4 satisfies the axioms (p1) — (p3) of [Soll.
Lemma [5.6| then implies that, in the language of [Sol Definition 1], the family {f,,;} of toral random
fields has franslation invariant local limits f,. Hence [So, Theorem 4] implies (I.12)) (see also [Rol
Theorem 1.2]).

Proof of part[3}

First, if 4 is neither the Cilleruelo measure v in (1.9) nor the tilted Cilleruelo measure g in (I.10),
then 4 is supported on at least four distinct pairs of antipodal points. Thus, by [In, Remark 3] (or [So2]),
ens(p) > 0. Conversely, the Nazarov-Sodin constant vanishes cys(v9) = cng(vp) = 0 for both
the Cilleruelo and tilted Cilleruelo measures by Lemma (which is valid for 7y by rotation of 7/4
symmetry).

Proof of part |4}

Let B C Sgymm be the set of weak-x partial limits of {y,, }; we claim that B is connected. Once having
the connectedness in our hands, partE] of Theorem follows from the continuity of ¢y g (Theorem ,
vanishing ¢y s(v9) = 0 of the Nazarov-Sodin constant of the Cilleruelo measure (Theorem part 3),
and the positivity of the universal Nazarov-Sodin constant.

To show the connectedness of B we recall that B is closed [KW2, Proposition 1.2] w.r.t. taking
convolutions p1, p2 — p1 * p2, and that there exists [KKW, Proposition 1.2] a path a — v,, a € [0, /4]
between v the Cilleruelo measure and v,y = % the uniform measure on S'; v, is the arc-length
measure on 0 € [—a, a], symmetrised to be 7 /2-rotation invariant. The above implies that given p € B,
we may construct a path

{/0 * Va}aE[O,ﬂ'/zl]

= @9 5o that B is path-connected (in particular, connected).

= 5.

do
between p and p x 5~
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|

6.2. Proof of Lemma[6.1;: the Nazarov-Sodin constant of the Cilleruelo measure vanishes. We give
two different proofs, each independently informative; the same proofs are valid for the tilted Cilleruelo.
The first proof uses the fact that the limit random field can be realized explicitly as a trigonometric
polynomial with only four nonzero coefficients. The second proof is based on a local computation of the
number of “flips” in the direction of the line x; = x»

Proof 1: Limit random field. Let
1
vy = Z((Sil + 0+)
be the Cilleruelo measure; the corresponding covariance function is then
1

(6.2) ro(z) := i(cos(:rl) + cos(x2))
with z = (21, 72) € R?, and

Elfve(2) - fuo(y)] = ro(z —y),

for x,y € R2. Let us describe the corresponding Gaussian random field fy = f,, explicitly. We may
realize it as

1 ) .
(6.3) fo(z) = NG (§1cos(z1) + Easin(z1) + &3 cos(z2) + Easin(wz)),
where (£1, &2, €3, &4) is a standard 4-variate Gaussian; equivalently {¢;}%_; are standard Gaussian i.i.d.
Alternatively, we may rewrite (6.3)) as

6.4) folz) = \g (a1 - cos(1 +m) + az - cos(a + 1m2))

where a1 = /& + &3, aa = /&3 + & are Rayleigh(1) distributed independent random variables
(equivalently, x with 2 degrees of freedom), and 7y, 172 € [0, 27) are random phases uniformly drawn in
[0,27). Let us now determine the zero set of fo in (6.4) on T?; we claim that fy has no compact nodal
components at all; accordingly for every R > 0 we have

N(fo; R) =0.

34T R i - L B i el P

=]

-X0, 10 1 2

=)

”—-\.r’—\r’—\”—\%‘\/—ﬁ./—‘.r’—\”—\

iii%!ﬁéié%i%

-vvvv\éhq/vvvu-

30 I T T I e

FIGURE 2. Solution plot for equations 2 cos(x1) + cos(z2) = 0 (left) and cos(x1) +
2 cos(z2) = 0 (right). In both cases there are no compact nodal components.
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First, by translation y = x + (11, 72), we may assume that 71 = 72 = 0, so that fy(x) = 0 if and only
if
(6.5) ay - cos(y1) = —ag - cos(ya).

Now suppose that the coefficients in (6.5) satisfy a; > ag (occurring with probability %). Given y; there
is a solution for yo to (6.9), if and only if

(6.6) Y1 € [arccos <a2> T — arccos <a )] + km
al al

for some k£ € Z. A number y; lying in the open interval on the r.h.s. of (6.6) corresponds to precisely
two solutions for s in each period y2 € [j - 27, (j + 1) - 27) (depending on the parity of k in (6.6)). For
the endpoints y; of the interval on the r.h.s. of (6.6)) there exists a unique solution y» = (25 + 1)7 and
2j7 to the left and right endpoints respectively in case & in (6.6) is even, and the other way around in
case k is odd. The above means that the solution curve of (6.5]) consists of ascending oscillating periodic
curves (see Figure [2] left) with no compact components at all. The situation when the coefficients in
(6.3) satisfy a1 < ap is a mirror image of the just considered (see Figure 2] right); the event a1 = as
does almost surely not occur.

O

Proof 2: Local estimates. We reuse the notation (I.9) for the Cilleruelo measure v, the covariance func-
tion ro(x) given by (6.2), and f = f,,; also recall the notational conventions that f; = 01 f = 9f/0x1,
fi2 = 0102 f etc. Given a smooth closed planar curve «y : [0, L] — R? and a unit vector £ € S there
exists a point ¢ € [0, L] such that the tangent 4(¢) = ££ of  is in the direction +£. Therefore

(6.7) EWN(f;R)] <Elz € Dg: fo(z) = fi(z) + fo(x) = 0].

In what follows we will find that the r.h.s. of vanish, and thus so does the L.h.s.; this certainly
implies that cyg(vp) = 0.
To this end we define

F(z) == (f(z), filz) + f2(x))
and use Kac-Rice [AW, Theorem 6.3] to write

(6.8) Blo € B(R): () = (o) + o) =0) = [ Kila
B(R)
where
Ki(z) = K1(0) = ¢p(0) - E[|Jr(0)]|F(0)

by stationarity (see §; F(0) is non-degenerate by the independence of the components of the Gaussian
vector

(f(0),Vf(0)) € R>.
Now
_( f2
(6.9) Tr(0) = (fu + iz fiz A+ f22> ’

where all of the matrix entries are evaluated at the origin. Moreover, a direct computation with ry reveals
that

Val"(flg) =0

fi fe
Tr(0) = (fn f22>’

i.e. fi2 = 0a.s. Hence is
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and
det Jr(0) = f1 - fa2 — fo - fi1;
conditioned on
JO)=fi+f2=0
this equals to
det Jp(0) = f1- foo + f1-fu=fi-(fuu+ fo2) = —f1- f=0,
since f satisfies the Schrodinger equation A f + f = 0, and we condition on f(0) = 0. Hence K;(z) =0
vanishes identically, the expectation on the l.h.s. of @ vanishes, which, as it was mentioned above, is
sufficient to yield the statement of Theorem [I.3]
Il
7. SPECTRAL MEASURES p WITH dyg(p) > 0

We give two examples of trigonometric polynomials f, g, both realizable from the same spectral mea-
sure (with support on the three pairs of antipodal points {+(1,0), +(3,0), £(0,1)}), namely

f(z,y) = sin(z) + 0.8 - sin(3z) + sin(y), g(z,y) =sin(z) + 0.8 - sin(3z) + 0.2 - sin(y)

where f has many compact nodal domains, whereas g does not.

20
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FIGURE 3. Plot of f(z,y) (left) and g(x,y) (right). Note that compact nodal compo-
nents only occurs in the left plot. Nodal curves in black.
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It is easy to verify that both f and ¢ are stable in the sense that the density of the number of nodal
domains (per area unit) remains the same under small perturbations of the form

f— f+esin(z) + ey cos(x) + ez sin(3z) + €4 cos(3z) + €5 sin(y) + €6 cos(y)

Thus both types of events (i.e., having no compact nodal domains or having a positive density of compact
nodal domains per area unit) occur with probability > 0. Hence there exists p such that dyg(p) > 0.

The spectral measure in the above example is not monochromatic, but using a recent result by M.
Ingremeau we can give examples of monochromatic spectral measures p, also supported on three pairs
of antipodal points, with the property that ds(p) > 0. Namely, let p be the uniform probability measure
supported on the six points +(1,0), £(0, 1), +(1, 1) /+/2. Letting

g(x,y) := 2cos(x) + cos(y)

we find that ¢ has no compact nodal domains (cf. Figure[2); it is straightforward to verify that the gradient
is non-vanishing on the nodal set of g. Since g is doubly periodic there exists 8 > 0 such that g has no



VARIATION THE NAZAROV-SODIN CONSTANT 25

[-unstable points in R? (cf. §. As g is stable, the nodal pattern persists for small perturbations of the
form

g = f +ersin(z) + ez sin(y) + ez cos((z 4+ y)/V2) + exsin((z + y)/V2)
(for €1, . . ., €4 sufficiently small). Hence, given any ¢ > 0, there exists Ry such that the event
N(fs; R)/(4R%) < ¢,

for all R > Ry, occurs with positive probability. On the other hand, Ingremeau (cf. [In, Remark 3])
has shown that cyg(p) > 0 for any spectral measure p with proper support on three or more pairs of
antipodal points, and hence dyg(p) > 0.

APPENDIX A. PLOTS OF CILLERUELO TYPE EIGENFUNCTION

We begin with a higher resolution plot of the eigenfunction shown in Figure [T} As can be seen the
nodal domains tend to be either vertical or horizontal, and extend many wavelengths.
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FIGURE 4. Fragment of a Cilleruelo type eigenfunction; nodal curves in black as
before. Here n = 9676418088513347624474653 and r3(n) = 256.

Below we give examples of the most extreme type of Cilleruelo eigenfunctions in terms of the spectral
measure having smallest possible angular support. These arise from primes of the form n = a? + 1; we
then have ro(n) = 8 and the set of lattice points {(z,y) € Z2 : x? + y?> = n} are of the form
{(a,£1),(—a,£1),(1,£a),(—1,£a)} and the angles between these vectors and either the z, or y,
coordinate axis is very small for a large.
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FIGURE 5. Plot of random Cilleruelo type eigenfunction, for n = 542 + 1 and r3(n) = 8.
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FIGURE 6. Plot of random Cilleruelo type eigenfunction, for n = 542 + 1 and r5(n) = 8.
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