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ABSTRACT. We prove a Pélya-Vinogradov type variation of the
the Chebotarev density theorem for function fields over finite fields
valid for “incomplete intervals” I C [, provided (p'/?logp)/|I| =
o(1). Applications include density results for irreducible trinomi-
als in F,[z], i.e. the number of irreducible polynomials in the set
{f(it) = xd +a1z+ap € Fp[x]}aoelo,GJGh is ~ |I(]‘ : |Il‘/d provided
|Io| > p/2%e, || > p<, or |I1]| > p'/2*€, |Iy| > p¢, and similarly
when z¢ is replaced by any monic degree d polynomial in F,[z].
Under the above assumptions we can also determine the distribu-
tion of factorization types, and find it to be consistent with the
distribution of cycle types of permutations in the symmetric group

Sa.

1. INTRODUCTION

The distribution of primes, and more generally the distribution of
factorization types, in “short intervals” in the setting of function fields
over finite fields has received considerable attention [5, 6, 3, 2, 14].
For example, in [3], prime equidistribution for the family {f(x) + bx +
a}aper, was shown for f € Fplz] any monic degree d polynomial (for
p large.) For “very short” intervals, i.e., one parameter families of the
form {f(z) + a}acr,, prime equidistribution does not hold for all f.
However, for f suitably “generic”, prime equidistribution does in fact
hold for very short intervals. In [14] it was shown that given a monic
degree d “Morse polynomial” f(z) € F,[z] (i.e., that [{f(§) : f'(§) =
0}| = d — 1; note this holds for generic polynomials, cf. Section 5.1)

(1) [{a € F, : f(z) + a irreducible }| = p/d + O4(p"/?).

More generally, the distribution of factorization types of f(z) + a can
also be determined. Writing f(z) = [[._, fi(z) with f; € F,[z] all
irreducible and letting d; = deg(f;) we may after rearranging assume

that 1 < d; < dy... < dj; the factorization type (or decomposition
type) of f is then given by (dy, ..., d;). The distribution of factorization
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types of f(x) + a, for f Morse, is consistent (up to an error of size
Og4(p~1/?)) with the distribution of cycle types of permutations in Sy,
the symmetric group on d letters, with respect to the Haar measure.
(E.g., for 0 = (12) € Ss, write out all trivial cycles, i.e., o = (12)(3);
the cycle type of o is then (1,2) if we order according to cycle lengths.)

The connection between factorization types and group theory pro-
ceeds via Galois theory and the function field version of the Cheb-
otarev density theorem, made effective by Weil’s proof of the Rie-
mann hypothesis for curves. The key point is that for f(xz) Morse,
Gal(f(x)+1t/F,(t)) ~ Sy and the factorization type for f(z)+a can be
read off from the cycle type of the Frobenius class at the prime ideal
(t—a) C F,[t]. In particular, f(z)+a being irreducible is equivalent to
the Frobenius conjugacy class at the prime (¢ — a) being generated by
a d-cycle, and the proportion of d-cycles in S, is 1/d, hence the density
1/d in (1).

The purpose of this paper is to show that equidistribution of fac-
torization types also holds for significantly smaller subsets, namely for
“incomplete intervals” I C F,, as long as (p'/?logp)/|I| is small. In
fact, in spirit of the Pdlya-Vinogradov inequality, we will develop a ver-
sion of the Chebotarev density theorem for incomplete intervals, allow-
ing us to determine the distribution of Artin symbols, and thus resolve
finer invariants than factorization types when Gal(f(z)+t/F,(t)) is not
the full symmetric group. (Note that the cycle type is in general not
enough to determine the conjugacy class, e.g., the three-cycles (123)
and (132) are not conjugate in the alternating group As.)

Before stating our main result we introduce some notations. Let p
be a (large) prime, let K := F,(t), let L/K be a finite normal and
separable extension with Galois group Gal(L/K), and let Ox = F,[t]
denote the ring of integers in K. Given a prime ideal p C Og that

does not ramify in L, let <L/TK> denote the Artin symbol, a certain

conjugacy class in Gal(L/K). (For further details and definitions, cf.
9, Ch. 6].) It will be convenient to use the convention that any prime
p C Ok appearing in an Artin symbol (L/TK> is implicitly assumed to
be unramified.

By an incomplete interval I in F, we mean a set of the form I =
M, M +1,....M + N] C F, for M € F, and N € N (in fact, our
method applies to arithmetic progressions of the form {A -7 + Bl}ies
where A, B € F,, and I is an incomplete interval.) Let Frob, denote the
Frobenius substitution o — a?. Define n € Z* such that F,» = LNT,
is the field of constants in L, and let m = [L : KTF,x]; note that in the
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“geometric case”, i.e., when n = 1, we have m = | Gal(L/K)|. Further,
given a € IF,, let p, C F,[t] denote the prime ideal generated by (¢ —a).

Theorem 1. Let C C Gal(L/K) be a conjugacy class. If 7|, =
Frob, |z, for all T € C, then

L/K C
Ha <l (/—) N O}’ - % |+ Oy (p'/* log p),

Pa

On the other hand, if T|r , # Frob, |r . for all T € C, then we have

foer (45) -]

The result only gives non-trivial information for |I| slightly larger
than p'/?logp. Using the Pélya-Vinogradov method of “completing
the sum”, the result follows easily from our key technical result, Propo-
sition 2, namely square root cancellation for certain complete sums
twisted by additive characters. We remark that by using smoothing
(cf. [8, Theorem 1.1]) the error in Theorem 1 is easily improved
to O[L:K](pl/2 log(10°|1]/p"/?)), hence giving asymptotics as long as
p*/2/|1| tends to zero. We leave the details to the interested reader.

Proposition 2. Let K = F,(t) and let L/K be a normal and separable
extension with Galois group Gal(L/K), and let C' denote a conjugacy
class in Gal(L/K). If ¢ : F, — C* is a non-trivial additive character
then

Z 'w(a) K[L:K] p1/2>

aEIFp:(Lp/TK):C

with Y denoting the sum restricted to a € F, such that p, is in addition
unramified in L.

We remark that the sum is empty unless 7|r, = Frob, [ . for all

Tel.

1.1. Applications. We now give some explicit examples of families
of polynomials for which we can determine the corresponding Galois
group. This together with Theorem 1 shows the existence of primes in
incomplete intervals. The method proceeds by finding the distribution
of Artin symbols, hence also determines the distribution of factorization
types, but for simplicity we state it only for the density of irreducible
polynomials.
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Theorem 3. Let p > d + 1 be a (large) prime, and let f(x) = x¢ +
Z?;ol a;x" € F,lz] be a monic polynomial of degree d. There exists
subsets By, By, By C F), such that |B;| = O4(1) for i = 1,2,3 with the
following properties. Given any incomplete interval I C F),, we have:

(1) Fora; € F,\ By,
{a € I: f(zx)+ a irreducible }| = |I|/d 4+ Oq(p*/*log p).
(2) Forag€F,\ By,
Ha eI f(z)+a-z irreducible }| = |I|/d + Oq(p"/*logp).
3) Fora; #0, ag € F, \ Bz and any integer m € |2,d — 1],
P
Hael: f(z)+a-a™ irreducible }| = |I|/d + Oq(p'/*logp).

An immediate application is a deterministic time algorithm for con-
structing irreducible degree d polynomials g(x) € F,[x] of quite general
shapes, in particular of very sparse form. (The complexity in terms
of d is quite bad so we will not make it explicit.) Given any (say
monic) degree d polynomial f, consider the family f(z)+ bz + a. Try-
ing at most O4(1) values of b, and O4(p*/?log p) values of a yields an
irreducible polynomial; each such irreducibility test can be done in
Ou(log p) arithmetic operations in F, (say using Rabin’s test). Hence
we can produce an irreducible g(z) in Oy(p'/?log® p) F,-operations, or
even Oy(p'/? log p) operations using the earlier described smoothing im-
provement; note that for existence for irreducibles it is enough to take
1| >4 p'/2. This is to be compared with Shoup’s algorithm [19] which
requires Oy(p*/?log® p) F,-operations. Ignoring polynomial factors in
loglogp, and using fast (FFT-based) IF,-arithmetic, the bit operation
complexities can be obtained by multiplying the above bounds by log p.

Remark. Given polynomials f, g € F,[z] with deg(g) < deg(f) = d we
can under fairly weak assumptions on f,g, namely that the ratio f/g
is Morse, show that (cf. Section 5)

{ael: f(z)+a-g(x) irreducible }| = |I|/d 4+ Oq(p*/?log p).

For f a degree d Morse polynomial, and distinct hy, ..., hy € Fp, the
Galois group of the compositums of the fields generated, over F,(t),
by the polynomials f(x) 4+ hy +¢,..., f(z) + hg + ¢t is maximal, i.e.,
isomorphic to S¥ (cf. [14]). Theorem 1 then gives equidistribution
of cycle types of {(f(x) + hi + a,..., f(x) + hy + a)}eer inside S%
provided (p'/?logp)/|I| = o(1). Thus, for f Morse we immediately
obtain cancellation for function field analogs of Moebius and Chowla
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type sums; with p denoting the function field Moebius p function, we
have

Zu(f+h1+a)-----u(f+hk+a) pa p'*logp

a€el

(cf. [14, 4, 12] for results valid for various longer intervals.)

Another application is asymptotics for function field anologs, for
incomplete intervals “centered” at f, assuming (p*/2logp)/|I| = o(1)
and f Morse, of shifted divisors sums (e.g. > ., d.(f +a)d,(f + 1+
a) where d, is the r-th divisor function) and the Titchmarsh divisor
problem (e.g. > . c; lprime(f + @)d.(f + 1 + a)); asymptotics for these
sums over “long” intervals, while allowing for very general shifts, were
determined in [1].

We next give an example where the cycle type distribution is not
enough to determine the distribution of Artin symbols. Let p = 1
mod 3 be a (large) prime, and let hy, ..., hy € F, be distinct. Define
filr) = a3 + h; +t and let L; denote the splitting field of f; over
F,(t), and let L* denote the compositum of the fields Ly, ..., L. Then
(cf. [13, Proposition 8]) Gal(L;/F,(t)) ~ As for i = 1,...,k, and
Gal(L¥/F,(t)) ~ AL. With p, = (t — a), Theorem 1 implies that the

Artin symbols {(%) : a € I} equidistribute in A%, with relative
error of size (p*/2logp)/|I|.

1.2. Discussion. For the full interval / =, and n = 1 (the geomet-
ric case) Chebotarev’s density theorem for function fields, with error
term of size Ojr.x1(p'/?), easily follows from the work of Reichardt [17]
together with Weil’s celebrated proof of the Riemann hypothesis for
curves over finite fields [23]. (Reichardt’s error term, for primes of de-
gree v, is of size O(p®?) as v — oo, where © < 1 is the maximum of
the real parts of the roots of the zeta function of L.) The case I =T,
and n > 1 is due to Cohen and Odoni [6] (also cf. [10]). As for in-
complete intervals we are only aware of recent results by Entin [7] who
determined the distribution of factorization types for various families
of polynomials whose coefficients are allowed to vary over incomplete
intervals (see below).

In [21] Shparlinski studied the proportion of irreducible monic poly-
nomials in F,[z], with coeffecients in constrained to lie on points with
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integer coordinates inside parallelepipeds, and showed that

d—1
|{(a07 coagoy) €Ty x o x Ig_y at + Zaixi irreducible }‘
i=0
d—1
Hi—o |Iz‘
d
giving non-trivial information when Hf:_ol |I;] > p¢~1*<. (More gener-
ally, he also determined the distribution of factorization types.) Fur-

ther, in [20], he considered sparser families, namely the set of irreducible
trinomials in F,[z], and showed that

(p*'log® ' p),

{(ag,ar) € Iy x I : 2% + a1x + ag irreducible }| ~ |Io| - |11|/d

provided ||, |I1| > p/**< and |Iy| - |I;] > p'**, and similarly for tri-
nomials with any prescribed factorization type. Theorem 3 easily im-
plies the same asymptotics, under the weaker conditions |Iy| > p°,
’[1’ > p1/2+e’ or ’[1| > pe’ |IO| >p1/2+e'

Entin [7] determined the distribution of factorization patterns for
families of polynomials whose coefficients vary over quite general sets
S C F¢, with relative error of size irreg(S) /p'/* where irreg(S) is related
to the decay of Fourier coefficients of the characteristic function of S.
Eg., for S = Iy x ... x Iy, irreg(S) < pPlog? p/([1¢Z, |Ii]) with
relative error small if H?:_Ol |I;| > p?~'/2+¢. His method also applies for
sparser families: for trinomials the assumption needed for small relative
error is |Io| - [I1| > p¥/?*¢; for f Morse and the family f(z) 4 ao the
relative error is small if (p'/2logp)/|Iy| = o(1), similar to the conditions
in Theorem 3.

1.3. Acknowledgements. We thank A. Granville, E. Kowalski, Z.
Rudnick and P. Salberger for helpful discussions. We also thank I.
Shparlinski and O. Gorodetsky for valuable comments on an early ver-
sion of the paper, in particular for suggesting using smoothing to im-
prove the error term in Theorem 1. We further thank I. Shparlinski
for pointing out the application of finding irreducible polynomials in
sparse families, thus leading to a deterministic way to find irreducibles
that is faster than Shoup’s algorithm.

2. DEDUCING THEOREM 1 FROM PROPOSITION 2

To simplify the notation, let F(a) = 1 if (L/TK> = (C, and zero
otherwise. For b € IF,,, let ¢4 (z) denote the additive character ¢,(x) :=
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e?™2/P With 1; denoting the characteristic function of I, we “complete
the sum” and write

fael: (L:—K> — el =Y Fa) =Y Fla)ia)

=3 Fl@) Y Tbwle) = Y. T0) Y Fla)(a)

where 1;(b) :==1/p > cer, Li(c)¥s(—c) is the Fourier transform of 1;.
Our main term will come from terms with b = 0; by [9, Propo-

sition 6.4.8] (note that the genus of L can be bounded in terms of
[L : K]) we find that

Ml _ <@ 12 )

(2) » anJF,, F(a) » P + Ox)(p'7)
_lc
m
As for the error terms, taking integer representatives b of the elements
in I, such that 0 < [b] < p/2, we find that fl(b) < 1/b. Now, by
Proposition 2 (note that for b 0 mod p, 1, is non-trivial), we have

1]+ Or.x ([ 1]p7?)

p/2
(3) Z Z Fla)py(a)| <Lk p'? Z 1/b <.k p'/*logp.
beFy acFy, b=1

As |I| < p, the error term in (3) dominates the error term in (2), hence

I C
I > Fla)= %U! + O (p" log p).

3. ADDITIVE CHARACTERS AND ARTIN-SCHREIER EXTENSIONS

We briefly recall how a non-trivial additive character ¢ on [, can

be realized as a character 1 on some cyclic galois group Gal(E/K),
where K = F,(t), such that

() e

and p, = (t —a) C F,[t] denotes a degree one prime ideal. (Note
that deg(p), the degree of the prime ideal p is defined in terms of the
cardinality of the residue field, namely |Og/p| = p?°®. Also, since

E/K is cyclic we can regard the Artin symbol (E;g/—aK> as an element in

Gal(E/K) rather than a conjugacy class.)
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The extension F can be constructed as follows: with £ denoting a
root of the polynomial f(z) = a?—x—t, let £ = K(&). Then F/K is an
Artin-Schreier extension of degree p, such that Gal(£/K) ~ F}. The
extension is unramified except at infinity, where it is wildly ramified.

Specializing at p, = (t — a) for a = 0, we find that 2 — x splits

completely, and thus <Ep/—aK> is the identity element in Gal(F/K). Sim-

ilarly, specializing at p, = (t —a) for a € F);, we find that 2¥ —z —a is
irreducible (over F,), and thus there is exactly one (unramified) prime
9, C Op above p,, and Op/Q, ~ Fpp.

We next turn to identifying the Galois action of the Artin symbol.
If ¢ is some fixed root of 2P — x — ¢, any Galois element o € Gal(E/K)
acts via £ — £ + « for some a € F),. Moreover, given such a o, we can
recover a from o(§) — £. Thus, if ¢ is the Artin map at p, = (¢t — a),
we find that

a=o0)-¢{=—-¢=a

Ep/—aK) acts as £ = £ +a,

hence there is a natural identification of Gal(£/K’) with F,} so that the
image of p, is just a € IF;. In particular, given a non-trivial additive
character of F,, we can define a character ¢, on Gal(E/K) such that

(55 v e

4. PROOF OF PROPOSITION 2

In conclusion, for a € F, the Artin symbol (

The main bulk of the argument is similar to the one used in [9,
Ch 6.4]; below we briefly summarize the argument and only give details
when we need to go beyond their results. For easier comparison, we
follow their notation and write ¢ rather than p.

Let K =F,(t) and let L/K be a normal extension with Galois group
Gal(L/K). Since the constant in the error term is allowed to depend on
[L : K], we may assume that ¢ = p is sufficiently large (say ¢ > [L : K])
so that L/K is separable, as well as tamely ramified and thus by the
Hurwitz genus formula, that the genus bound g(L) <[r.x) 1 holds.
Let C C Gal(L/K) be a conjugacy class. We may also assume that
Tqun = Frob, |Fqn for all 7 € C, otherwise the Artin symbol never
meets C' and the sum is empty. We will need some further notations:
given field extensions L/K'/K let

P.(K') :={p C Ok : p is a prime ideal,
unramified over K and in L, deg(p) = k}.
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Moreover, for extensions L'/L/K’'/K, with L'/L unramified, and a
conjugacy class C" C Gal(L'/K’), let

Cu(L/ /K, C) = {p/ € P (K') - (LQK) _ c’}.

Let F» = LNT, denote the field of constants in L, and let m = [L :
KTFn]. Choose some 7 € C' and define n’ = n - ord(7), where ord(r)
denotes the order 7 in Gal(L/K); note that n’ does not depend on the
choice of 7 since all elements in C' have the same order. With L' :=
LF v we have [L': KF ] = [L : KFs] = m; also note that L'/L is
unramified. By [9, Lemma 6.4.4] there exists 7" € Gal(L’/K) such that
7'|p = 7 and 7'/|Fqn, = Frob, |Fqn/; moreover ord(7’) = ord(7) -n =n'.

With ¢" C Gal(L'/K) denoting the conjugacy class of 7/, we have
(cf. [9, Lemma 6.4.4])

CI(L,/K7 C,) = CI<L/K7 C),

and thus

(4) Z Y(a) = Z VK(p) = Z VK(p)

aeF,: (L5 )=c peC1(L/K,C) peCL(L'/K,C")

Let K/, C L’ denote the fixed field of 7. Note that L' does not
depend on 7', whereas K!, does. We will need to keep track of this
dependence and will therefore deviate slightly from the notation in
Fried-Jarden (in their argument it suffices to work with a fixed 7/,
consequently they denote K’ for the fixed field of 7'.)

From the proof of [9, Proposition 6.4.8] it follows that K, N F . =
K/, NFy=F, , and K.F . = L' as well as [K/, : K] = [L' : KF /] =
L : KFx] = m. It also follows (in particular see how their Corol-
lary 6.4.3 was used in the proof of Proposition 6.4.8)

K, C) = ol e KL 7 = Lok, )
7 I:K7/-/ . K] T m T

This equality suggests the existence of some m to 1 map; we will show

that this is indeed the case and then obtain a sum over certain degree

one primes in Og.

We first show that we can “lift” ¢k to a suitably invariant character
¢K;,v i.e., independent of the choice of prime p’ above any prime p

occuring in the sums we wish to estimate. Recall that we have realised
the additive character ¢ : F, = C* as a character ¢ on Gal(E/K),
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for /K an Artin-Schreier extension F /K, with the property that

o ((35)) -

As [E : K] = q we have, for ¢ sufficiently large (which we may
assume to hold since the constant in error term is allowed to depend
on [L : K]), Gal(KLE/K) ~ Gal(K.,/K) x Gal(E/K), as well as
Gal(KLE/K!)) ~ Gal(E/K), where the latter isomorphism can be
defined by restricting Gal(K!, E/K!,) to act on £/K. We can thus
define a character VﬁK;, by composition. Now, given degree one primes
p € PI(K) and p’ € P|(KL), with p’|p, we will need, no matter which
p’|p is chosen, that

Ui, (1) = Vi (p).

This in turn is immediate from [15, p. 198, property A3]: since p’ and
p are degree one primes, we have f,,, = 1, and thus

()| - () - (22

which shows that the choice of p’|p indeed does not matter.

Now consider the tower of extensions L'/K!, /K. As for their field
of constants, we have L' N F, = Fouy K NnF,=F, KNF, =F,.
Let P e P'(L), p' € Pi(KL), and p € C1(L/K, C) denote primes such
that B|p’|p. Then, as deg(p’) = deg(p) = 1 (see [9, Lemma 6.4.2] and
the proof of Proposition 6.4.8) we have Og//p’ ~ Og/p = F,, and

thus f,,, = 1. Further, as (L//K;/

=) ={7'} and ord(7') = n’, we have
Op /P ~F v and hence fy/y =n'. Thus, as [L': K,] = n’, the latter
implies that any J|p’ is uniquely determined by p’, whereas the former
(together with [K!, : K] = m) implies that there are exactly m primes
pi, ..., pl, lying above p.

We thus find that

) > o= Y k) Y
)

peC(L'/K,C") T'eC’ peP| (K ‘BGIP’;,(L/),‘BhJ,
!/
()

=D N SRR

T'eC’  p'ePy(K!,)
L' /K’
(%) e
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which, from the proof of [9, Lemma 6.4.6], equals

1

— > > ke, (0

m T

T'eC’ p'ePy (K!,)
note that the inner sum amounts to summing an additive character over
all points on the curve given by the field K’,, having field of constants
K;_/ ﬂ ]Fq - ]Fq.
As |C| = Ojr.x1(1), it suffices to show that

(6) Z ¢K;, (") K[L:K] q'?.
W EP) (K,)

To see this, let L(s) = L(s,¢x’,, EK},/K},) denote the Artin L-
function attached to the character ¥ ; as FK/, /K, is abelian it is in
fact an L-series attached to a Hecke character.

Taking logarithmic derivatives of L(s), we find that the sum over
primes in (6) agrees, apart from ramified primes, with the sum over
degree one terms in —L'(s)/L(s). As E/K only ramifies (wildly) at
infinity, there are Ojp.x)(1) ramified primes, and hence the Riemann
hypothesis for curves (due to Weil) gives that the sum is <[.x q'/?,
provided that we can show that the degree of the L-function only de-
pends on [L : K] (here some care is needed since [EK!, : K/,] = p.) To
see this, first note that

Cxr, () - 11 L(s, ¢, EK},JK.,) = Cprcer, (9).

YeGal(EK’, /K’ ,)\1

Next note that any two non-trivial characters 1,9, € Gal(EK!,/K!,)
have the same conductor, thus the degrees of the L-functions

/ /
{L(Sa ¢> EKT’/KT')}wEGal(EE/K;/)\l

are the same (cf. [16, Ch. 6].) As there are p — 1 non-trivial characters
1, it is enough to show that the degree of (gx (s) is K:x) p- As
this degree is linear in g = g(FK.,), the genus of EK!,, it is in turn
enough to show that g <(1.x) p. This is immediate from Castelnuovos
Inequality (cf. [22, Theorem 3.11.3]) since g(E) < 1, [E : K] = p,
g(KL) <k 1, and KL : K| <Lk 1

5. CRITERIA FOR MORSE POLYNOMIALS AND (GALOIS GROUP S,

Given an integer m € [1,d — 1], define

fil@) == f(a) +ta™,
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As long as a few of the small degree coefficients of f avoid sets of
Oq4(1) “bad coefficients”, the polynomial fi(x), over F,(¢), will have
maximal Galois group. To see this we recall a very useful criterium.

Proposition 4 (Geyer [11]). Assume that ¢ = f/g € F,(x) is a Morse
function of degree d = deg(f) > deg(g) > 0. Then the Galois group of
the covering o : Pt — P! of degree d is the full symmetric group, i.e.,

Gal(f(x) —tg(x)/Fp(t)) = Sa.

Fixing g, Geyer in fact shows that the set of polynomials f(z) =
2+ a2+ -+ ayx + ay for which f/g is Morse is a Zariski open
dense subset of the affine d-space with coordinates ay,...,aqs_1. More
precisely, for deg(g) > 0, fixing aq_1,. .., az, a; € F,, write

f(@) =2+ ag 12"+ ar® o +u=fo(z) +u

with u trancendental over F,. Geyer then shows that f/g is Morse
provided that

(7) ged(fl, ) =1, fJ#0.

In particular, if the conditions in (7) are satisfied, then for all but O4(1)
“bad” specializations of u = ag € E, the specialized ratio f/g will be
Morse.

In particular, for p large the second condition is automatic, and by
varying the linear coefficient of f (again avoiding Oy4(1) “bad” values)
we can ensure that the first condition (f,¢’) = 1 holds, showing that
f(z)+t-g(x) very often has full Galois group. (Note that f(z)+t-g(x)
and f(z) —t- g(z) have the same Galois group over F,(¢).)

We remark that the Morse criterion is certainly not needed for the

Galois group to be maximal. E.g. (cf. [18, Ch. 4.4]) we have
Gal(z? — 2%t — t/F,(t)) ~ Sy.

5.1. Proof of Theorem 3. In [14] it was shown that in the family of
polynomials f*(x) = f(x) + sz, f*is Morse for all but O,4(1) values of
s € F, (or even s € F,,.) In particular, defining B as the set of s-values
for which f* is not Morse, we have |B;| = O4(1) and the first part of
Theorem 3 follows from Theorem 1 since Gal(f(x) —t/F,(t)) ~ S, for
S € ]Fp \ Bl~

Given Geyer’s criterion, together with Theorem 1, the rest of the
proof of Theorem 3 is a simple matter of checking the above conditions.

First, fix an integer m € [2,d — 1] and take g(x) = z™. Then, for
a; # 0, we have (f!,¢") = 1; as long as p > d + 1 we have f/ # 0, and
hence, for all but O,4(1) choices of ag € F, (and a; # 0), f/g is Morse



THE CHEBOTAREV DENSITY THEOREM — INCOMPLETE INTERVALS 13

and
Gal(f(z) +ta™/Fp(t)) =~ Sy.

Letting Bs be the union, over m € [2,d — 1], of these sets of O4(1)
exceptional ag-values, the third part follows.

Similarly, for m = 1 and g(z) = 2™ = x we may, possibly after
replacing ¢ by ¢ + 1 (changing the interval I to an interval with the
same cardinality, and symmetric difference of cardinality 2 with ),
assume that a; # 0. Hence for all but O,4(1) choices of ag, we find that
Gal(f(x) +tx + ag/Fp(t)) =~ S4, and the second part follows.

5.2. Further examples. We can also give examples of families of
polynomials f(z), with fairly large number of free parameters (about
d/2 of them), such that the (geometric) Galois group of f(z) + tx™ is
not the full symmetric group. For instance, with m = 0 and d even,
take fi(z) = 2% + Zz 2 agix® + t; the geometric galois group is then
a subgroup of a certain wreath product (here the crucial point is that
fi(x) = gi(x?), i.e., the family is decomposable.) Similarly, for m > 0
and m|d, the family

d/m

fi(w) =2+ Z a;x™ + tz™ = g,(¢™)
i=0

is decomposable.

REFERENCES

[1] J. C. Andrade, L. Bary-Soroker, and Z. Rudnick. Shifted convolution and
the titchmarsh divisor problem over F,[t]. Philosophical Transactions of the
Royal Society of London A: Mathematical, Physical and Engineering Sciences,
373(2040), 2015.

[2] E. Bank and L. Bary-Soroker. Prime polynomial values of linear functions
in short intervals. Journal of Number Theory, 151(Supplement C):263 — 275,
2015.

[3] E. Bank, L. Bary-Soroker, and L. Rosenzweig. Prime polynomials in short
intervals and in arithmetic progressions. Duke Math. J., 164(2):277-295, 02
2015.

[4] D. Carmon and Z. Rudnick. The autocorrelation of the Mobius function and
Chowla’s conjecture for the rational function field. Q. J. Math., 65(1):53-61,
2014.

[5] S. D. Cohen. Uniform distribution of polynomials over finite fields. J. London
Math. Soc. (2), 6:93-102, 1972.

[6] S. D. Cohen and R. W. K. Odoni. The Farey density of norm subgroups of
global fields. II. Glasgow Math. J., 18(1):57-67, 1977.

[7] A. Entin. Factorization statistics of restricted polynomial specializations over
large finite fields. Preprint, 2018.



14 PAR KURLBERG, LIOR ROSENZWEIG

[8] E. Fouvry, E. Kowalski, P. Michel, C. S. Raju, J. Rivat, and K. Soundararajan.
On short sums of trace functions. Ann. Inst. Fourier (Grenoble), 67(1):423—
449, 2017.

[9] M. Fried and M. Jarden. Field Arithmetic. Ergebnisse der Mathematik und
ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics.
Springer Berlin Heidelberg, 2006.

[10] M. Jarden. The Cebotarev density theorem for function fields: an elementary
approach. Math. Ann., 261(4):467-475, 1982.

[11] M. Jarden and A. Razon. Skolem density problems over large Galois extensions
of global fields. In Hilbert’s tenth problem: relations with arithmetic and alge-
braic geometry (Ghent, 1999), volume 270 of Contemp. Math., pages 213-235.
Amer. Math. Soc., Providence, RI, 2000. With an appendix by Wulf-Dieter
Geyer.

[12] J. Keating and Z. Rudnick. Squarefree polynomials and mbius values in short
intervals and arithmetic progressions. Algebra Number Theory, 10(2):375-420,
2016.

[13] P. Kurlberg. Poisson spacing statistics for value sets of polynomials. Interna-
tional Journal of Number Theory, 05(03):489-513, 20009.

[14] P. Kurlberg and L. Rosenzweig. Prime and mobius correlations for very short
intervals in Fy[z]. Preprint, 2018.

[15] S. Lang. Algebraic Number Theory. Addison-Wesley series in mathematics.
Addison-Wesley Publishing Company, 1970.

[16] W. C. W. Li. Number theory with applications, volume 7 of Series on University
Mathematics. World Scientific Publishing Co., Inc., River Edge, NJ, 1996.

[17] H. Reichardt. Der Primdivisorsatz fiir algebraische Funktionenkdrper iiber
einem endlichen Konstantenkorper. Math. Z., 40(1):713-719, 1936.

[18] J.-P. Serre. Topics in Galois theory, volume 1 of Research Notes in Mathemat-
ics. Jones and Bartlett Publishers, Boston, MA, 1992.

[19] V. Shoup. New algorithms for finding irreducible polynomials over finite fields.
Math. Comp., 54(189):435-447, 1990.

[20] 1. E. Shparlinski. On the distribution of irreducible trinomials. Canad. Math.
Bull., 54(4):748-756, 2011.

[21] I. E. Shparlinskii. On primitive elements in finite fields and on elliptic curves.
Mat. Sb., 181(9):1196-1206, 1990.

[22] H. Stichtenoth. Algebraic function fields and codes, volume 254 of Graduate
Texts in Mathematics. Springer-Verlag, Berlin, second edition, 2009.

[23] A. Weil. Variétés abéliennes et courbes algébriques. Actualités Sci. Ind., no.
1064, Publ. Inst. Math. Univ. Strasbourg 8 (1946). Hermann & Cie., Paris,
1948.

URL: www.math.kth.se/ kurlberg

DEPARTMENT OF MATHEMATICS, KTH ROYAL INSTITUTE OF TECHNOLOGY,
SE-100 44 STOCKHOLM, SWEDEN
E-mail address: kurlberg@math.kth.se

UNIT OF MATHEMATICS, AFEKA TEL Aviv COLLEGE OF ENGINEERING, MIVTZA
KaADESH 38, TEL AvIvV, ISRAEL
E-mail address: 1liorr@afeka.ac.il



