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Abstract. We consider momentum push-forwards of measures arising as quantum limits (semi-
classical measures) of eigenfunctions of a point scatterer on the standard flat torus T2 = R2/Z2.
Given any probability measure arising by placing delta masses, with equal weights, on Z2-lattice
points on circles and projecting to the unit circle, we show that the mass of certain subsequences
of eigenfunctions, in momentum space, completely localizes on that measure and are completely
delocalized in position (i.e., concentration on Lagrangian states.) We also show that the mass, in
momentum, can fully localize on more exotic measures, e.g. singular continous ones with support on
Cantor sets. Further, we can give examples of quantum limits that are certain convex combinations
of such measures, in particular showing that the set of quantum limits is richer than the ones
arising only from weak limits of lattice points on circles. The proofs exploit features of the half-
dimensional sieve and behavior of multiplicative functions in short intervals, enabling precise control
of the location of perturbed eigenvalues.

1. Introduction

Let (M, g) be a smooth, compact Riemannian manifold with no boundary, unit mass and let ∆g

denote the Laplace-Beltrami operator. Also, let {φλ} be an orthonormal basis of eigenfunctions of
∆g with eigenvalues 0 ≤ λ1 ≤ λ2 ≤ . . .. For an observable f ∈ C∞(S∗M), where S∗M denotes the
unit co-tangent bundle of M , let Op(f) denote its quantization, defined as a pseudo-differential
operator (cf. [9] for details.) A central problem in quantum chaos (cf. [49, Problem 3.1]) is to
understand the set of possible quantum limits (sometimes called semiclassical measures) describing
the distribution of mass of the eigenfunctions {φλ} within S∗M , in the limit as the eigenvalue
λ tends to infinity. A cornerstone result in this direction is the quantum ergodicity theorem of
Shnirelman [44], Colin de Verdiére [8], and Zelditch [48] which states that if the geodesic flow on
M is ergodic there exists a density one subsequence of eigenfunctions {φλj} such that

µφλj (f) = 〈Op(f)φλj , φλj 〉 →
∫
S∗M

f(x)dµL(x)

as λj →∞, where dµL is the normalized Liouville measure on S∗M . (Note that any quantum limit,
by Egorov’s theorem, is invariant under the classical dynamics.)

While the quantum ergodicity theorem implies that the mass of almost all eigenfunctions equidis-
tributes in S∗M with respect to dµL, it does not rule out the existence of sparse subsequences along
which the mass of the eigenfunctions localizes. Whether or not this happens crucially depends on
the geometry of M , cf. Section 1.3.

In this article we study quantum limits of “point scatterers” on M = T2 = R2/2πZ2. These are
singular perturbations of the Laplacian on M , and were used by Šeba [39] in order to study the
transition between integrability and chaos in quantum systems. The perturbation is quite weak and
has essentially no effect on the classical dynamics, yet the quantum dynamics “feels” the effect of
the scatterer, and an analog of the quantum ergodicity theorem is known to hold [37, 28] (namely,
equidistribution holds for a full density subset of the “new” eigenfunctions.)
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The model also exhibits scarring along sparse subsequences of the new eigenfunctions [26]. In
particular there exist quantum limits whose momentum push-forward, which can be viewed as
probability measures on the unit circle, is of the form cµsing + (1− c)µuniform, for some c ∈ [1/2, 1].
Here both µuniform and µsing are normalized to have mass one, and µsing can be taken to be a
sum of delta measures giving equal mass to the four points ±(1, 0),±(0, 1). We note that µuniform
is the push-forward of the Liouville measure and hence maximally delocalized, whereas µsing is
maximally localized since any quantum limits in this setting must be invariant under a certain
eight fold symmetry (cf. (1.5)).

Stronger localization, i.e., going strictly beyond c = 1/2, is particularly interesting given a
number of “half delocalization” results for quantum limits for some other (strongly chaotic) systems,
namely quantized cat maps and geodesic flows on manifolds with constant negative curvature. For
example, in the former case Faure and Nonnenmacher showed [12] that if a quantum limit ν is
decomposed as ν = νpp + νLiouville + νsc, with νpp denoting the pure point part and νsc denoting
the singular continous part, then νLiouville(T2) ≥ νpp(T2), and thus νpp(T2) ≤ 1/2. (We emphasize
that T2 is the full phase space in this setting.)

The aim of this paper is to exhibit essentially maximal localization for a quantum ergodic system,
namely arithmetic toral point scatterers. In particular we construct quantum limits (in momentum)
corresponding to c = 1 in the above decomposition; other interesting examples include singular
continous measures with support, say, on Cantor sets. This can be viewed as a step towards a
“measure classification” for quantum limits of quantum ergodic systems.

1.1. Description of the model. Let us now describe the basic properties of the point scatterer.
This is discussed in further detail in [37, 38, 28, 26, 39, 41]. To describe the quantum system
associated with the point scatterer, consider −∆|Dx0 where

Dx0 = {f ∈ L2(T2) : f(x) = 0 in some neighborhood of x0}.

By von Neumann’s theory of self-adjoint extensions (see Appendix A of [37]) there exists a one pa-
rameter family of self-adjoint extension of −∆|Dx0 parameterized by a phase ϕ ∈ (−π, π]. Moreover,
for ϕ 6= π the eigenvalues of these operators may be divided into two categories. The old eigenval-
ues which are eigenvalues of −∆, with multiplicity decreased by one, along with new eigenvalues
which are solutions to the spectral equation

(1.1)
∑
m≥1

r(m)

(
1

m− λ
− m

m2 + 1

)
= tan(ϕ/2)

∑
m≥1

r(m)

m2 + 1
,

where

r(m) = #{(a, b) ∈ Z2 : a2 + b2 = m}.

We will refer to the case when ϕ is fixed as λ → ∞ the weak coupling quantization. In this
regime work of Shigehara [41] suggests that the level spacing of the eigenvalues should have Poisson
spacing statistics and this is supported by work of Rudnick and Ueberschär [38] along with Freiberg,
Kurlberg and Rosenzweig [14]. In hope of exhibiting wave chaos Shigehara proposes the following
strong coupling quantization

(1.2)
∑

|m−λ|≤λ1/2
r(m)

(
1

m− λ
− m

m2 + 1

)
=

1

α
,

where α ∈ R is called the physical coupling constant and reflects the strength of the scatterer. The
strong coupling quantization restricts the spectral equation to the physically relevant energy levels.
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Notably, this forces a re-normalization of (1.1)

tan(ϕ/2)
∑
m≥1

r(m)

m2 + 1
∼ −π log λ

so that ϕ depends on λ in this case (see [47] equation (3.14)). We note that the weak coupling
quantization corresponds to a fixed self adjoint extension, whereas the strong coupling quantization
can be viewed as an energy dependent, albeit very slowly varying, family of self adjoint extensions.

From the spectral equation it follows that new eigenvalues interlace with integers which are
representable as the sum of two integer squares. We denote these eigenvalues as follows

0 < λ0 < 1 < λ1 < 2 < λ2 < 4 < λ4 < 5 < λ5 < · · ·
and write Λnew for the set of all such eigenvalues. Also, given n = a2+b2 let n+ denote the smallest
integer greater than n which is also a sum of two squares. Let

(1.3) δn = λn − n > 0,

(which should not be confused with the Dirac delta function). In addition given λ ∈ Λnew the
associated Green’s function is given by

(1.4) Gλ(x) = − 1

4π2

∑
ξ∈Z2

exp(−iξ · x0)
|ξ|2 − λ

eiξ·x, gλ(x) =
1

‖Gλ‖2
Gλ(x),

(see equation (5.2) of [37]). Since the torus is homogeneous we may without loss of generality
assume that x0 = 0.

1.2. Results. Our first main result shows that along a sparse, yet relatively large, subsequence of
new eigenvalues {λj} that the mass of gλj in momentum space localizes on measures arising from

Z2-lattice points on circles, projected to the unit circle. To describe these measures in more detail,
consider an integer n = a2 + b2, with a, b ∈ Z, and the following probability measure on the unit
circle S1 ⊂ C

µn =
1

r(n)

∑
a2+b2=n

δ(a+ib)/|a+ib|.

Following Kurlberg and Wigman [30] we call a measure µ∞ attainable if it is a weak limit point
of the set {µn}n=a2+b2 . Any such measure is invariant under rotation by π/2, as well as under
reflection in the x-axis; for convenience let

(1.5) Sym8 :=

{〈(
0 −1
1 0

)
,

(
−1 0
0 1

)〉}
⊂ GL2(Z)

denote the group generated by these transformations.

Theorem 1.1. Let m0 = a2+b2 ∈ N be odd1. In each of the weak and strong coupling quantizations
there exists a subset of eigenvalues Em0 ⊂ Λnew with

#{λ ≤ X : λ ∈ Em0}
#{λ ≤ X : λ ∈ Λnew}

� 1

(logX)1+o(1)

such that for any pure momentum observable f ∈ C∞(S1) ⊂ C∞(S∗(T2))

〈Op(f)gλ, gλ〉
λ→∞
λ∈Em0−−−−→ 1

r(m0)

∑
a2+b2=m0

f

(
a+ ib

|a+ ib|

)
.

1As far as possible quantum limits go, m0 being odd is not a restriction as any µn for n even can be approximated
by µm0 for m0 odd.
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We note that the quantization of our observables is as explicitly given in (5.1), which follows the
approach of [28].

Hence, in momentum space the mass of gλ completely localizes on the measure µm0 . For any
attainable measure µ∞ there exists {m0,`}` such that µ0,` weakly converges to µ∞. This implies
the following corollary.

Corollary 1.1. Let µ∞ be an attainable measure. Then there exists {λj}j ⊂ Λnew such that for
any pure momentum observable f ∈ C∞(S1)

〈Op(f)gλj , gλj 〉
j→∞−−−→

∫
S1

fdµ∞.

We note that the set of attainable measures is much smaller than the set of probabality measures
on S1 that are Sym8-invariant, in particular the set of attainable measures is not convex (cf. [30,
Section 3.2].) In our next result we show that in the strong coupling quantization there is a
subsequence of new eigenvalues along which the entire mass of gλ localizes on certain convex
combination of two measures arising from lattice points on the circle. In particular, the set of
quantum limits, in momentum space, is strictly richer than the set of attainable measures.

Theorem 1.2. Let m0,m1 be odd integers which are each representable as a sum of two squares.
Then in the strong coupling quantization there exists a subsequence of eigenvalues Em0,m1 ⊂ Λnew

such that for each λ ∈ Em0,m1 there is an integer `λ with r(`λ) 6= 0 and r(`λ) � 1 such that for
pure momentum observables f ∈ C∞(S1)

〈Op(f)gλ, gλ〉 =cλ ·
1

r(m0)

∑
a2+b2=m0

f

(
a+ ib

|a+ ib|

)

+ (1− cλ) · 1

r(m1`λ)

∑
a2+b2=m1`λ

f

(
a+ ib

|a+ ib|

)
+O

(
1

(log log λ)1/11

)
,

(1.6)

where

cλ =
1

1 + r(m0)/r(m1`λ)
.

Additionally,
#{λ ≤ X : λ ∈ Em0,m1}
#{λ ≤ X : λ ∈ Λnew}

� 1

(logX)2+o(1)
.

Note that since
∑

p|`λ 1� 1, the measure µm1`λ can be viewed as a fairly small perturbation of
µm1 .

Remark 1. By removing a further “thin” set of eigenvalues (with spectral counting function of size
O(x1−ε) for ε > 0, we can construct quantum limits that are flat in position (for details, cf. [26,
Remark 4]), in addition to the momentum push-forward properties given in Theorems 1.1 and 1.2.
In particular, we can construct quantum limits that are completely localized on the superposition of
two Lagrangian states — essentially two plane waves, one in the horizontal and one in the vertical
direction. This phenomena is sometimes called super scarring (cf. [6, 26].)

Further, assuming a plausible conjecture on the distribution of the prime numbers, we show that
given m0,m1 as in Theorem 1.2 the quantum limit of 〈Op(f)gλ, gλ〉 is a convex combination of
µm0 and µm1 . From this we are able to conclude that every Sym8-invariant measure arises as a
quantum limit. The conjecture on the distribution of primes concerns obtaining a lower bound on
the number solutions (u, v) in almost primes to the Diophantine equation

aX − bY = 4
4



where v = p1p2, u = p3 with pj a prime satisfying pj = a2j + b2j and bj = o(aj) for j = 1, 2, 3. The
precise formulation of this conjecture, which we call Hypothesis 1 is given in Section 5.5.

Theorem 1.3. Assume Hypothesis 1. Let µ∞0 , µ∞1 be attainable measures and 0 ≤ c ≤ 1. Then
in the strong coupling quantization there exists {λj}j ⊂ Λnew such that for any f ∈ C∞(S1)

〈Op(f)gλj , gλj 〉
j→∞−−−→ c

∫
S1

fdµ∞0 + (1− c)
∫
S1

fdµ∞1 .

In particular, all Sym8-invariant probability measures on S1 arise as quantum limits in momentum
space.

We finally remark that the proof of Theorem 1.2 easily (and unconditionally) also gives that any
Sym8-invariant probability measure µ on S1 is a quantum limit of Greens function in the following
sense: given µ, there exist a sequence of positive reals λ′1 < λ′2 < · · · , disjoint from the set of
unperturbed eigenvalues, so that limi→∞〈Op(f)gλ′i , gλ′i〉 = µ.

1.3. Discussion. For integrable systems it is often straightforward to construct non-uniform quan-
tum limits, e.g. “whispering gallery modes” for the geodesic flow in the unit ball, and for linear
flows on T2, Lagrangian states with maximal localization (i.e., a single plane wave) are easily con-
structed. We note that strong localization in position for quantum limits on T2 was ruled out by
Jakobson [20] — in position, any quantum limit is given by trigonometric polynomials whose fre-
quencies lie on at most two circles (hence absolutely continuous with respect to Lebesgue measure.)
Further, for the sphere, Jakobson and Zelditch in fact obtained a full classification — any flow
invariant measure on S∗(S2) is a quantum limit [21].

The quantum ergodicity theorem holds in great generality as long as the key assumption of er-
godic classical dynamics holds, but the existence of exceptional subsequence of nonuniform quantum
limits (“scarring”) is subtle. For classical systems given by the geodesic flow on compact negatively
curved manifolds, the celebrated Quantum Unique Ergodicity (QUE) conjecture [36] by Rudnick
and Sarnak asserts that the only possible quantum limit is the Liouville measure. Known results
for QUE include Lindenstrauss’ breakthrough [31] for Hecke eigenfunctions on arithmetic modular
surfaces, together with Soundararajan ruling out “escape of mass” in the non-compact case [45].
On the other hand, for a generic Bunimovich stadium (with strongly chaotic classical dynamics),
Hassell [16] has shown that there exists a subsequence of exceptional eigenstates where the mass
localizes on sets of bouncing ball trajectories.

For quantized cat maps, again for Hecke eigenfunctions, QUE is know to hold [27]. However,
unlike for arithmetic modular surfaces, where Hecke desymmetrization is believed to be unnecessary,
it is essential for quantum cat maps. Namely, Faure, Nonnenmacher and de Bièvre [13] constructed,
in the presence of extreme spectral multiplicities and no Hecke desymmetrization, quantum limits
of the form ν = 1

2νpp + 1
2νLiouville; in [12] this was shown to be sharp in the sense that the Liouville

component always carries at least as much mass as the pure point one. (We note that, on assuming
very weak bounds on spectral multiplicities, Bourgain showed [7] that scarring does not occur.) For
higher dimensional analogs of quantum cat maps, Kelmer has for certain maps shown [23] “super
scarring”, even after Hecke desymmetrization, on invariant rational isotropic subspaces. Further,
these type of scars persist on adding certain perturbations that destroy the spectral multiplicities
[24]. Other models where scarring is known to exist include toral point scatterers with irrational
aspect ratios [29, 22, 3] and quantum star graphs [4], though neither model is quantum ergodic
[29, 4].

Classifying the set of possible quantum limits, in particular for Quantum Ergodic settings, is
an interesting question. Here Anantharaman proved very strong results for geodesic flows on
negatively curved manifolds [1]: any quantum limit has positive Kolmogorov-Sinai (KS) entropy
with respect to the dynamics of the geodesic flow. In particular, this rules out localization on a
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finite number of closed geodesics (for compact arithmetic surfaces this was already known due to
Rudnick and Sarnak [36].) Moreover, in the case of constant negative curvature, Anantharaman
and Nonnenmacher showed [2] that the KS-entropy is at least half of the maximum possible. The
measure of maximum entroy is given by the Liouville measure, and thus “eigenfunctions are at
least half delocalized”. Dyatlov and Jin [10] consequently showed that any quantum limit must
have full support in S∗(M), for compact hyperbolic surfaces M with constant negative curvature;
together with Nonnenmacher this was recently strengthened [11] to the include the case of surfaces
with variable negative curvature.

1.4. Outline of the proofs. Our arguments use the multiplicative structure of the integers to
create an imbalance in the spectral equation (1.2) along a zero density, yet relatively large sub-
sequence of new eigenvalues. Through exploiting this imbalance we control the location of the
new eigenvalues in our subsequence and show that they lie close to integers which are sums of
two squares. This greatly amplifies the amount of mass of the corresponding eigenfunctions in
momentum space which lies on the terms which correspond to these integers, so much so that the
contribution of the remaining terms is negligible. Consequently, the mass completely localizes on a
convex combination of two measures and moreover our construction allows us to completely control
the first measure.

In Section 2 we use sieve methods to produce integers n = p1p2 where pj , j = 1, 2, is a prime with
pj = a2 + b2 = (a+ ib)(a− ib), 0 < b ≤ a, with 0 ≤ arctan(b/a) ≤ ε, where ε is a small parameter,
such that Q0p1p2+4 is also a sum of two squares, Q1|Q0p1p2+4 and (Q0p1p2+4)/Q1 has a bounded
number of prime factors, where Q0, Q1 are large integers whose purpose we will describe later. In
particular, we exploit special features of the half dimensional sieve using an ingenious observation
of Huxley and Iwaniec [18]. Further, in order to find suitable Gaussian primes in narrow sectors
we use a classical result of Hecke together with non-trivial bounds on exponential sums over finite
fields to control sums of integral lattice points in narrow sectors with norms lying in arithmetic
progressions to large moduli.

The subsequence of almost primes {n`} constructed as described above creates the imbalance in
the spectral equation (1.2) by boosting the contribution of the terms m = Q0n`, Q0n`+4. The next
step in our argument is to show that this imbalance typically overwhelms the contribution of the
remaining terms. To do this, we first show in Section 3 that for all new eigenvalues lying outside
a small exceptional set the spectral equation (1.2) can be effectively truncated to integers m with
essentially |m−λ| � (log λ)10. This is done by controlling sums of r(n) over short intervals and uses
a second moment estimate of the Dedekind zeta-function ζQ(i). In Section 4 we apply this result
to new eigenvalues which lie between Q0n` and Q0n` + 4 and show that for almost all such new
eigenvalues the remaining terms in the spectral sum (i.e. |m− λ| � (log λ)10,m 6= Q0n`, Q0n` + 4)
is relatively small, provided that we take Q0, Q1 sufficiently large thereby boosting the contribution
of the closest two terms. This is accomplished by using bounds for sums of multiplicative functions
over polynomials due to Henriot [17]. Crucially, we need good estimates for these sums in terms of
the discriminant of the polynomials.

Finally, to get complete control on the first measure in Theorem 1.2 we choose Q0 so that it is the

product of a given fixed integer m0 and large primes pk = a2 + b2 with 0 ≤ arctan(bk/ak) ≤ p
−1/10
k

so that the probability measure on S1 associated with Q0n` weakly converges to the measure
associated with m0 as ` → ∞. This last construction uses work of Kubilius [25] on Gaussian
primes in narrow sectors.

1.5. Notation. We write f(x) � g(x) provided that f(x) = O(g(x)). Additionally, if for all x
under consideration |f(x)| ≥ cg(x) we write f(x) � g(x). If we have both f(x) � g(x) and
f(x)� g(x) we write f(x) � g(x). For some additional notation related to sieves, see Section 2.1.1.
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2. Sieve estimates

Let B0 be a sufficiently large integer, and given ε > 0 let

Pε ={p ≥ (log x)B0 : p = a2 + b2 and 0 < arctan(b/a) ≤ ε},

P ′ε ={p ∈ Pε : p ≤ x1/9}.
(2.1)

Throughout we assume that ε ≥ 1/(log log x)1/2 is sufficiently small. Also given f, g : N → C we
define the Dirichlet convolution of f and g by

(f ∗ g)(n) =
∑
ab=n

f(a)g(b).

Also, let Q0, Q1 ≤ (log x)1/10 be odd co-prime integers whose prime factors are all ≡ 1 (mod 4).
Moreover we assume that Q0 = f20 e0r

a0
0 , Q1 = f21 e1r

a1
1 where e0, e1 are square-free, f0, f1 � 1 and

r0, r1 are primes congruent to 1 (mod 4). Throughout, the arithmetic function b(n) is the indicator
function of the set of integers which are representable as a sum of two squares. Also, for S ⊂ N we
define

1S(n) =

{
1 if n ∈ S,
0 otherwise.

and let ϕ(n) = #{m < n : (m,n) = 1}.

Proposition 2.1. Let η > 0 be sufficiently small and let y = xη. Suppose y > Q0Q1. Then∑
n≤x

Q1|Q0n+4

(
Q0n+4
Q1

,
∏
p≤y p)=1

(1Pε ∗ 1P ′ε)(n)b(Q0n+ 4) ≥ Cε2Q0

η1/2ϕ(Q0)
· x log log x

ϕ(Q1)(log x)2
,

for some absolute constant C > 0.

This proposition builds on a result of Friedlander and Iwaniec [15, Ch. 4]. The main novelty here
is that we capture almost primes n = p1p2 such that each prime factor p = a2 + b2, with 0 ≤ b ≤ a,
has the property that a+ ib lies within a certain small sector.

We also will require the following result.

Proposition 2.2. There exists an absolute constant C > 0 such that∑
n≤x

Q1|Q0n+4

(1Pε ∗ 1P ′ε)(n)b(Q0n+ 4) ≥ Cε2 x log log x

ϕ(Q1)(log x)3/2
.

Since Proposition 2.2 follows from a similar, yet simpler argument than the one used to prove
Proposition 2.1 we will omit its proof. The rest of this section will be devoted to proving Proposition
2.1.

7



2.1. The Rosser-Iwaniec Sieve. Let us first introduce the Rosser-Iwaniec β-sieve and the clas-
sical sieve terminology. We start with a sequence of A = {an} of non-negative real numbers, a set
of primes P and a parameter z. Define

P (z) =
∏
p∈P
p<z

p.

Our goal is to obtain an estimate for the sieved set

S(A,P, z) :=
∑
n≤x

(n,P (z))=1

an.

This will be accomplished through calculating, for square free d ∈ N,

(2.2) Ad(x) :=
∑
n≤x

n≡0 (mod d)

an.

We now make the hypothesis that our estimate for Ad(x) will be of the form

(2.3) Ad(x) = g(d)X + rd

where g(d) is a multiplicative function with 0 ≤ g(p) < 1. The number rd should be thought of as
a remainder term, so X is an approximation to A1(x), and the function g(d) can be interpreted as
a density.

Let

V (z) =
∏
p|P (z)

(1− g(p)) .

We further suppose for all w < z that

(2.4)
V (w)

V (z)
=

∏
w≤p<z
p∈P

(1− g(p))−1 ≤
(

log z

logw

)κ(
1 +O

(
1

logw

))

for some κ > 0. The constant κ is referred to as the dimension of the sieve.
Our arguments also require sieve weights. Let Λ = {λd}d, be a sequence of real numbers, where

d ranges over square-free integers. The sequence Λ is referred to as an upper bound sieve provided
that

(2.5) 1n=1 =
∑
d|n

µ(d) ≤
∑
d|n

λd, ∀n ∈ N,

where 1n=1 equals one if n = 1 and equals zero otherwise. We call Λ a lower bound sieve if

(2.6)
∑
d|n

λd ≤ 1n=1, ∀n ∈ N.

For a sieve Λ = {λd} we use the notation

(2.7) (λ ∗ 1)(n) =
∑
d|n

λd.

(this will be used to show the existence of primes, or almost primes with desired properties.)
Additionally, we say that the sieve Λ has level D if λd = 0 for d > D.

Given κ > 0 the β-sieve gives both an upper and lower bound for S(A,P, z) whenever s =
logD/ log z is sufficiently large in terms of κ. The bounds consist of an error term, which is a sum
of the remainder terms |rd| for d ≤ D and a main term XV (z)F (s), XV (z)f(s) (resp.) where F, f
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are certain continuous functions with 0 ≤ f(s) < 1 < F (s). For precise definitions, motivation and
context we refer the reader to [15, Chapter 11].

Theorem 2.1 (Cf. [15, Theorem 11.13]). Let D ≥ z and write s = logD
log z . Then

S(A,P, z) ≤ XV (z)
(
F (s) +O((logD)−1/6

)
+R(D, z)

S(A,P, z) ≥ XV (z)
(
f(s) +O((logD)−1/6

)
−R(D, z)

for s ≥ β(κ)− 1 and s ≥ β(κ) (resp.), where

R(D, z) ≤
∑
d≤D
d|P (z)

|rd|.

In particular, note that for κ = 1/2, it is well known that β = 1 (e.g., see [15, Ch. 14.2].) In our
arguments, we will use β-sieve weights, which are as defined in [15] Sections 6.4-6.5. In particular
for these weights we have |λd| ≤ 1. We will sometimes refer to the Fundamental Lemma of the
Sieve, by which we mean the following result (see [15, Lemma 6.11].)

Theorem 2.2. Let Λ± = {λ±d } be upper and lower bound (resp.) β-sieves of level D with β ≥ 4κ+1.
Also, let s = logD/ log z. Then for any multiplicative function satisfying (2.4) and s ≥ β + 1 we
have ∑

d|P (z)

λ±d g(d) = V (z)
(

1 +O
(
s−s/2

))
.

We also require the following estimate for the convolution of two sieves (see equation (5.97) and
Theorem 5.9 of [15]).

Theorem 2.3. Let Λ1 = {λd} and Λ2 = {λ′d} be upper-bound sieve weights of level D1, D2 (resp.).
Also, let g1, g2 be multiplicative functions satisfying (2.4) with κ = 1. Then∣∣∣∣ ∑

d,e
(d,e)=1

λdλ
′
eg1(d)g2(e)

∣∣∣∣ ≤ (4e2γ + o(1))
∏
p

(1 + h1(p)h2(p))
2∏
j=1

∏
p<Dj

(1− gj(p))

as min{D1, D2} → ∞, where for j = 1, 2, hj(n) = gj(n)(1− gj(n))−1 and γ is Euler’s constant.

If in addition g1(p), g2(p) ≤ 1/p so that h1(p)h2(p)� 1/p2, which will be the case for us, then

(2.8)

∣∣∣∣ ∑
d,e

(d,e)=1

λdλ
′
eg1(d)g2(e)

∣∣∣∣ ≤ C ∏
p<D1

(1− g1(p))
∏
p<D2

(1− g2(p))

where C > 0 is an absolute constant.

2.1.1. Notation. We will also use the notation

P3(z1, z2) :=
∏

z1≤p≤z2
p≡3 (mod 4)

p, and P3(z) := P3(3, z).

Additionally, let 1(n) = 1N(n) = 1 denote the identity function and let τ(n) = (1 ∗ 1)(n) =
∑

d|n 1.

Also, define

(2.9) B(x; q, a, ε) :=
∑
n≤x

n≡a (mod q)

(1Pε ∗ 1P ′ε)(n)− 1

ϕ(q)

∑
n≤x

(n,q)=1

(1Pε ∗ 1P ′ε)(n).

Further, η, δ > 0 will denote small, but fixed real numbers.
9



2.2. Preliminary lemmas. We begin by showing that the difference between the upper and lower
bound sieves is “small”.

Lemma 2.1. Let Λ± = {λ±d } be upper and lower bound linear sieves (resp.) each of level w = x
√
η

where η > 0 is sufficiently small, whose sieve weights are supported on integers d such that d|P (y),
where y = xη and (d, 2Q0f1r1) = 1; in particular

(2.10) λ±d = 0 if (d, 2Q0f1r1) > 1.

Then

∑
n≤x

Q1|Q0n+4

(
(λ+ ∗ 1)

(
Q0n+ 4

Q1

)
− (λ− ∗ 1)

(
Q0n+ 4

Q1

))
(1Pε ∗ 1P ′ε)(n)

� ε2η1/(4η
1/2)−1 Q0

ϕ(Q0)

x log log x

ϕ(Q1)(log x)2
+

x

(log x)10
.

Proof. Switching order of summation, it follows that

∑
n≤x

Q1|Q0n+4

(
(λ+ ∗ 1)

(
Q0n+ 4

Q1

)
− (λ− ∗ 1)

(
Q0n+ 4

Q1

))
(1Pε ∗ 1P ′ε)(n)

=
∑
±
±

∑
d<w
d|P (y)

(d,2Q0f1r1)=1

λ±d

∑
n≤x

Q0n+4≡0 (mod dQ1)

(1Pε ∗ 1P ′ε)(n).
(2.11)

The inner sum on the RHS of (2.11) equals

1

ϕ(dQ1)

∑
n≤x

(n,dQ1)=1

(1Pε ∗ 1P ′ε)(n) + B (x; dQ1, γ, ε)
(2.12)

where γ is the unique reduced residue (mod dQ1) satisfying γ · Q0 ≡ −4 (mod dQ1) and B is as
defined in (2.9). Also,

(2.13)
∑
n≤x

(n,dQ1)=1

(1Pε ∗ 1P ′ε)(n) =
∑
n≤x

(1Pε ∗ 1P ′ε)(n) +O

( ∑
p1p2≤x

(p1p2,dQ1)6=1

1Pε(p1)1P ′ε(p2)

)
.

Since dQ1 ≤ x1/9 (as η is small) and p2 ≤ x1/9 the contribution to the error term from p1p2 ≤ x

with p1|(p1p2, dQ1) is �
∑

p2≤x1/9
∑

p1≤x1/9 1� x2/9. Also, since p2 ≥ (log x)B0

(2.14)
∑

p1p2≤x
(p1p2,dQ1)=p2

1Pε(p1)1P ′ε(p2) ≤
∑
p2|dQ1

p2≥(log x)B0

∑
p1≤x/p2

1� x

log x

∑
p2|dQ1

p2≥(log x)B0

1

p2
� x(log log x)

(log x)B0
.

10



Hence, using (2.12), (2.13), (2.14) along with the Fundamental Lemma of the Sieve (see Theorem

2.2 and recall |λd| ≤ 1) with g(d) = ϕ(Q1)/ϕ(Q1d)2, and s = logw/ log y = η−1/2 we have that∑
d<w
d|P (y)

(d,2Q0)=1

λ±d

∑
n≤x

Q0n+4≡0 (mod dQ1)

(1Pε ∗ 1P ′ε)(n)

=
1

ϕ(Q1)

∑
n≤x

(1Pε ∗ 1P ′ε)(n)
∏
p≤y

(p,2Q0f1r1)=1

(
1− ϕ(Q1)

ϕ(Q1p)

)
(1 +O(η1/(4η

1/2)))

+O

( ∑
d<w

(d,2)=1

|B (x; dQ1, γ, ε)|
)

+O

(
x log log x

(log x)B0−1

)
.

(2.15)

Applying Theorem A.1 from the appendix, since w = x
√
η < x1/2−o(1) we get that∑

d<w
(d,2)=1

|B (x; dQ1, γ, ε)| �
x

(log x)10
.

Using the two estimates above in (2.11) (note the main terms in (2.15) are the same for each of the
sieves Λ± so they cancel in (2.11)) and applying (A.3) (with q = 1) from the appendix to estimate
the sum over n, completes the proof upon noting that∏

p≤y
(p,2Q0f1r1)=1

(
1− ϕ(Q1)

ϕ(Q1p)

)
� Q0

ϕ(Q0) log y
=

Q0

ϕ(Q0)η log x
.

�

We next give a lower bound on the upper bound sieve, which together with Lemma 2.1 is strong
enough (given suitable parameter choices) to show the existence of infinitely many integers with
exactly two prime factors with the desired properties.

Lemma 2.2. Let w = x
√
η, y = xη, and Λ+ be as in Lemma 2.1. Let δ > 3

√
η > 0 and z = x

1
2
−δ.

Then there exists a constant C1 > 0 such that∑
n≤x

(Q0n+4,P3(y,z))=1
Q1|Q0n+4

(1Pε ∗ 1P ′ε)(n)(λ+ ∗ 1)

(
Q0n+ 4

Q1

)
≥ C1

ε2δ1/2

η1/2
Q0

ϕ(Q0)

x log log x

ϕ(Q1)(log x)2
.

Proof. Consider the sifting sequence

A =

{
(1Pε ∗ 1P ′ε)

(
m− 4

Q0

)
(λ+ ∗ 1)

(
m

Q1

)
: Q1|m,Q0|m− 4

}
and primes P = {p ≥ y : p ≡ 3 (mod 4)}. Recalling (2.10), we may write

X =
∑
e<w
e|P (y)

λ+e
ϕ(eQ1)

∑
n≤x

(n,Q1e)=1

(1Pε ∗ 1P ′ε)(n)

=
∑
n≤x

(n,Q1)=1

(1Pε ∗ 1P ′ε)(n)
∑
e<w
e|P (y)

(e,2Q0f1r1n)=1

λ+e
ϕ(eQ1)

� ε2
Q0

ϕ(Q0)

x log log x

ϕ(Q1)(log y)(log x)
,

(2.16)

2Note that g is multiplicative on the set of square-free d with (d, f1r1) = 1.
11



where the lower bound follows from the Fundamental Lemma of the Sieve (see (2.15) and take D =

w, z = y in Theorem 2.2 and note that we then have s = η−1/2) along with prime number theorem
for Gaussian primes in sectors to evaluate the sum over n (see (A.1), (A.3) in the Appendix).

For d|P3(y, z) note that (d, eQ0Q1) = 1 for e such that p|e ⇒ p < y, and (1Pε ∗ 1P ′ε)(n) = 0 if
(d, n) 6= 1. It follows that (cf. (2.2) and (2.3) for the definition of Ad)

Ad(Q0x+ 4) =
∑
n≤x

Q1|Q0n+4
Q0n+4≡0 (mod d)

(1Pε ∗ 1P ′ε)(n)(λ+ ∗ 1)

(
Q0n+ 4

Q1

)

=
∑
e<w
e|P (y)

λ+e
∑
n≤x

Q0n+4≡0 (mod eQ1)
Q0n+4≡0 (mod d)

(1Pε ∗ 1P ′ε)(n)

=
∑
e<w
e|P (y)

λ+e
ϕ(deQ1)

∑
n≤x

(n,Q1e)=1

(1Pε ∗ 1P ′ε)(n) + rd =
1

ϕ(d)
X + rd,

where
rd �

∑
e<w

(e,2)=1

|B(x; deQ1, γ, ε)|

and γ is the unique residue class (mod deQ1) with Q0γ ≡ −4 (mod eQ1) and Q0γ ≡ −4 (mod d);
also note that (d, eQ1) = 1 and B is as in (2.9).

Hence, the half-dimensional Rosser-Iwaniec sieve, Theorem 2.1, gives for any D ≥ z with s =
logD/ log z ∑

n≥1
(Q0n+4,P3(y,z))=1

Q1|Q0n+4

(1Pε ∗ 1P ′ε)(n)(λ+ ∗ 1)

(
Q0n+ 4

Q1

)

≥ XV (z)

(
f(s) +O

(
1

(logD)1/6

))
−

∑
d<D

d|P3(y,z)

|rd|

(2.17)

where

(2.18) V (z) =
∏

y≤p≤z
p≡3 (mod 4)

(
1− 1

p− 1

)
�

√
log y

log z
� η1/2.

Taking D = z1+δ, so s = 1 + δ, we have by Theorem A.1, which is proved in the appendix, that
(taking q = edQ1)

(2.19)
∑
d<D

d|P3(y,z)

|rd| �
∑

q<DQ1w
(q,2)=1

(
τ(q) max

(a,q)=1
|B(x; q, a, ε)|

)
� x

(log x)3
.

Here note that DQ1w < x
1
2
− δ

2
+
√
η < x

1
2
− δ

6 and the contribution of the divisor function is handled
by using Cauchy-Schwarz along with the trivial bound |B(x; q, a, ε)| � x/q. Also note that f(t) ∼
2
√

eγ

π ·
√
t− 1 as t → 1+ (see the equation after (14.3) of [15]), so f(s) = f(1 + δ) �

√
δ. Using

this along with (2.16), (2.18), and (2.19) in (2.17) completes the proof.
�
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2.3. The Proof of Proposition 2.1. We first require a Brun-Titchmarsh type bound for primes
in narrow sectors.

Lemma 2.3. Let Q, q ≤ x2/3−o(1) be odd. Then∑
p=a2+b2≤x
| arctan(b/a)|≤ε

qp+4=Qp1, p1 prime

1� ε
q

ϕ(q)

x

ϕ(Q)(log x)2
.

Remark 2. The point of the lemma is that it holds for large moduli Q > x1/2. To accomplish
this we use asymptotic estimates for Gaussian integers α = a + ib with N(α) ≤ x and N(α) ≡ a
(mod Q) and | arg(α)| ≤ ε, where N(α) = αα is the norm of α. Details are given in Appendix, cf.
section A.2.

The main step in the proof of Proposition 2.1 is the following lemma.

Lemma 2.4. Let z = x
1
2
−δ where δ > 0 is sufficiently small and y = xη with 0 < η < 1/3. There

exists a constant C2 > 0 such that∑
n≤x

Q1|Q0n+4

(
Q0n+4
Q1

,P (y)P3(y,z))=1

(1Pε ∗ 1P ′ε)(n) =
∑
n≤x

Q1|Q0n+4

(
Q0n+4
Q1

,P (y))=1

p|Q0n+4⇒p≡1 (mod 4)

(1Pε ∗ 1P ′ε)(n) +R

where

0 ≤ R ≤ C2 · ε2 ·
δ3/2

η1/2
Q0

ϕ(Q0)
· x log log x

ϕ(Q1)(log x)2
.

Proof. By construction for ∗1P ′ε)(n) 6= 0, Q0n + 4 ≡ 1 (mod 4) and Q1 ≡ 1 (mod 4) so that
(Q0n+ 4)/Q1 ≡ 1 (mod 4) and must have an even number of prime factors which are congruent to

3 (mod 4). Since z > x1/4 the integers which contribute to R must have precisely two such prime
factors. Dropping several conditions on the integers n which contribute to R, it follows that R is
bounded by the number of integers n = p1p2 ≤ x, (1Pε ∗1P ′ε)(n) 6= 0 such that (Q0n+4)/Q1 = aq1q2
where b(a) = 1, (a, P (y)) = 1, q1 ≡ q2 ≡ 3 (mod 4) and q1, q2 are primes with z < q1, q2 ≤ 2Q0x/Q1

so a ≤ 2Q0x/(Q1z
2). By symmetry, it suffices to consider the terms with q1 ≤ q2. We get that

(2.20) R ≤ 2
∑

p2≤x1/9
1P ′ε(p2)

∑
a≤ 2Q0x

Q1z
2

(a,P (y))=1

b(a)
∑

z<q1≤
√

2Q0x
aQ1

∑
q1≤q2≤2Q0x/Q1

∑
p1≤x/p2

Q0p1p2+4=aq1q2Q1

1Pε(p1).

Applying Lemma 2.3 with q = Q0p2 and Q = aq1Q1

(2.21)
∑

p1≤x/p2
Q0p1p2+4=aq1q2Q1

1Pε(p1)� ε
Q0

ϕ(Q0)

x

ϕ(aQ1)q1p2(log x)2
.

Note that x/p2 ≥ x8/9 and Q0p2, aq1Q1 ≤
(
x
p2

)2/3−o(1)
, for δ > 0 sufficiently small so the applica-

tion of Lemma 2.3 is valid.
We claim that

(2.22)
∑

a≤ 2Q0x

Q1z
2

(a,P (y))=1

b(a)

ϕ(a)
�

√
log x/z2

log y
,
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which we will justify below. Additionally,

(2.23)
∑

z<q1≤
√

2Q0x
aQ1

1

q1
∼ log

log
√

2Q0x
aQ1

log z
�

log x
z2

log z
+

logQ0

log z
�

log x
z2

log z
� δ.

Therefore, using (2.21), (2.22), and (2.23) in (2.20) we conclude that

R�ε · Q0

ϕ(Q0)
· x log x/z2

ϕ(Q1)(log x)2 log z

√
log x/z2

log y

∑
p2≤x1/9

1P ′ε(p2)

p2

�ε2 · δ
3/2

η1/2
· Q0

ϕ(Q0)
· x · log log x

ϕ(Q1)(log x)2

as desired.
It remains to justify (2.22). Let F (n) be the completely multiplicative function defined by

F (p) = 1 if p ≥ y and zero otherwise. Then for all t ≥ y, it follows from basic estimates for
multiplicative functions (see (1.85) of [19]) that∑

n≤t
(n,P (y))=1

b(n)
n

ϕ(n)
≤
∑
n≤t

b(n)
n

ϕ(n)
F (n)

� t

log t

∏
p≤t

(
1 +

b(p)F (p)

p− 1

)
� t√

log t log y
.

For 1 ≤ t ≤ y the sum on the LHS is empty so the bound is true in that case as well. Hence, (2.22)
follows from this estimate along with partial summation. �

Proof of Proposition 2.1. Let δ be sufficiently small in terms of η, C1 and C2. Applying the in-
equality (2.6) for a lower bound sieve (also recall our notation (2.7)) along with Lemmas 2.1 and

2.2, using a lower bound sieve to take care of the condition (Q0n+4
Q1

, P (y)) = 1, we have that

∑
n≤x

Q1|Q0n+4

(
Q0n+4
Q1

,P (y)P3(y,z))=1

(1Pε ∗ 1P ′ε)(n) ≥
∑
n≤x

Q1|Q0n+4
(Q0n+4,P3(y,z))=1

(1Pε ∗ 1P ′ε)(n)(λ− ∗ 1)

(
Q0n+ 4

Q1

)

=
∑
n≤x

Q1|Q0n+4
(Q0n+4,P3(y,z))=1

(1Pε ∗ 1P ′ε)(n)(λ+ ∗ 1)

(
Q0n+ 4

Q1

)

+O

(
ε2η1/(4η

1/2)−1 Q0

ϕ(Q0)

x log log x

ϕ(Q1)(log x)2

)

≥C1
ε2δ1/2

η1/2
Q0

ϕ(Q0)

x log log x

ϕ(Q1)(log x)2

1 +O

η 1

4η1/2
− 1

2

δ1/2

 .

(2.24)
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Choosing η sufficiently small in terms of δ (which is fixed) the O-term above is ≤ 1/2 in absolute
value. Therefore, by (2.24) along with Lemma 2.4 it follows that

∑
n≤x

Q1|Q0n+4

(
Q0n+4
Q1

,P (y)P3(y,z))=1

p|Q0n+4⇒p≡1 (mod 4)

(1Pε ∗ 1P ′ε)(n) ≥

(
C1

2

ε2δ1/2

η1/2
− C2ε

2δ3/2

η1/2

)
Q0

ϕ(Q0)

x log log x

ϕ(Q1)(log x)2
.

The term
(
C1
2 δ

1/2 − C2δ
3/2
)

is positive for δ sufficiently small in terms of C1 and C2. Also b(Q0n+
4) = 1 for n such that all the prime factors of Q0n+ 4 are congruent to 1 (mod 4). This completes
the proof. �

3. Truncating the spectral equation

In this section we show that it is possible to achieve a very short truncation of the spectral
equation which holds for almost all new eigenvalues.

Theorem 3.1. Let A ≥ 1. Then for B = B(A) sufficiently large we have for every eigenvalue
λn ∈ Λnew ∩ [1, x] except those outside an exceptional set of size O(x/(log x)A) that

(3.1)
∑

m:|m−n|≤n
x
(log x)B

r(m)

m− λn
=

{
π log λn +O(1) in the weak coupling quantization,
1
α +O(1) in the strong coupling quantization.

The above theorem is proved by capturing cancellation in the spectral equation even at very
small scales, for almost all new eigenvalues. This is done by showing that the average behavior of
sums of r(n) over even very short intervals is fairly regular.

Lemma 3.1. Let x ≥ 3 and 3 ≤ L ≤ x. Also, let h(x) = x/L. Then

(3.2)
1

x

∑
`≤x

∣∣∣∣ ∑
`≤n≤`+h(`)

r(n)− πh(`)

∣∣∣∣2 � h(x)(log x)2.

Proof. We repeat a classical argument, which was used by Selberg [40] to study primes in short
intervals. Consider

ζQ(i) :=
1

4

∑
n≥1

r(n)

ns
= L(s, χ4)ζ(s) Re(s) > 1,

where L(s, χ4) is the Dirichlet L-function attached to the non-trivial Dirichlet character (mod 4),
and ζ(s) denotes the Riemann zeta-function. Note L(1, χ4) = π/4. Applying Perron’s formula,
then shifting contours to Re(s) = 1/2 (which is valid since the it is well-known that ζQ(i)(σ+ it)�
t1−σ+o(1), for 0 ≤ σ ≤ 1) and picking up a simple pole at s = 1 we see that for v, v + v/L /∈ Z∑

v≤n≤v+ v
L

r(n) =
1

2πi

∫
(2)

4ζQ(i)(s)
(v + v

L)s − vs

s
ds

=4L(1, χ4) ·
v

L
+
v1/2

2π

∫
R

4ζQ(i)(
1
2 + it)

(1 + 1
L)

1
2
+it − 1

1
2 + it

· eit log v dt.
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Notice that the integral on the RHS is a Fourier transform. Writing ν = log(1 + 1
L), making a

change of variables x = eτ and then applying Plancherel’s Theorem yields

1

x2

∫ x

1

( ∑
v≤n≤v+ v

L

r(n)− π · v
L

)2

dv ≤
∫
R

( ∑
eτ≤n≤eτ+ν

r(n)− π · e
τ

L

)2dτ

eτ

=
8

π

∫
R
|ζQ(i)(

1
2 + it)|2|wν(12 + it)|2 dt

where wν(s) = (eνs − 1)/s � min{ν, 1/(1 + |t|)} uniformly for 1
4 ≤ Re(s) ≤ 1. To estimate the

integral on the RHS we apply the well-known bound∫ T

0
|ζQ(i)(

1
2 + it)|2 dt� T (log T )2

(see the introduction of [33]). Hence we see that∫
R
|ζQ(i)(

1
2 + it)|2|wν(12 + it)|2 dt�ν2

∫
|t|≤1/ν

|ζQ(i)(
1
2 + it)|2 dt+

∫
|t|≥1/ν

|ζQ(i)(
1
2 + it)|2dt

t2

�ν(log 1/ν)2 � 1

L
(logL)2.

Combining the estimates above we conclude that for h = h(x) = x/L

(3.3)
1

x

∫ 2x

x

( ∑
v≤n≤v+h(v)

r(n)− πh(v)

)2

dv � h(x)(log x)2.

We will now bound the sum over integers ` ≤ x on the LHS of (3.2) in terms of an integral over
1 ≤ v ≤ x. Let

F (v) =
∑

v≤n≤v+h(v)

r(n)− πh(v)

and let v` ∈ [`, `+ 1] be a point where the minimum of |F (v)| on [`, `+ 1] is achieved. Observe that

F (`) = F (v`) +O (r(`) + r(`∗) + 1)

where `∗ = b`+ 1 + h(`+ 1)c. Hence,

1

x

∑
`≤x

F (`)2 � 1

x

∑
`≤x

F (v`)
2 +

1

x

∑
`≤x

(r2(`) + r2(`∗)) + 1

� 1

x

∫ x

1
F (x)2 dx+ log x� h(x)(log x)2,

where the last bound follows from (3.3).
�

Lemma 3.2. Let A ≥ 3 and x, Y ≥ 3. Then for all but � x/(log x)A integers m ∈ [1, x] we have∣∣∣∣ ∑
Y m
x
<k≤x1/2m

x

r(m+ k)− r(m− k)

k

∣∣∣∣ ≤ (log x)3A√
Y

.

Proof. Let

Rm(t) =
∑

1≤k≤t
(r(m+ k)− r(m− k)).
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It suffices to consider m ∈ [x/(log x)A, x]. Hence, by summation by parts for each integer m ∈
[x/(log x)A, x] we have that∑

Y m
x
<k≤x1/2m

x

r(m+ k)− r(m− k)

k
=
Rm(x1/2mx )

x1/2mx
−
Rm(Y m

x )

Y m
x

+

∫ x1/2m
x

Y m
x

Rm(t)

t2
dt.

Using this along with Chebyshev’s inequality and the elementary inequality (|a| + |b| + |c|)2 ≤
32(a2 + b2 + c2) it follows that

#

 x

(log x)A
≤ m ≤ x :

∣∣∣∣ ∑
Y m
x
<k≤x1/3m

x

r(m+ k)− r(m− k)

k

∣∣∣∣ ≥ (log x)3A√
Y


≤ 9

Y

(log x)6A

∑
x

(log x)A
≤m≤x

Rm (x1/2mx )2 (log x)2A

x
+
Rm

(
Y m

x

)2
(log x)2A

Y 2
+

(∫ x1/2m
x

Y m
x

Rm(t)

t2
dt

)2
 .

(3.4)

In the integral we make a change of variables and apply the Cauchy-Schwarz inequality to get for
each m ∈ [x/(log x)A, x] that

(3.5)

(∫ x1/2m
x

Y m
x

Rm(t)

t2
dt

)2

≤ (log x)2A

Y

∫ x1/2

Y

1

t2
Rm

(
t
m

x

)2
dt.

Observe that

Rm

(
H
m

x

)
=

∑
m≤n≤m+m

x
H

r(n)−
∑

m−m
x
H≤n≤m

r(n).

Hence, by Lemma 3.1 with L = x/H (along with an analogue of this lemma for the second sum,
which is proved in the same way) we get

1

x

∑
m≤x

Rm

(
H
m

x

)2
� H(log x)2,

for 1 ≤ H ≤ x/3. Using this bound and (3.5) in (3.4) gives

#

 x

(log x)A
≤ m ≤ x :

∣∣∣∣ ∑
Y m
x
<k≤x1/2m

x

r(m+ k)− r(m− k)

k

∣∣∣∣ ≥ (log x)3A√
Y


� Y · x

(log x)4A

(
(log x)2

x1/2
+

(log x)2

Y
+

(log x)3

Y

)
� x

(log x)4A−3
,

since we may assume Y ≤ x1/2 otherwise the set on the LHS above is empty. �

Before proving the main result of this section we require the following technical lemma.

Lemma 3.3. Let u, v be sufficiently large positive real numbers such that v9/10 ≤ u ≤ 2v. Let t > 1
be a real number, that is not an integer which is expressible as a sum of two squares, such that
|u− t| ≤ v1/3. Then ∑

m:|m−u|>v
1
2

r(m)

(
1

m− t
− m

m2 + 1

)
= −π log t+O(1).

17



Proof. Let A(x) =
∑

1≤n≤x r(n) = πx + E(x), it is well-known that (cf. [42]) that E(x) � x
1
3 .

Also, let ft(x) = log |x−t|
(x2+1)1/2

, (so ft(x) → 0 as x → ∞). Since |u − t| ≤ v1/3, partial summation

gives ∑
m:|m−u|>v

1
2

r(m)

(
1

m− t
− m

m2 + 1

)
=

∫ ∞
u+v

1
2

f ′t(x)dA(x) +

∫ (u−v
1
2 )−

1−
f ′t(x)dA(x)

=π
(
ft(u− v

1
2 )− ft(u+ v

1
2 )− log t

)
+O

(
1 + max

±

u
1
3

|u± v
1
2 − t|

)
.

The error is O(1) since we assumed |u− t| ≤ v1/3. Also,

ft(u− v
1
2 )− ft(u+ v

1
2 ) = log

|u− t− v
1
2 |

|u− t+ v
1
2 |

+O(1)� 1.

�

We are now ready to prove the main result of this section.

Proof of Theorem 3.1. Let A ≥ 1. In the weak coupling quantization, it follows from the spectral
equation (1.1) along with Lemma 3.3 that

(3.6)
∑

m:|m−n|≤n
x
x1/2

r(m)

m− λn
= π log λn +O(1)

for every integer x
(log x)A

≤ n ≤ x, which is a sum of two squares. Note that the application of

Lemma 3.3 is justified since it is well-known that λn − n ≤ n+ − n ≤ 10n1/4 (see for instance [32]
p. 43).

In the strong coupling quantization, applying Lemma 3.3 twice we get for x
(log x)A

≤ n ≤ x that∣∣∣∣ ∑
m:|m−n|>n

x
x1/2

r(m)

(
1

m− λn
− m

m2 + 1

)
−

∑
m:|m−λn|>λ1/2n

r(m)

(
1

m− λn
− m

m2 + 1

) ∣∣∣∣� 1.

Hence, using this along with the spectral equation (1.2) we have∑
|m−n|≤n

x
x1/2

r(m)

(
1

m− λn
− m

m2 + 1

)
=

∑
|m−λn|≤λ1/2n

r(m)

(
1

m− λn
− m

m2 + 1

)
+O(1)

=
1

α
+O(1).

Hence, in the strong coupling quantization for each x
(log x)A

≤ n ≤ x

(3.7)
∑

m:|m−n|≤n
x
x1/2

r(m)

m− λn
=

1

α
+O(1).

For x
(log x)A

≤ n ≤ x, we now analyze the sum that appears on the LHS of both (3.6) and (3.7).

Let B ≥ 1, to be determined later and consider

(3.8)
∑

|m−n|≤n
x
x1/2

r(m)

m− λn
=

∑
|m−n|≤n

x
(log x)B

r(m)

m− λn
+

∑
n
x
(log x)B<|k|≤n

x
x1/2

r(n+ k)

k − δn
,

18



where recall δn = λn − n. Note that∑
n≤x

δn≥(log x)B/2

b(n) ≤ 1

(log x)B/2

∑
n≤x

b(n)δn

≤ 1

(log x)B/2

∑
n≤x

b(n)(n+ − n)� x

(log x)B/2
.

Hence, for all but O(x/(log x)B/2) integers n ≤ x which are representable as a sum of two squares,

δn < (log x)B/2. For these integers, with the second sum on the RHS of (3.8) equals

(3.9)
∑

n
x
(log x)B≤k≤n

x
x1/2

r(n+ k)− r(n− k)

k
+O

(log x)B/2
∑

n
x
(log x)B≤|k|≤x1/2

r(n+ k)

k2

 .

Since

#

{
x

(log x)A
≤ n ≤ x : (log x)B/2

∑
n
x
(log x)B≤|k|≤x1/2

r(n+ k)

k2
≥ 1

}

≤ (log x)B/2
∑

(log x)B−A≤|k|≤x1/2

1

k2

∑
n≤x

r(n+ k)� x

(log x)B/2−A

the O-term in (3.9) is � 1 for all but O(x/(log x)B/2−A) integers x
(log x)A

≤ n ≤ x. The first sum in

(3.9) is estimated using Lemma 3.2, with Y = (log x)B; so for B ≥ 6A this sum is� 1 for all but at
most � x/(log x)A integers n ≤ x. Hence, applying the two previous estimates in (3.9) and using
the resulting bound along with (3.8) in (3.6) and (3.7) completes the proof upon taking B ≥ 6A.

�

4. Estimates for new eigenvalues nearby almost primes

In this section we analyze the location of eigenvalues in Λnew nearby certain integers which are
almost primes. To state the result, let

N1 ={n ∈ N : (1Pε ∗ 1P ′ε)(n) 6= 0, b(Q0n+ 4) = 1, & Q1|Q0n+ 4},

N2 =

{
n ∈ N1 :

(
Q0n+ 4

Q1
, P (y)

)
= 1

}
,

(4.1)

where y = xη with η as in Proposition 2.1 and Q0, Q1, ε, 1Pε and b(·) are as defined in the beginning
of Section 2. For j = 1, 2 let Nj(x) = Nj ∩ [1, x]. In particular, for each n ∈ N2(x), Q0n+4 = Q1`n
where `n is an integer which is a sum of two squares. Moreover, since every prime divisor of `n is
≥ y = xη so for n ≤ x, xη·#{p|`n} ≤ `n ≤ 2Q0x and

(4.2) #{p|`n} ≤
2

η
.

Also, for a polynomial R =
∑
anX

n ∈ Z[X], let ‖R‖1 =
∑
|an|. Note that by Propositions 2.1

and 2.2

#N1(x)�ε2 1

ϕ(Q1)

x log log x

(log x)3/2
,

#N2(x)�ε2 Q0

ϕ(Q0Q1)

x log log x

(log x)2
.

(4.3)
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Additionally by using an upper bound sieve, it is not difficult to prove that

#N1(x)�ε2 1

ϕ(Q1)

x log log x

(log x)3/2

#N2(x)�ε2 Q0

ϕ(Q0Q1)

x log log x

(log x)2
.

(4.4)

The main result of this section is the following proposition.

Proposition 4.1. For all n ∈ Nj(x), j = 1, 2, except outside an exceptional set of size

� #Nj(x)

ε2(log log x)1−o(1)

we have for m = Q0n that m+ = m+ 4 and

r(m)

m− λm
+

r(m+)

m+ − λm

=

{
π log λm +O

(
(log log x)5

)
in the weak coupling quantization,

O
(
(log log x)5

)
in the strong coupling quantization.

We also require a sieve estimate for averages of correlations of multiplicative functions. The
following result is due to Henriot [17], which builds on the work of Nair and Tenenbaum [34]. See
Corollary 1 of [17] and the subsequent remark therein. Recall that τ(n) =

∑
d|n 1 denotes the

divisor function.

Lemma 4.1. Let R1(X), . . . , Rk(X) ∈ Z[X] be irreducible, pairwise co-prime polynomials, for
which each polynomial Rj does not have a fixed prime divisor. Let D be the discriminant of R =
R1 · · ·Rk and %Rj (n) = #{a (mod n) : Rj(a) ≡ 0 (mod n)}. Then there exist C, c0 > 0 such
that for any non-negative multiplicative functions Fj, j = 1, . . . , k with Fj(n) ≤ τ(n), we have for

x ≥ c0‖R‖1/101 and some A ≥ 1 that

∑
n≤x

k∏
j=1

Fj(|Rj(n)|)� ∆D x
∏
p≤x

(
1− %R(p)

p

) k∏
j=1

∑
n≤x

Fj(n)%Rj (n)

n


where

∆D :=
∏
p|D

(
1 +

1

p

)C
,

and the implicit constant, C and c0 depend at most on the degree of R.

We first start with a technical lemma.

Lemma 4.2. Let f be a non-negative multiplicative function with f(n) ≤ τ(n) and f(mn) ≤
max{1, f(n)}f(m) for m ∈ N and n such that b(n) = 1. Then for 1 ≤ |h| ≤ x1/30, with h 6= 4 and
j = 1, 2, we have∑

n∈Nj(x)

f(Q0n+ h)� 1

ε2
· g(h)

∏
p|Q0Q1

(
1 +

1

p

)C ∏
p≤x

(
1 +

f(p)− 1

p

)
#Nj(x)(4.5)

where C > 0 is an absolute constant and

g(h) = τ(|h|)τ(|h− 4|)
∏
p|h

(
1 +

1

p

)C ∏
p|h−4

(
1 +

1

p

)C
.
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Additionally (for h = 4) there exists C > 0 such that

∑
n∈N1(x)

f(Q0n+ 4)� 1

ε2
· f(Q1)

∏
p|Q0Q1

(
1 +

1

p

)C ∏
p≤x

p≡1 (mod 4)

(
1 +

f(p)− 1

p

)
#N1(x).

Remark 3. When applying this lemma we will take f(n) = 1
4 · r(n), b(n) or 2−ω1(n) where ω1(n) =

#{p|n : p ≡ 1 (mod 4)}. The hypotheses of the lemma are satisfied for each of these choices.

Proof. Let Tj = 2 if j = 1 and Tj = y if j = 2. Dropping several of the conditions on n ∈ Nj we
get that (here q < p denote primes)∑

n∈Nj(x)

f(Q0n+ h) ≤ 2
∑
q≤
√
x

q≡1 (mod 4)

∑
p≤x/q

Q1|Q0pq+4

(
Q0pq+4
Q1

,P (Tj))=1

b(Q0qp+ 4)f(Q0qp+ h).

(4.6)

Let K = Q0q and Y = x/q. Note that the sum above is empty unless (K,Q1) = 1. Since
(K,Q1) = 1 there exist integers K,Q1 with 1 ≤ |K| < Q1 and 1 ≤ |Q1| < K such that KK −
Q1Q1 = 1. Also, for Z ≥ 1 let FZ be the totally multiplicative function given by FZ(p) = 1 if
p ≥ Z and zero otherwise. The inner sum on the RHS of (4.6) is bounded by

�
∑
n≤Y

Q1|Kn+4

F√Y (n)FTj

(
Kn+ 4

Q1

)
b(Kn+ 4)f(Kn+ h) + Y 1/2+o(1)

=
∑

m≤Y−4K
Q1

F√Y (Q1m− 4K)FTj
(
Km− 4Q1

)
b(KQ1m− 4Q1Q1)f(KQ1m+ h− 4KK)

+O(Y 1/2+o(1)).

(4.7)

First note b(KQ1n− 4Q1Q1) = b(Kn− 4Q1). Let d = (KQ1, h− 4KK) and suppose that h 6= 4.
We have

f(KQ1m+ h− 4KK) ≤ max{1, f(d)}f
(
KQ1

d
m+

h− 4KK

d

)
.

Let R1(X) = Q1X − 4K, R2(X) = KX − 4Q1, R3(X) = KQ1

d X + h−4KK
d and D denote the

discriminant of R = R1R2R3. The polynomials R1, R2, R3 and multiplicative functions F1 = F√Y ,

F2 = FTj · b and F3 = f satisfy the assumptions of Lemma 4.1. Also for (p,KQ1) = 1 we have

%R(p) = 3 and %Rj (p
k) = 1 for each j = 1, 2, 3 and k ≥ 1, which follows from Hensel’s lemma.

Hence, the sum in (4.7) is bounded by

�max{1, f(d)}∆D
Y

Q1

∏
p≤Y

(
1 +

F√Y (p) + FTj (p)b(p) + f(p)− 3

p

) ∏
p|KQ1

(
1 +

1

p

)C

�max{1, f(d)}∆D

∏
p|KQ1

(
1 +

1

p

)C Y

Q1(log Y )3/2(log Tj)1/2

∏
p≤Y

(
1 +

f(p)− 1

p

)
.

Write d = pa11 · · · p
a`
` . For each j = 1, . . . , ` we have p

aj
j |h or p

aj
j |h − 4 (depending on whether

p
aj
j |K or p

aj
j |Q1, respectively); so f(d) � τ(|h|)τ(|h − 4|). Note the discriminant of R equals
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D = 16
K2Q2

1
d4

h2(h− 4)2 so that

max{1, f(d)}∆D � g(h)
∏

p|Q1K

(
1 +

1

p

)C
.

Also since Y = x/q ≥
√
x,
∏
p≤Y

(
1 + f(p)−1

p

)
�
∏
p≤x

(
1 + f(p)−1

p

)
. Hence, applying the esti-

mates above in (4.6), summing over q and using (4.3) gives the claimed bound for h 6= 4.
For h = 4 we argue similarly, only now in order to estimate (4.7) we use Lemma 4.1 with R1, R2

as before, R = R1R2 (so the discriminant is D = 16) and F1 = F√Y , F2 = b · f . Also noting that

here d = Q1 we conclude that (4.7) is bounded by

� f(Q1)
∏

p|Q1K

(
1 +

1

p

)C Y

Q1(log Y )2

∏
p≤x

(
1 +

b(p)f(p)

p

)

� f(Q1)
∏

p|Q1K

(
1 +

1

p

)C Y

Q1(log x)3/2

∏
p≤x

p≡1 (mod 4)

(
1 +

f(p)− 1

p

)
.

Hence, the claim follows in the same way as before. �

Lemma 4.3. Let (log log x)4 ≤ U ≤ 1
10(log x)1/2. There exists C > 0 such that for all n ∈ Nj(x),

j = 1, 2, outside a set of size

� 1

ε2
·#Nj(x)

∏
p|Q1Q0

(
1 +

1

p

)C (log log x)4

U

the following hold:

(4.8)
∑

1≤|k|≤ 1
U
(log x)1/2

k 6=4

b(Q0n+ k) = 0,

(4.9)
∑

1≤|k|≤n
x
(log x)B

k 6=4

r(Q0n+ k)

|k|
≤ U,

and

(4.10)
∑
|k|≥U

r(Q0n+ k)

k2
≤ 1

log log x
.

Proof. We first establish (4.8). By Chebyshev’s inequality

(4.11) #

{
n ∈ Nj(x) :

∑
1≤|k|≤ 1

U
(log x)1/2

k 6=4

b(Q0n+ k) ≥ 1

}
≤

∑
1≤|k|≤ 1

U
(log x)1/2

k 6=4

∑
n∈Nj(x)

b(Q0n+ k).

Applying Lemma 4.2 to the inner sum and noting that∏
p≤x

(
1 +

b(p)− 1

p

)
� 1√

log x

22



we get that the LHS of (4.11) is bounded by

�
∏

p|Q1Q0

(
1 +

1

p

)C #Nj(x)

ε2
√

log x

∑
1≤|k|≤ 1

U
(log x)1/2

k 6=4

g(k)

�
∏

p|Q1Q0

(
1 +

1

p

)C #Nj(x)

ε2
(log log x)2

U
,

(4.12)

where the second step follows upon using Lemma 4.1.
To prove (4.9), we argue similarly and apply Lemmas 4.1 and 4.2 to get

#

{
n ∈ Nj(x) :

∑
1≤|k|≤n

x
(log x)B

k 6=4

r(Q0n+ k)

|k|
> U

}

≤ 1

U

∑
1≤|k|≤(log x)B

k 6=4

1

|k|
∑

n∈Nj(x)

r(Q0n+ k)

� #Nj(x)

ε2U

∏
p|Q0Q1

(
1 +

1

p

)C ∑
1≤|k|≤(log x)B

k 6=4

g(k)

|k|

� #Nj(x)

ε2U

∏
p|Q0Q1

(
1 +

1

p

)C
(log log x)3.

We will omit the proof of (4.10) since it follows similarly. �

For almost all n ∈ N1(x) it is possible to show that r(Q0n+4) � (log n)log 2/2±o(1), however since
we do not actually need this estimate we will record the weaker estimate below, which suffices for
our purposes and is simpler to prove.

Lemma 4.4. Let ν > 0 be sufficiently small. There exists C > 0 such that for all n ∈ N1(x)
outside a set of size

� 1

ε2
#N1(x)

(log log x)C

(log x)ν

the following holds

(4.13) (log x)1/4−ν ≤ r(Q0n+ 4) ≤ (log x)1/2+ν .

Proof. We will only prove the lower bound stated in (4.13). Let ω1(n) =
∑

p|n
p≡1 (mod 4)

1. For n

which is a sum of two squares r(n) ≥ 2ω1(n). Using this with Chebyshev’s inequality and Lemma

4.2 the number of n ∈ N1(x) which r(Q0n+ 4) < (log x)1/4−ν is bounded by

(log x)1/4−ν
∑

n∈N1(x)

2−ω1(Q0n+4) �(log x)1/4−ν · (log log x)C√
log x

∏
p≤x

p≡1 (mod 4)

(
1 +

1

2p

)
· 1

ε2
#N1(x)

� 1

ε2
#N1(x)

(log log x)C

(log x)ν

using Lemma 4.2. �
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Proof of Proposition 4.1. By Theorem 3.1 we get for all but O(x/(log x)A) new eigenvalues λ` ≤ x
that ∑

|m−`|≤ `
x
(log x)B

r(m)

m− λ`
=

{
π log λ` +O(1) in the weak coupling quantization,
1
α +O (1) in the strong coupling quantization.

We now consider integers ` = Q0n with n ∈ Nj(x), j = 1, 2 such that the above holds. Us-
ing Lemma 4.3, in particular (4.8) and (4.9) with U = (log log x)5 it follows that for all but

O(#Nj/(ε2(log log x)1−o(1))) of these integers n ∈ Nj(x), j = 1, 2, with ` = Q0n that `+ = ` + 4
and ∑

|m−`|≤ `
x
(log x)B

r(m)

m− λ`
=

r(`)

`− λ`
+

r(`+)

`+ − λ`
+O

(
(log log x)5

)
.

Combining the two estimates above completes the proof. �

5. Proofs of the main theorems

5.1. Quantization of Observables. On the unit cotangent bundle S∗M∼=T2 × S1, a smooth
function f ∈ C∞(S1) has the Fourier expansion

f(x, φ) =
∑

ζ∈Z2,k∈Z

f̂(ζ, k)ei〈x,ζ〉+ikφ.

Following Kurlberg and Ueberschär [28], we quantize our observables as follows. For g ∈ L2(S1)
let

(5.1) (Op(f)g)(x) =
∑

ξ∈Z2\0

∑
ζ∈Z2,k∈Z

f̂(ζ, k)eik arg ξ ĝ(ξ)ei〈ζ+ξ,x〉 +
∑

ζ∈Z2,k∈Z

f̂(ζ, k)ĝ(0)ei〈ζ,x〉.

Hence, for pure momentum observables f : S1 → R one has

(5.2) (Op(f)g)(x) =
∑
ξ∈Z2

f

(
ξ

|ξ|

)
ĝ(ξ)ei〈ξ,x〉

and for ξ = 0, f( ξ
|ξ|) is defined to be

∫
S1 f(θ) dθ2π .

Let gλ be as given in (1.4). Then for f a pure momentum observable it follows from (1.4) and
(5.2) that

〈Op(f)gλ, gλ〉 =
1

16π4
· 1

‖Gλ‖22

∑
n≥0

1

(n− λ)2

∑
a2+b2=n

f

(
a+ ib

|a+ ib|

)

=
1∑

n≥0
r(n)

(n−λ)2

∑
n≥0

1

(n− λ)2

∑
a2+b2=n

f

(
a+ ib

|a+ ib|

)
.

(5.3)

5.2. Measures associated to sequences of almost primes in narrow sectors. Let N1,N2

be as in (4.1). Before proceeding to the main result of this section we will specify our choice of
Q0, Q1. Consider the set of primes

(5.4) S = {p : p = a2 + b2, 0 ≤ b ≤ a and 0 < arctan(b/a) ≤ p−1/10}

and let qj be the jth element of S. It follows from work of Kubilius [25] that

#{p ≤ x : p ∈ S} � x9/10

log x
,
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so qj � (j log j)10/9. Let T = blog log xc, H = b100 log log log xc and

(5.5) Q′0 =
T+H−1∏
j=T

qj , Q′1 =
T+2H−1∏
j=T+H

qj .

Also, let r0, r1 ∈ S with 1
4 log log x ≤ r0, r1 ≤ 1

2 log log x and a0, a1 ∈ Z with 0 ≤ a0, a1 ≤
log log log x. Let m0,m1 be integers, which are fixed (in terms of x), whose prime factors are all
congruent to 1 (mod 4). Write (m0,m1) = pe11 · · · pess and let g′ = p̃e11 · · · p̃ess where 1

2 log log x <

p̃j < log log x, p̃j = c2j+d2j with 0 ≤ cj ≤ dj and arctan(cj/dj) = arctan(bj/aj)+O(1/(log log x)1/10)

where a2j + b2j = pj with 0 ≤ bj ≤ aj , for each j = 1, . . . , s. We now take

(5.6) Q0 = Q′0m0r
a0
0 , Q1 = Q′1

m1

(m0,m1)
ra11 g

′.

Note that (Q0, Q1) = 1 and that Q0, Q1 � exp(200(log log log x)2) ≤ (log x)1/10 so that this choice
of Q0, Q1 is consistent with our prior assumption. For j = 1, 2 let

(5.7) Mj(x) = {m ≤ x : m = Q0n and n ∈ Nj}.
By (4.3) and (4.4),

(5.8) #M1(x) � ε2 1

ϕ(Q1)

x log log x

Q0(log x)3/2

and

(5.9) #M2(x) � ε2 1

ϕ(Q0Q1)

x log log x

(log x)2
.

We also now assume that

ε = (log log x)−1/4

Lemma 5.1. Let Q0, Q1 be as in (5.6) and ε, η > 0 be as in Proposition 2.1. Let m ∈ Mj(x),
j = 1, 2 where Mj(x) is defined as in (5.7). Then for f ∈ C1(S1) with |f ′| � 1

(5.10)
1

r(m)

∑
a2+b2=m

f

(
a+ ib

|a+ ib|

)
=

1

r(m0)

∑
a2+b2=m0

f

(
a+ ib

|a+ ib|

)
+O (ε) .

Under the same hypotheses, we have for m = Q0n ∈ N2(x) that there exists an integer `n which is
a sum of two squares with #{p|`n} ≤ 2/η such that

(5.11)
1

r(m+)

∑
a2+b2=m+

f

(
a+ ib

|a+ ib|

)
=

1

r(m1`n)

∑
a2+b2=m1`n

f

(
a+ ib

|a+ ib|

)
+O

(
1

(log log x)1/11

)
.

Proof. First note that for a unit, u of Z[i] i.e. u ∈ {±1,±i}, that for any n ∈ N

(5.12)
∑

a2+b2=n

f

(
u(a+ ib)

|a+ ib|

)
=

∑
a2+b2=n

f

(
a+ ib

|a+ ib|

)
.

For m ∈ Mj(x) with j = 1 or j = 2 write m = Q′0m0r
a0
0 n where n ∈ Nj(x). The factorizations

of the ideals (m) = ((a + ib)(a − ib)) in Z[i] are in one-to-one correspondence with factorizations
(Q′0) = ((c+id)(c−id)), (m0) = ((e+if)(e−if)), (ra00 ) = ((g+ih)(g−ih)) and (n) = ((k+il)(k−il)),
since Q′0,m0, n are pairwise co-prime. Hence, it follows from this and (5.12) that

(5.13)
1

r(m)

∑
a2+b2=m

f

(
a+ ib

|a+ ib|

)
=

1

r(Q′0)r(m0)r(r
a0
0 )r(n)

∑
α∈Z[i]
αα=Q′0

∑
β∈Z[i]
ββ=m0

∑
γ∈Z[i]
γγ=r

a0
0

∑
δ∈Z[i]
δδ=n

f

(
αβγδ

|αβγδ|

)
.

25



Let S be as in (5.4) and write the jth element of S as qj = a2j+b
2
j , with 0 ≤ bj ≤ aj . By construction,

for α ∈ Z[i] with αα = Q′0 we can write α = u
∏
j∈J(aj+εjibj) where J = {T, T+1, . . . , T+H1−1},

εj ∈ {±1} and u is a unit. It follows that

α

|α|
=u
∏
j∈J

aj + εjibj
|aj + ibj |

=u

1 +O

∑
j∈J
| arctan(bj/aj)|

 = u+O

(
1

(log log x)1/11

)
where the unit u depends on α. Also for γ ∈ Z[i] with γγ = ra00 , we have γ

|γ| = u+O(1/(log log x)1/11)

and for δ ∈ Z[i] with δδ = n, we have δ
|δ| = u+O(ε). Hence by this and (5.12)

∑
α∈Z[i]
αα=Q′0

∑
β∈Z[i]
ββ=m0

∑
γ∈Z[i]
γγ=r

a0
0

∑
δ∈Z[i]
δδ=n

f

(
αβγ

|αβγ|

)
=
∑
α∈Z[i]
αα=Q′0

∑
γ∈Z[i]
γγ=r

a0
0

∑
δ∈Z[i]
δδ=n

 ∑
β∈Z[i]
ββ=m0

f

(
uα,γ,δ · β
|β|

)+O(εr(m))

=r(Q0)r(r
a0
0 )r(n)

∑
a2+b2=m0

f

(
a+ ib

|a+ ib|

)
+O(εr(m)),

thereby proving (5.10).
The proof of (5.11) follows along the same lines upon noting that for m = Q0n ∈M2(x) we can

write m+ = Q′1r
a1
1

m1
(m1,m0)

g′`n where `n is a sum of two squares. Note that Q′1,
m1

(m1,m0)
, ra11 , g

′, `n
are pairwise co-prime by construction since all the prime divisors of `n are ≥ y; the latter also
implies that #{p|`n} ≤ 2/η. �

5.3. Proof of Theorem 1.1. WLOG we can assume all the prime factors of m0 are congruent to 1
(mod 4) (see (5.13)). Let Q0, Q1 be as in (5.6) andM1(x) be as in (5.7) and recall for m ∈M1(x)
that m = Q0n where n ∈ N1(x) and N1 is as in (4.1). By (4.8) and Lemma 4.4 it follows that for all

but at most o(#M1(x)) integers m ∈M1(x) that m+ = m+4, (log x)1/4−ν ≤ r(m+) ≤ (log x)1/2+ν

(for any fixed ν > 0) and 4 ≤ r(m)� (log x)o(1). Combining this with Proposition 4.1 we get that
for all but o(#M1(x)) integers m ∈M1(x) that λm −m = o(1) and moreover

(5.14) λm −m �


r(m)

log λm
in the weak coupling quantization,

r(m)

r(m+)
in the strong coupling quantization.

Also note that for such m as above, we also have |λm −m+| ≥ 3. Hence, using the above estimate
along with (4.8) and (4.10) with U = (log log x)5 we get for all but at most o(#M1(x)) integers
m ∈M1(x) that (in both cases)∑

`≥0

r(`)

(`− λm)2
=

r(m)

(m− λm)2
+

r(m+)

(m+ − λm)2
+ o(1)

=
r(m)

(m− λm)2

(
1 +O

(
r(m+)(m− λm)2

r(m)

))
+ o(1)

=
r(m)

(m− λm)2
(1 + o(1)) .

(5.15)
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Similarly, for all but at most o(#M1(x)) integers m ∈M1(x)

(5.16)
∑
`≥0

1

(`− λm)2

∑
a2+b2=`

f

(
a+ ib

|a+ ib|

)
=

1

(m− λm)2

∑
a2+b2=m

f

(
a+ ib

|a+ ib|

)
+O(r(m+)).

Therefore, combining (5.3), (5.14), (5.15) and (5.16) it follows for all but at most o(#M1(x))
integers m ∈M1(x) we have that

〈Op(f)gλm , gλm〉 =(1 + o(1))
(m− λm)2

r(m)
·

 1

(m− λm)2

∑
a2+b2=m

f

(
a+ ib

|a+ ib|

)
+O(r(m+))


=(1 + o(1))

1

r(m)

∑
a2+b2=m

f

(
a+ ib

|a+ ib|

)
+ o(1)

=(1 + o(1))
1

r(m0)

∑
a2+b2=m0

f

(
a+ ib

|a+ ib|

)
+O(ε)

where the last step follows by (5.10). The estimate for the density of this subsequence of eigenvalues

follows immediately from (5.8), noting that Q0, Q1 � (log x)o(1).

5.4. Proof of Theorem 1.2. WLOG we can assume all the prime factors of m0,m1 are congruent
to 1 (mod 4) (see 5.13). For sake of brevity let L2 = log log x. Let Q0, Q1 be as in (5.6) andM2(x)
be as in (5.7) and recall for m ∈ M2(x) that m = Q0n where n ∈ N2(x) where N2 is as in (4.1).
Note for each m ∈ M2(x) that r(m) � L102 . Also, by construction r(m)/r(m + 4) � a0+1

a1+1 where

H, a0, a1 are also as in (5.6) and note a0, a1 ≤ logL2. Applying Proposition 4.1 we get that for all
m ∈M2(x) outside an exceptional set of size o(#M2(x)) that m+ = m+ 4 and

(5.17)
λm −m
m+ − λm

=
r(m)

r(m+)

(
1 +O

(
L62
r(m)

))
=

r(m)

r(m+)

(
1 +O

(
L−42

))
.

In particular, this implies that λm −m � L−12 and m+ − λm � L−12 . As before, using (4.8) and
(4.10) with U = L52 we get for all but at most o(#M2(x)) integers m ∈M2(x) that

∑
`≥0

r(`)

(`− λm)2
=

r(m)

(m− λm)2
+

r(m+)

(m+ − λm)2
+O(L−12 )(5.18)

and

∑
`≥0

1

(`− λm)2

∑
a2+b2=`

f

(
a+ ib

|a+ ib|

)
=

1

(m− λm)2

∑
a2+b2=m

f

(
a+ ib

|a+ ib|

)

+
1

(m+ − λn)2

∑
a2+b2=m+

f

(
a+ ib

|a+ ib|

)
+O(L−12 ).

(5.19)
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Let Cm = 1
1+r(m)/r(m+)

. Applying (5.17),(5.18), and (5.19) in (5.3) we get

〈Op(f)gλm , gλm〉 = (1 +O(L−12 ))

(
r(m)

(m− λm)2
+

r(m+)

(m+ − λm)2

)−1
×

 1

(m− λm)2

∑
a2+b2=m

f

(
a+ ib

|a+ ib|

)
+

1

(m+ − λm)2

∑
a2+b2=m+

f

(
a+ ib

|a+ ib|

)
+O(L−12 )


=

Cm
r(m)

∑
a2+b2=m

f

(
a+ ib

|a+ ib|

)
+

1− Cm
r(m+)

∑
a2+b2=m+

f

(
a+ ib

|a+ ib|

)
+O(L−12 ).

(5.20)

Applying (5.10) to the first sum above we get

(5.21)
Cm
r(m)

∑
a2+b2=m

f

(
a+ ib

|a+ ib|

)
=

Cm
r(m0)

∑
a2+b2=m0

f

(
a+ ib

|a+ ib|

)
+O(ε).

Similarly, applying (5.11) to the second sum on the RHS of (5.20) we get that

(5.22)
1− Cm
r(m+)

∑
a2+b2=m+

f

(
a+ ib

|a+ ib|

)
=

1− Cm
r(m1`n)

∑
a2+b2=m1`n

f

(
a+ ib

|a+ ib|

)
+O(L−1/112 ),

for some integer `n with #{p : p|`m} ≤ 2/η by (4.2). Using (5.21) and (5.22) in (5.20) completes

the proof upon taking ε = L−1/22 . The estimate for the density of this subsequence of eigenvalues
follows from (5.9).

5.5. Proof of Theorem 1.3. The proof of Theorem 1.3 relies on the following hypothesis con-
cerning the distribution of primes.

Hypothesis 1. Let Q1, Q0 be as in (5.6) and ε ≥ (log log x)−1/2 be sufficiently small. Also let
y = xη where η > 0 is sufficiently small. Then the number of solutions (u, v) ∈ Z2 to

Q1u−Q0v = 4

where v = p1p2 and u = p3 are primes satisfying 1Pε(p1)1P ′ε(p2)1Pε(p3) = 1, p3 > y such that v ≤ x
is

� ε3
Q0

ϕ(Q0Q1)

x log log x

(log x)2
.

where Pε,P ′ε are as in (2.1).

Proof of Theorem 1.3. Recall the definition of N2 given in (4.1). Let us define

N3 = {n ∈ N2 : Q0n+ 4 = Q1p, b(p) = 1, & |θp| ≤ ε}.

Following (5.7) we also define

M3(x) = {m ≤ x : m = Q0n and n ∈ N3}.

By Hypothesis 1 and (5.9) it follows that

(5.23) #M3(x) � ε#M2(x)

where we also have used an upper bound sieve to get that #M3(x) � ε#M2(x). Observe that
M3(x) ⊂ M2(x) and the exceptional set in Proposition 4.1 is o(#M3(x)) since we take ε =

(log log x)−1/4. Hence, we get that (5.17) holds for m ∈ M3(x) outside an exceptional set of size
o(#M3(x)). Similarly, we can conclude that (5.18) and (5.19) also hold for all m ∈M3(x) outside
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an exceptional set of size o(#M3(x)). Therefore, arguing as in (5.20)–(5.22) we conclude that for
m ∈M3(x) outside an exceptional set of size o(#M3(x)) we have that
(5.24)

〈Op(f)gλm , gλm〉 =
Cm
r(m0)

∑
a2+b2=m0

f

(
a+ ib

|a+ ib|

)
+

1− Cm
r(m1`n)

∑
a2+b2=m1`n

f

(
a+ ib

|a+ ib|

)
+O(L−1/112 )

where m0,m1 are arbitrary, fixed integers whose prime factors are all congruent to 1 (mod 4) and
Cm = 1/(1+r(m)/r(m+4)). By our hypothesis we have that `n = p with |θp| ≤ ε and (m1, p) = 1.
Hence, repeating the argument used to prove (5.10) it follows that

(5.25)
1

r(m1`n)

∑
a2+b2=m1`n

f

(
a+ ib

|a+ ib|

)
=

1

r(m1)

∑
a2+b2=m1

f

(
a+ ib

|a+ ib|

)
+O(ε).

Given 0 < c < 1 with c = d/e ∈ Q we will now specify our choice of a0, a1 (from (5.5)). Recall
we allow a0, a1 to grow slowly with x and Q′0, Q

′
1 have the same number of prime factors. Also, by

construction r( m1
(m0,m1)

g′) = r(m1). Let L = b(log log log x)1/2c. We take

a0 = 2(e− d)r(m1)L and a1 = dr(m0)L.

Hence,

(5.26) Cm =
1

1 + 2r(m0)(a0+1)
4r(m1)(a1+1)

=
d

e
+ o(1).

We are now ready to complete the proof. Given any attainable measures µ∞0 , µ∞1 and 0 ≤ c ≤ 1
we can take {m0,j}j {m1,j} such that µ0,j weakly converges to µ∞0 and µ1,j weakly converges to
µ∞1 , as j → ∞. We also take {a0,j}j , {a1,j}j so that dj/ej → c as j → ∞. Therefore, by
(5.24),(5.25), and (5.26) we conclude that there exists {λ`}` ⊂ Λnew such that

〈Op(f)gλ` , gλ`〉
`→∞−−−→ c

∫
S1

fdµ∞0 + (1− c)
∫
S1

fdµ∞1 .

�

Appendix A. Arithmetic over Q(i)

Consider the number field Q(i) with ring of integers Z[i]. For b a non-zero integral ideal of Z[i]
the residue classes α (mod b), where (α) and b are relatively prime ideals, form the multiplicative
group (Z[i]/b)∗. We now summarize some well-known facts, which may be found in [35] or [19]. A
Dirichlet character (mod b) is a group homomorphism

χ : (Z[i]/b)∗ → S1.

We extend χ to all of Z[i] by setting χ(a) = 0 for a and b which are not relatively prime. Let I denote
multiplicative group of non-zero fractional ideals and Ib = {a ∈ I : a and b are relatively prime}.
A Hecke Großencharakter (mod b) is a homomorphism ψ : Ib → C \ {0} for which there exists a
pair of homomorphisms

χ : (Z[i]/b)∗ → S1, χ∞ : C∗ → S1

such that for an ideal (α) with α ∈ Z[i]

ψ((α)) = χ(α)χ∞(α).

Conversely, given any χ (mod b) and χ∞ there exists a Großencharakter ψ (mod b) such that
ψ = χ · χ∞ provided that χ(u)χ∞(u) = 1 for each unit u ∈ Z[i].
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In particular, for 4|k and a = (α) a non-negative integer

ψ(a) =

(
α

|α|

)k
is a Hecke Großenchakter (mod 1) and these Hecke Großencharakteren can be used to detect primes
in sectors. Additionally, given a positive rational integer q with (4, q) = 1 the homomorphism

χ ◦N : Iq → S1

given by (χ ◦N)(a) = χ(N(a)) is a Dirichlet character (mod q), where χ is a Dirichlet character
(mod q) for Z, that is χ : (Z/(q))∗ → S1, where Na is the norm of a. Hence, for 4|k

ψ(a) = (χ ◦N)(α)

(
α

|α|

)k
is a Hecke Großencharakter with modulus q and frequency k, where a = (α). (A priori α is
only defined up to multiplication by i, but for these characters the choice does not matter). The
L-function attached to the Großencharakter ψ given by

L(s, ψ) =
∑
a

ψ(a)

N(a)s
,

has a functional equation and admits an analytic continuation to C \ {1}.
Moreover, if ψ is not a real character, L(s, ψ) has a standard zero free region. That is, we have

L(σ + it, ψ) 6= 0 for σ > 1− c

log(q(|t|+ 1)(|k|+ 1))

(see [19, Section 5.10]). In particular, if k 6= 0,∑
N(π)≤x

χ(N(π))

(
π

|π|

)k
� ((|k|+ 1)q) · x exp

(
−c
√

log x
)
,

where the summation is over prime ideal p = (π) with norm ≤ x.
Furthermore, for k = 0 the same estimate holds for any complex χ (mod q). However for k = 0

and χ (mod q) a real character, there may be a possible Siegel zero and in this case we have Siegel’s
estimate (see Section 5.9 of [19])

L(σ + it, χ) 6= 0 for σ ≥ 1− c(ε)

qε

for any ε > 0. Consequently, we have the Siegel-Walfisz type prime number theorem for (a, q) = 1
and (q, 2) = 1

(A.1)
∑

N(π)≤x
N(π)≡a (mod q)

0≤arg π≤ε

1 =
1

ϕ(q)

∑
N(π)≤x

(N(π),q)=1
0≤arg π≤ε

1 +O

(
x

(log x)A

)

for any A ≥ 1. (After multiplication by il for some l we can ensure that θ = arg ilπ ∈ [0, π/2); we
will let arg π denote this angle.)

Recall that a prime p ≡ 3 (mod 4) is inert in Z[i]; additionally, a prime p ≡ 1 (mod 4) splits in
Z[i] so that p = ππ = a2 + b2, where π is a prime in Z[i]. Writing

B(x; q, a, ε) =
∑
n≤x

n≡a (mod q)

(1Pε ∗ 1P ′ε)(n)− 1

ϕ(q)

∑
n≤x

(n,q)=1

(1Pε ∗ 1P ′ε)(n),
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formula (A.1) gives, for (a, q) = 1 and (q, 2) = 1, that

(A.2) |B(x; q, a, ε)| � x

(log x)A
,

for q ≤ (log x)A. In addition it is worth noting that (A.1) also implies

(A.3)
∑
n≤x

n≡a (mod q)

(1Pε ∗ 1P ′ε)(n) ∼ 4ε2

ϕ(q)

x log log x

log x
.

We are now ready to state the following result which is an analog of the Bombieri-Vinogradov
Theorem.

Theorem A.1. There exists B0 sufficiently large so that∑
q≤Q

(q,2)=1

max
(a,q)=1

|B(x; q, a, ε)| � x

(log x)10

for Q ≤ x1/2/(log x)B0.

Let S ⊂ N. A sequence of complex numbers {βn} with |βn| ≤ τ(n) satisfies the Siegel-Walfisz
property for S provided that for every q ∈ S and A ≥ 0 and N ≥ 2 we have∑

n≤N
n≡a (mod q)

βn =
1

ϕ(q)

∑
n≤N

(n,q)=1

βn +O

(
N

(logN)A

)

for every a ∈ Z with (a, q) = 1.

A.1. An application of the large sieve. We next recall a consequence of the large sieve, which
follows applying a minor modification of Theorem 9.17 of [15].

Lemma A.1. Let A ≥ 1 and Q = x1/2(log x)−B where B = B(A) is sufficiently large. Suppose
{βn} satisfies the Siegel-Walfisz property for all q with (q, 2) = 1. Then for any sequence {αn} of
complex numbers such that |αn| ≤ τ(n)∑

q≤Q
(q,2)=1

max
(a,q)=1

∣∣∣∣∣ ∑
mn≤x

m,n≤ x

(log x)B

mn≡a (mod q)

βmαn −
1

ϕ(q)

∑
mn≤x

m,n≤ x

(log x)B

(mn,q)=1

βmαn

∣∣∣∣∣� x

(log x)A
.

Proof of Theorem A.1. By (A.2) the sequence βn = 1Pε(n) satisfies the Siegel-Walfisz condition for
all q with (q, 2) = 1. Take αn = 1P ′ε(n) and note that (cf. (2.1))∑

n≤x
n≡a (mod q)

(1Pε ∗ 1P ′ε)(n) =
∑
mn≤x

m,n≤ x

(log x)B0

mn≡a (mod q)

1Pε(m)1P ′ε(n)

and ∑
n≤x

(n,q)=1

(1Pε ∗ 1P ′ε)(n) =
∑
mn≤x

m,n≤ x

(log x)B0

(mn,q)=1

1Pε(m)1P ′ε(n).

Hence, applying Lemma A.1 completes the proof.
�
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A.2. Gaussian integers in sectors with norms in progressions. The goal of this section is
to show that a result of Smith [43] (also cf. [46]) holds for Gaussian integers in sectors. We recall
that for α ∈ Z[i], N(α) = |α|2 denotes the norm of α. For a, q > 0 define

ηa(q) := |{α1, α2 (mod q) : α2
1 + α2

2 ≡ a (mod q)}|.

Proposition A.1. Let a, q > 0 be integers and put g = (a, q). Given an angle θ and ε ∈ (0, 2π), let
S = Sε,θ denote the set of lattice points α ∈ Z[i] contained in the sector defined by3 | arg(α)− θ| <
ε/2. Then, uniformly for ε > 0,

|{α ∈ S : N(α) ≡ a (mod q), N(α) ≤ x}|

=
εxηa(q)

q2
+O

(
x1−δ/3

q

)
provided that q3g < x2(1−2δ) for δ > 0.

We begin by showing that solutions to α2
1 + α2

2 ≡ a (mod q) is well distributed in fairly small
boxes. Given q, let f : (Z/qZ)2 → C denote the characteristic function of the set {(α1, α2) ∈
(Z/qZ)2 : α2

1 + α2
2 ≡ a (mod q)}. With the modulo q Fourier transform given by

(A.4) f̂(ξ1, ξ2) :=
∑

α1,α2 (mod q)

f(α1, α2)e
−2πi(ξ1α1+ξ2α2)/q

we recall the following estimate by Tolev [46]:

(A.5) |f̂(ξ1, ξ2)| � q1/2τ(q)2(q, ξ1, ξ2)
1/2(q, a, ξ21 + ξ22)1/2 ≤ q1/2τ(q)2(q, ξ1, ξ2)

1/2(q, a)1/2

By the Chinese remainder theorem, ηa(q) is multiplicative in q, and we note that f̂(0, 0) = ηa(q).
Let B ⊂ [0, q) × [0, q) be a “box” with side lengths T , and let g = gB denote the characteristic

function of B ∩ (Z/qZ)2. By standard estimates (from summing a geometric series) we have, for
ξ1, ξ2 6= 0,

(A.6) ĝ(ξ1, ξ2)� q2/|ξ1ξ2|,

for ξ1 6= 0,

(A.7) ĝ(ξ1, 0)� Tq/|ξ1|,

(and similarly for ξ2 6= 0), and trivially

ĝ(0, 0) = T 2.

Lemma A.2. Let g = (a, q). Then

|{(α1, α2) ∈ B : α2
1 + α2

2 ≡ a (mod q)}| = T 2 · ηa(q)
q2

+O(q1/2τ(q)3 log(q)2g1/2)

Proof. By Fourier analysis on (Z/qZ)2 (i.e., Plancherel’s theorem for finite abelian groups) we have

|{(α1, α2) ∈ B : α2
1 + α2

2 ≡ a (mod q)}| =
∑

α1,α2 (mod q)

f(α1, α2)g(α1, α2)

=
1

q2

∑
ξ1,ξ2 (mod q)

f̂(ξ1, ξ2)ĝ(ξ1, ξ2)

3By arg(α) we denote the complex argument chosen in such a way that it is single valued in an ε/2-neighborhood
of θ.
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The main term is given by ξ1 = ξ2 = 0 and equals

f̂(0, 0)ĝ(0, 0)

q2
= T 2 ηa(q)

q2

Using (A.5) and (A.7) the contribution from (say) ξ1 = 0 and ξ2 6= 0 is

(A.8) � 1

q2

q−1∑
ξ2=1

Tq

ξ2
q1/2τ(q)2(q, ξ2)

1/2g1/2 � Tq3/2τ(q)2g1/2

q2

∑
d|q

∑
0<ξ2<q/d

d1/2

dξ2

� Tτ(q)3 log(q)g1/2

q1/2
= O(q1/2τ(q)3 log(q)g1/2).

The contribution from terms ξ2 = 0 and ξ1 6= 0 is bounded similarly.
As for the terms ξ1, ξ2 6= 0, we have by (A.5)

1

q2

∑
ξ1,ξ2 6=0

f̂(ξ1, ξ2)ĝ(ξ1, ξ2)�
q1/2τ(q)2

q2

∑
ξ1,ξ2 6=0

q2

ξ1ξ2
(q, ξ1, ξ2)

1/2g1/2

= q1/2τ(q)2
∑
d|q

∑
0<ξ1,ξ2≤q/d

d1/2g1/2

d2ξ1ξ2
� q1/2τ(q)2 log(q)2g1/2.

�

Concluding the proof of Proposition A.1. Take T = x(1−δ)/2. The case T > q is straightforward
using a simple tiling argument, and we only give details for T ≤ q.

By a simple geometry of numbers argument, we may “tile” the sector S, intersected with a ball
of radius x1/2, with εx/T 2 + O(x1/2/T ) boxes B (with side lengths T ) entirely contained in the

sector, and with O(x1/2/T ) boxes intersecting the boundary. By Lemma A.2, each box B contains

T 2 · ηa(q)
q2

+O(q1/2τ(q)2 log(q)2g1/2)

points satisfying α2
1 + α2

2 ≡ a (mod q).

As ηa(q) < q1+o(1) (cf. [5, Lemma 2.8]), we find that the number of lattice points in the sector is

(εx/T 2 +O(x1/2/T ))(T 2 · ηa(q)
q2

+O(q1/2τ(q)3 log(q)2g1/2))

=
εηa(q)x

q2
+O

(
x1−δ/2

q1−o(1)
+ εg1/2q1/2+o(1)xδ

)
.

For q3g < x2(1−2δ) the error term is � x1−δ/3

q . �

A.3. Proof of Lemma 2.3. We may assume (Q, q) = 1 otherwise the result is trivial. Let δ > 0
be sufficiently small but fixed and set

rε(n) =
∑

a2+b2=n
| arg(a+ib)|≤ε

1.
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Also, for n ∈ N and z > 0 let P̃n(z) =
∏

2<p<z p. Let Λ1 = {λd}, Λ′ = {λ′e} be upper bound sieves

of level D = xδ with (d, 2q) = 1 and (e, 2Q) = 1. Then for z = xδ/2 we have∑
p=a2+b2≤x
| arg(a+ib)|≤ε

qp+4=Qp1where p1 is prime

1 ≤
∑

m≤qx+4

∑
n≤x

qn+4=Qm

(m,P̃q(z))=1

(n,P̃Q(z))=1

rε(n) +O(xδ/2)

≤
∑

m≤qx+4

∑
n≤x

qn+4=Qm

rε(n)(λ′ ∗ 1) (n) (λ ∗ 1) (m) +O(xδ/2).

Switching order of summation we have that the sum on the LHS above is

=
∑
d,e<D
(d,e)=1

(d,2q)=1,(e,2Q)=1

λdλ
′
e

∑
n≤x
e|n

rε(n)
∑

m≤qx+4
d|m

qn+4=Qm

1

=
∑
d,e<D
(d,e)=1

(d,2q)=1,(e,2Q)=1

λdλ
′
e

∑
n≤x

n≡γ (mod Qed)

rε(n)
(A.9)

since the inner sum in the first equation above consists of precisely one term provided that qn+4 ≡ 0
(mod Qd) and is empty otherwise. Also, here γ = −4eeq where qq ≡ 1 (mod Qd) and ee ≡ 1
(mod Qd). In particular, (γ,Qed) = e.

Let us note some properties of the function ηa(q). Recall, ηa(·) is multiplicative. Moreover, for
p > 2 and ` ≥ 1

(A.10) ηa(p
`) = p`

∑
0≤j≤`

χ4(p)
j

pj
cpj (a)

and for any a, q ≥ 1

(A.11) ηq(q)�
q2

ϕ(q)
τ((a, q))

(see [5, Eqn. (2.20) and Lemma 2.8]) where

(A.12) cq(a) =
∑

b (mod q)
(b,q)=1

e

(
ab

q

)
=

ϕ(q)

ϕ(q/(q, a))
µ(q/(q, a))

is the Ramanujan sum and χ4 is the non-principal Dirichlet character (mod 4). In particular note
that if (a, q) = g then ηa(q) = ηg(q) for odd q.

By Proposition A.1, (A.10), (A.11) and recalling that (Qed, γ) = e we get the RHS of (A.9)
equals

2εx
∑
d,e<D
(d,e)=1

(d,2q)=1,(e,2Q)=1

λdλ
′
e

(Qed)2
ηγ(Qed) +O

(
x1−δ/4

Q

)

=
2εxη1(Q)

Q2

∑
d,e<D
(d,e)=1

(d,2q)=1,(e,2Q)=1

λdλ
′
e

(ed)2
η1(Qd)ηe(e)

η1(Q)
+O

(
x1−δ/4

Q

)
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provided that Q3D7 < x2(1−2δ) which we rewrite as Q < x2/3−11δ/3. Using Theorem 2.3 in the form
of (2.8), and noting that η1(Qd)/η1(Q) is a multiplicative function, we get that the above sum is

� εxη1(Q)

Q2

∏
p<D

(p,2q)=1

(
1− η1(Qp)

p2η1(Q)

) ∏
p<D

(p,2Q)=1

(
1− ηp(p)

p2

)
.

(A.13)

To evaluate the Euler products we use (A.10) to get ηp(p) = p(1 + χ4(p) − 1
p), η1(Qp)/η1(Q) =

p+O(1) and η1(Q) = Q
∏
p|Q

(
1− χ4(p)

p

)
. Hence, by these estimates we get that (A.13) is

�εxη1(Q)

Q2

∏
p|Q

(
1 +

χ4(p) + 1

p

)∏
p|q

(
1 +

1

p

)
· 1

(logD)2

� q

ϕ(q)
· εx

Qδ2(log x)2

∏
p|Q

(
1 +

1

p

)
� q

ϕ(q)
· εx

ϕ(Q)δ2(log x)2

for Q < x2/3−11δ/3 which completes the proof, since δ > 0 is arbitrary.

Appendix B. Non-attainable quantum limits

Given an integer n such that r(n) > 0, define a probability measure µn on the unit circle by

µn :=
1

r(n)

∑
λ∈Z[i]:|λ|2=n

δλ/|λ|,

i.e., µn is obtained by projection the set of Z2-lattice points on a circle of radius n1/2 to the unit
circle and δ here denotes the Dirac delta function. A measure µ is said to be attainable if µ is a weak*
limit of some subsequence of measures µni . A partial classification of the set of attainable measures
were given in [30] in terms of their Fourier coefficients. Namely, for k ∈ Z, let µ̂(k) :=

∫
zk dµ(z)

denote the k-th Fourier coefficent of µ. By [30, Theorem 1.3], the inequalities

2µ̂(4)2 − 1 ≤ µ̂(8) ≤ max(µ̂(4)4, (2|µ̂(4)| − 1)2)

holds if µ is attainable. In particular, for γ > 0 small and µ̂(4) = 1 − γ, we must have µ̂(8) =
1− 4γ +O(γ2).

Now, by Theorem 1.2, there exists quantum limits that are convex combinations cν1+(1−c)ν2 for
c > 0 arbitrary small, and where ν1 is the uniform measure (with (ν̂2(4), ν̂2(8)) = (0, 0)), and ν2 is
a Cilleruello type measure, i.e., localized on the four points ±1,±i, and with (ν̂2(4), ν̂2(8)) = (1, 1).
Clearly such convex combinations cannot be attainable for c small.
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[13] F. Faure, S. Nonnenmacher, and S. De Bièvre. Scarred eigenstates for quantum cat maps of minimal periods.
Comm. Math. Phys., 239(3):449–492, 2003.

[14] T. Freiberg, P. Kurlberg, and L. Rosenzweig. Poisson distribution for gaps between sums of two squares and
level spacings for toral point scatterers. Commun. Number Theory Phys., 11(4):837–877, 2017.

[15] J. Friedlander and H. Iwaniec. Opera de cribro, volume 57 of American Mathematical Society Colloquium Publi-
cations. American Mathematical Society, Providence, RI, 2010.

[16] A. Hassell. Ergodic billiards that are not quantum unique ergodic. Ann. of Math. (2), 171(1):605–619, 2010.
With an appendix by the author and Luc Hillairet.

[17] K. Henriot. Nair-Tenenbaum bounds uniform with respect to the discriminant. Math. Proc. Cambridge Philos.
Soc., 152(3):405–424, 2012.

[18] M. N. Huxley and H. Iwaniec. Bombieri’s theorem in short intervals. Mathematika, 22(2):188–194, 1975.
[19] H. Iwaniec and E. Kowalski. Analytic number theory, volume 53 of American Mathematical Society Colloquium

Publications. American Mathematical Society, Providence, RI, 2004.
[20] D. Jakobson. Quantum limits on flat tori. Ann. of Math. (2), 145(2):235–266, 1997.
[21] D. Jakobson and S. Zelditch. Classical limits of eigenfunctions for some completely integrable systems. In Emerg-

ing applications of number theory (Minneapolis, MN, 1996), volume 109 of IMA Vol. Math. Appl., pages 329–354.
Springer, New York, 1999.

[22] J. P. Keating, J. Marklof, and B. Winn. Localized eigenfunctions in Šeba billiards. J. Math. Phys., 51(6):062101,
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