SUPERSCARS FOR ARITHMETIC POINT SCATTERERS II
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ABSTRACT. We consider momentum push-forwards of measures arising as quantum limits (semi-
classical measures) of eigenfunctions of a point scatterer on the standard flat torus T? = R?/Z>.
Given any probability measure arising by placing delta masses, with equal weights, on Z2-lattice
points on circles and projecting to the unit circle, we show that the mass of certain subsequences
of eigenfunctions, in momentum space, completely localizes on that measure and are completely
delocalized in position (i.e., concentration on Lagrangian states.) We also show that the mass, in
momentum, can fully localize on more exotic measures, e.g. singular continous ones with support on
Cantor sets. Further, we can give examples of quantum limits that are certain convex combinations
of such measures, in particular showing that the set of quantum limits is richer than the ones
arising only from weak limits of lattice points on circles. The proofs exploit features of the half-
dimensional sieve and behavior of multiplicative functions in short intervals, enabling precise control
of the location of perturbed eigenvalues.

1. INTRODUCTION

Let (M, g) be a smooth, compact Riemannian manifold with no boundary, unit mass and let A,
denote the Laplace-Beltrami operator. Also, let {¢)} be an orthonormal basis of eigenfunctions of
Ay with eigenvalues 0 < A\ < A < .... For an observable f € C°°(S*M), where S*M denotes the
unit co-tangent bundle of M, let Op(f) denote its quantization, defined as a pseudo-differential
operator (cf. [9] for details.) A central problem in quantum chaos (cf. [49, Problem 3.1]) is to
understand the set of possible quantum limits (sometimes called semiclassical measures) describing
the distribution of mass of the eigenfunctions {¢,} within S*M, in the limit as the eigenvalue
A tends to infinity. A cornerstone result in this direction is the quantum ergodicity theorem of
Shnirelman [44], Colin de Verdiére [8], and Zelditch [48] which states that if the geodesic flow on
M is ergodic there exists a density one subsequence of eigenfunctions {gb)\j} such that

pon, () = (OD(F)bs,. ) — /S @i (o)

as A\j — 0o, where dpuy, is the normalized Liouville measure on S*M. (Note that any quantum limit,
by Egorov’s theorem, is invariant under the classical dynamics.)

While the quantum ergodicity theorem implies that the mass of almost all eigenfunctions equidis-
tributes in S* M with respect to duy,, it does not rule out the existence of sparse subsequences along
which the mass of the eigenfunctions localizes. Whether or not this happens crucially depends on
the geometry of M, cf. Section 1.3.

In this article we study quantum limits of “point scatterers” on M = T? = R2/277Z2. These are
singular perturbations of the Laplacian on M, and were used by Seba [39] in order to study the
transition between integrability and chaos in quantum systems. The perturbation is quite weak and
has essentially no effect on the classical dynamics, yet the quantum dynamics “feels” the effect of
the scatterer, and an analog of the quantum ergodicity theorem is known to hold [37, 28] (namely,
equidistribution holds for a full density subset of the “new” eigenfunctions.)
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The model also exhibits scarring along sparse subsequences of the new eigenfunctions [26]. In
particular there exist quantum limits whose momentum push-forward, which can be viewed as
probability measures on the unit circle, is of the form ¢figing + (1 — €) funiform, for some ¢ € [1/2,1].
Here both piuniform and piging are normalized to have mass one, and pging can be taken to be a
sum of delta measures giving equal mass to the four points +(1,0),4(0,1). We note that puniform
is the push-forward of the Liouville measure and hence maximally delocalized, whereas fising is
maximally localized since any quantum limits in this setting must be invariant under a certain
eight fold symmetry (cf. (1.5)).

Stronger localization, i.e., going strictly beyond ¢ = 1/2, is particularly interesting given a
number of “half delocalization” results for quantum limits for some other (strongly chaotic) systems,
namely quantized cat maps and geodesic flows on manifolds with constant negative curvature. For
example, in the former case Faure and Nonnenmacher showed [12] that if a quantum limit v is
decomposed as v = vpp + Vijouville + Vse, With vy, denoting the pure point part and v,. denoting
the singular continous part, then vpiouvine(T?) > vpp(T?), and thus vpp(T?) < 1/2. (We emphasize
that T2 is the full phase space in this setting.)

The aim of this paper is to exhibit essentially maximal localization for a quantum ergodic system,
namely arithmetic toral point scatterers. In particular we construct quantum limits (in momentum)
corresponding to ¢ = 1 in the above decomposition; other interesting examples include singular
continous measures with support, say, on Cantor sets. This can be viewed as a step towards a
“measure classification” for quantum limits of quantum ergodic systems.

1.1. Description of the model. Let us now describe the basic properties of the point scatterer.
This is discussed in further detail in [37, 38, 28, 26, 39, 41]. To describe the quantum system
associated with the point scatterer, consider —A| Dag where

D,,={f¢€ Lz(']I‘Q) : f(x) = 0 in some neighborhood of zp}.

By von Neumann’s theory of self-adjoint extensions (see Appendix A of [37]) there exists a one pa-
rameter family of self-adjoint extension of —A| D,, parameterized by a phase ¢ € (—m, 7). Moreover,
for ¢ # 7 the eigenvalues of these operators may be divided into two categories. The old eigenval-
ues which are eigenvalues of —A, with multiplicity decreased by one, along with new eigenvalues
which are solutions to the spectral equation

(1.1) S r(m) (m - 1) = tan(p/2) Y2 "

m>1

where
r(m) = #{(a,b) € Z* : a* + b* = m}.

We will refer to the case when ¢ is fixed as A — oo the weak coupling quantization. In this
regime work of Shigehara [41] suggests that the level spacing of the eigenvalues should have Poisson
spacing statistics and this is supported by work of Rudnick and Ueberschér [38] along with Freiberg,
Kurlberg and Rosenzweig [14]. In hope of exhibiting wave chaos Shigehara proposes the following
strong coupling quantization

(12) R e

|m—X|<AL/2

where o € R is called the physical coupling constant and reflects the strength of the scatterer. The
strong coupling quantization restricts the spectral equation to the physically relevant energy levels.
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Notably, this forces a re-normalization of (1.1)

tan(p/2) Y

m>1

r(m)

oo e T —mlog A

so that ¢ depends on A in this case (see [47] equation (3.14)). We note that the weak coupling
quantization corresponds to a fixed self adjoint extension, whereas the strong coupling quantization
can be viewed as an energy dependent, albeit very slowly varying, family of self adjoint extensions.
From the spectral equation it follows that new eigenvalues interlace with integers which are
representable as the sum of two integer squares. We denote these eigenvalues as follows

D<A <Ll A <2< <d<M<dE<A< -

and write A, for the set of all such eigenvalues. Also, given n = a?+b? let nt denote the smallest
integer greater than n which is also a sum of two squares. Let

(1.3) Opn=Ap—n >0,

(which should not be confused with the Dirac delta function). In addition given A\ € Ay, the
associated Green’s function is given by

1 exp(—i€ - T0) jep 1
4 Crr) =~y 3 TP - G

(see equation (5.2) of [37]). Since the torus is homogeneous we may without loss of generality
assume that xy = 0.

1.2. Results. Our first main result shows that along a sparse, yet relatively large, subsequence of
new eigenvalues {\;} that the mass of g); in momentum space localizes on measures arising from
Z2-lattice points on circles, projected to the unit circle. To describe these measures in more detail,

consider an integer n = a? + b?, with a,b € Z, and the following probability measure on the unit
circle S ¢ C

1
Hn = —= Z 5(a+ib)/|a+ib\‘
r(n)
a?+b%2=n
Following Kurlberg and Wigman [30] we call a measure poo attainable if it is a weak limit point

of the set {fin}p—q21p2. Any such measure is invariant under rotation by /2, as well as under
reflection in the z-axis; for convenience let

- ({1 ). )}

denote the group generated by these transformations.

Theorem 1.1. Let mg = a’>+b% € N be odd'. In each of the weak and strong coupling quantizations
there exists a subset of eigenvalues Epy C Apey with

#{/\SX:)\ESmO}>> 1

H#HAN< X A€ Apew} (log X )1+o(1)

such that for any pure momentum observable f € C*°(S') C C°°(S*(T?))

A—00

(Op(f)grs gr) Aetmy, 1 Z f <Q+Zb> .

r(mo) eraiil la + ib|

LAs far as possible quantum limits go, mo being odd is not a restriction as any u, for n even can be approximated
by ptm, for mo odd.
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We note that the quantization of our observables is as explicitly given in (5.1), which follows the
approach of [28].

Hence, in momentum space the mass of gy completely localizes on the measure f,,,. For any
attainable measure po there exists {mg}¢ such that 1, weakly converges to fio. This implies
the following corollary.

Corollary 1.1. Let pus be an attainable measure. Then there exists {)\j}j C Apew such that for
any pure momentum observable f € C*(S1)

(Op(f)gx;» 9x;) 12, /51 fdpico.

We note that the set of attainable measures is much smaller than the set of probabality measures
on S! that are Symg-invariant, in particular the set of attainable measures is not convez (cf. [30,
Section 3.2].) In our next result we show that in the strong coupling quantization there is a
subsequence of new eigenvalues along which the entire mass of g, localizes on certain convex
combination of two measures arising from lattice points on the circle. In particular, the set of
quantum limits, in momentum space, is strictly richer than the set of attainable measures.

Theorem 1.2. Let mg, m1 be odd integers which are each representable as a sum of two squares.
Then in the strong coupling quantization there exists a subsequence of eigenvalues Emgm; C Apew
such that for each X € Eyym, there is an integer £y with r(£y) # 0 and r(€y) < 1 such that for
pure momentum observables f € C*(S1)

(Op(Fan. gn) :C”r; 3 f(a—l—ib>

(1.6) (mo) a2+b2=mg o+ 3b]
' 1 a—+ib 1
1 - o —H7 J—
t-e) oy 2 (o) + (ogogrym)
a24+b2=m10l)
where
1
c) = .
AT T4 r(mo) /r(maly)
Additionally,
#N<X: A€ Engm, ) S 1
#{IN< X XN € Apew} (log X )2+o(1)

Note that since Zpl ¢, 1 < 1, the measure fi,,¢, can be viewed as a fairly small perturbation of
Homy -

Remark 1. By removing a further “thin” set of eigenvalues (with spectral counting function of size
O(x17¢) for € > 0, we can construct quantum limits that are flat in position (for details, cf. [26,
Remark 4] ), in addition to the momentum push-forward properties given in Theorems 1.1 and 1.2.
In particular, we can construct quantum limits that are completely localized on the superposition of
two Lagrangian states — essentially two plane waves, one in the horizontal and one in the vertical
direction. This phenomena is sometimes called super scarring (cf. [6, 26].)

Further, assuming a plausible conjecture on the distribution of the prime numbers, we show that
given mg,m; as in Theorem 1.2 the quantum limit of (Op(f)gx,gx) is a convex combination of
tmo and iy, . From this we are able to conclude that every Symg-invariant measure arises as a
quantum limit. The conjecture on the distribution of primes concerns obtaining a lower bound on
the number solutions (u,v) in almost primes to the Diophantine equation

aX —bY =4
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where v = p1p2, u = p3 with p; a prime satisfying p; = a?- + b? and b; = o(a;) for j =1,2,3. The
precise formulation of this conjecture, which we call Hypothesis 1 is given in Section 5.5.

Theorem 1.3. Assume Hypothesis 1. Let fisoy, oo, be attainable measures and 0 < ¢ < 1. Then
in the strong coupling quantization there exists {\;}; C Anew such that for any f € C=(S!)

(Op(f)gxr; 9x;) 12, C/S1 fdpioo, + (1 —¢) /Sl fdpioo, -

In particular, all Symg-invariant probability measures on S* arise as quantum limits in momentum
space.

We finally remark that the proof of Theorem 1.2 easily (and unconditionally) also gives that any
Symg-invariant probability measure 4 on S! is a quantum limit of Greens function in the following
sense: given pu, there exist a sequence of positive reals A} < X, < ---, disjoint from the set of
unperturbed eigenvalues, so that limi_mo(Op(f)gA;,g/\;) = l.

1.3. Discussion. For integrable systems it is often straightforward to construct non-uniform quan-
tum limits, e.g. “whispering gallery modes” for the geodesic flow in the unit ball, and for linear
flows on T2, Lagrangian states with maximal localization (i.e., a single plane wave) are easily con-
structed. We note that strong localization in position for quantum limits on T? was ruled out by
Jakobson [20] — in position, any quantum limit is given by trigonometric polynomials whose fre-
quencies lie on at most two circles (hence absolutely continuous with respect to Lebesgue measure.)
Further, for the sphere, Jakobson and Zelditch in fact obtained a full classification — any flow
invariant measure on S*(S5?) is a quantum limit [21].

The quantum ergodicity theorem holds in great generality as long as the key assumption of er-
godic classical dynamics holds, but the existence of exceptional subsequence of nonuniform quantum
limits (“scarring”) is subtle. For classical systems given by the geodesic flow on compact negatively
curved manifolds, the celebrated Quantum Unique Ergodicity (QUE) conjecture [36] by Rudnick
and Sarnak asserts that the only possible quantum limit is the Liouville measure. Known results
for QUE include Lindenstrauss’ breakthrough [31] for Hecke eigenfunctions on arithmetic modular
surfaces, together with Soundararajan ruling out “escape of mass” in the non-compact case [45].
On the other hand, for a generic Bunimovich stadium (with strongly chaotic classical dynamics),
Hassell [16] has shown that there exists a subsequence of exceptional eigenstates where the mass
localizes on sets of bouncing ball trajectories.

For quantized cat maps, again for Hecke eigenfunctions, QUE is know to hold [27]. However,
unlike for arithmetic modular surfaces, where Hecke desymmetrization is believed to be unnecessary,
it is essential for quantum cat maps. Namely, Faure, Nonnenmacher and de Bievre [13] constructed,
in the presence of extreme spectral multiplicities and no Hecke desymmetrization, quantum limits
of the form v = %I/pp + %VLiouviue; in [12] this was shown to be sharp in the sense that the Liouville
component always carries at least as much mass as the pure point one. (We note that, on assuming
very weak bounds on spectral multiplicities, Bourgain showed [7] that scarring does not occur.) For
higher dimensional analogs of quantum cat maps, Kelmer has for certain maps shown [23] “super
scarring”, even after Hecke desymmetrization, on invariant rational isotropic subspaces. Further,
these type of scars persist on adding certain perturbations that destroy the spectral multiplicities
[24]. Other models where scarring is known to exist include toral point scatterers with irrational
aspect ratios [29, 22, 3] and quantum star graphs [4], though neither model is quantum ergodic
[29, 4].

Classifying the set of possible quantum limits, in particular for Quantum Ergodic settings, is
an interesting question. Here Anantharaman proved very strong results for geodesic flows on
negatively curved manifolds [1]: any quantum limit has positive Kolmogorov-Sinai (KS) entropy
with respect to the dynamics of the geodesic flow. In particular, this rules out localization on a
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finite number of closed geodesics (for compact arithmetic surfaces this was already known due to
Rudnick and Sarnak [36].) Moreover, in the case of constant negative curvature, Anantharaman
and Nonnenmacher showed [2] that the KS-entropy is at least half of the maximum possible. The
measure of maximum entroy is given by the Liouville measure, and thus “eigenfunctions are at
least half delocalized”. Dyatlov and Jin [10] consequently showed that any quantum limit must
have full support in S*(M), for compact hyperbolic surfaces M with constant negative curvature;
together with Nonnenmacher this was recently strengthened [11] to the include the case of surfaces
with variable negative curvature.

1.4. Outline of the proofs. Our arguments use the multiplicative structure of the integers to
create an imbalance in the spectral equation (1.2) along a zero density, yet relatively large sub-
sequence of new eigenvalues. Through exploiting this imbalance we control the location of the
new eigenvalues in our subsequence and show that they lie close to integers which are sums of
two squares. This greatly amplifies the amount of mass of the corresponding eigenfunctions in
momentum space which lies on the terms which correspond to these integers, so much so that the
contribution of the remaining terms is negligible. Consequently, the mass completely localizes on a
convex combination of two measures and moreover our construction allows us to completely control
the first measure.

In Section 2 we use sieve methods to produce integers n = p1pz where p;, j = 1,2, is a prime with
pj =a®+b* = (a+ib)(a —ib), 0 < b < a, with 0 < arctan(b/a) < &, where ¢ is a small parameter,
such that Qopip2+4 is also a sum of two squares, Q1|Qop1p2+4 and (Qop1p2+4)/Q1 has a bounded
number of prime factors, where @y, Q)1 are large integers whose purpose we will describe later. In
particular, we exploit special features of the half dimensional sieve using an ingenious observation
of Huxley and Iwaniec [18]. Further, in order to find suitable Gaussian primes in narrow sectors
we use a classical result of Hecke together with non-trivial bounds on exponential sums over finite
fields to control sums of integral lattice points in narrow sectors with norms lying in arithmetic
progressions to large moduli.

The subsequence of almost primes {n,} constructed as described above creates the imbalance in
the spectral equation (1.2) by boosting the contribution of the terms m = Qong, Qon¢+4. The next
step in our argument is to show that this imbalance typically overwhelms the contribution of the
remaining terms. To do this, we first show in Section 3 that for all new eigenvalues lying outside
a small exceptional set the spectral equation (1.2) can be effectively truncated to integers m with
essentially |m—\| < (log A\)!0. This is done by controlling sums of 7(n) over short intervals and uses
a second moment estimate of the Dedekind zeta-function (g(;). In Section 4 we apply this result
to new eigenvalues which lie between QQgny and Qony + 4 and show that for almost all such new
eigenvalues the remaining terms in the spectral sum (i.e. |m — A| < (log \)'%, m # Qong, Qone +4)
is relatively small, provided that we take (Qg, @)1 sufficiently large thereby boosting the contribution
of the closest two terms. This is accomplished by using bounds for sums of multiplicative functions
over polynomials due to Henriot [17]. Crucially, we need good estimates for these sums in terms of
the discriminant of the polynomials.

Finally, to get complete control on the first measure in Theorem 1.2 we choose g so that it is the
product of a given fixed integer mg and large primes pp = a? + b? with 0 < arctan(by/ax) < plzl/ 10
so that the probability measure on S! associated with Qgn, weakly converges to the measure
associated with mg as ¢ — oo. This last construction uses work of Kubilius [25] on Gaussian
primes in narrow sectors.

1.5. Notation. We write f(z) < g(z) provided that f(z) = O(g(x)). Additionally, if for all =

under consideration |f(z)| > cg(z) we write f(x) > g(x). If we have both f(x) < g(z) and

f(x) > g(x) we write f(x) =< g(x). For some additional notation related to sieves, see Section 2.1.1.
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2. SIEVE ESTIMATES
Let By be a sufficiently large integer, and given £ > 0 let
P. ={p > (logz)? : p=a® 4+ b? and 0 < arctan(b/a) < €},

2.1
( ) Pé :{p €P.:p< x1/9}.

Throughout we assume that ¢ > 1/(loglog z)'/? is sufficiently small. Also given f,g: N — C we
define the Dirichlet convolution of f and g by

(f+9)(n) =Y fla)g(b).

ab=n

Also, let Qg, Q1 < (logx)Y/' be odd co-prime integers whose prime factors are all = 1 (mod 4).
Moreover we assume that Qo = fZeors®, Q1 = fieir{' where eg, e are square-free, fo, fi < 1 and
r0,71 are primes congruent to 1 (mod 4). Throughout, the arithmetic function b(n) is the indicator
function of the set of integers which are representable as a sum of two squares. Also, for S C N we

define
1 ifnesS
1 = ’
s(n) {0 otherwise.
and let ¢(n) = #{m <n:(m,n) =1}.

Proposition 2.1. Let n > 0 be sufficiently small and let y = x". Suppose y > QoQ1. Then

Ce2Qp xloglogx
3 (1p, * 1p:)(n)b(Qon + 4) > 120(Qo)  (Q1)(logz)?’

n<x
o Q1|Qon+4
+4
( Oc;l 7Hp§yp):1

for some absolute constant C' > 0.

This proposition builds on a result of Friedlander and Iwaniec [15, Ch. 4]. The main novelty here
is that we capture almost primes n = pips such that each prime factor p = a® + b, with 0 < b < q,
has the property that a + ¢b lies within a certain small sector.

We also will require the following result.

Proposition 2.2. There exists an absolute constant C > 0 such that

xloglog x
1p_ * 1pr)(n)b(Qon + 4 > (O¢? .
; (Ip, * 1pr)(n)b(Qon + 4) Q1) (log 2)772
Q11Qon+4

Since Proposition 2.2 follows from a similar, yet simpler argument than the one used to prove
Proposition 2.1 we will omit its proof. The rest of this section will be devoted to proving Proposition
2.1.
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2.1. The Rosser-Iwaniec Sieve. Let us first introduce the Rosser-Iwaniec S-sieve and the clas-
sical sieve terminology. We start with a sequence of A = {a,} of non-negative real numbers, a set
of primes P and a parameter z. Define

P(z) = H .

peEP
p<z

Our goal is to obtain an estimate for the sieved set

S(A,P,2) = > an

n<z

(n,P(z))=1
This will be accomplished through calculating, for square free d € N,

(2.2) Aa(@) == > an

n<x
n=0 (mod d)

We now make the hypothesis that our estimate for A;(z) will be of the form
(2.3) Ad(a:) = g(d)X +rq

where ¢(d) is a multiplicative function with 0 < g(p) < 1. The number r4 should be thought of as
a remainder term, so X is an approximation to A;(z), and the function g(d) can be interpreted as
a density.

Let

We further suppose for all w < z that

” v = T oo = () (o ()

w<p<z
peEP

for some x > 0. The constant k is referred to as the dimension of the sieve.

Our arguments also require sieve weights. Let A = {\g}q4, be a sequence of real numbers, where
d ranges over square-free integers. The sequence A is referred to as an upper bound sieve provided
that

(2.5) 1= p(d) <> Xg,  VneN,
din dn
where 1,—1 equals one if n = 1 and equals zero otherwise. We call A a lower bound sieve if
(2.6) > A<lpm,  WneN
dn
For a sieve A = {\g} we use the notation
(2.7) (Ax1)(n) =D Aa.
dln

(this will be used to show the existence of primes, or almost primes with desired properties.)
Additionally, we say that the sieve A has level D if Ay =0 for d > D.

Given k£ > 0 the [-sieve gives both an upper and lower bound for S(A,P,z) whenever s =
log D/ log z is sufficiently large in terms of k. The bounds consist of an error term, which is a sum
of the remainder terms |r4| for d < D and a main term XV (2)F(s), XV (2)f(s) (resp.) where F, f
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are certain continuous functions with 0 < f(s) < 1 < F(s). For precise definitions, motivation and
context we refer the reader to [15, Chapter 11].

Theorem 2.1 (Cf. [15, Theorem 11.13]). Let D > z and write s = lﬁ)ggi)' Then

S(A,P,2) < XV(2) (F(s) + O((log D)_1/6> + R(D, 2)

S(A,P,2) > XV(2) (f(s) + O((log D)™/%) = R(D, 2)
for s > (k) —1 and s > (k) (resp.), where

R(D7Z)S Z ’rd|'
d<D
d|P(z)

In particular, note that for k = 1/2, it is well known that 8 =1 (e.g., see [15, Ch. 14.2].) In our
arguments, we will use S-sieve weights, which are as defined in [15] Sections 6.4-6.5. In particular
for these weights we have [A\g] < 1. We will sometimes refer to the Fundamental Lemma of the
Sieve, by which we mean the following result (see [15, Lemma 6.11].)

Theorem 2.2. Let AT = {)\fit} be upper and lower bound (resp.) (-sieves of level D with 3 > 4k+1.
Also, let s =log D/log z. Then for any multiplicative function satisfying (2.4) and s > B+ 1 we

have
S AEgd) = V(2) (1 +0 (3*8/2)) .

d|P(z)

We also require the following estimate for the convolution of two sieves (see equation (5.97) and
Theorem 5.9 of [15]).

Theorem 2.3. Let Ay = {\g} and Ay = {\,} be upper-bound sieve weights of level D1, Dy (resp.).
Also, let g1, g2 be multiplicative functions satisfying (2.4) with kK = 1. Then

2
< (e + o) JJ + hahae) I T 0= 95(0))

p J=1 p<Dj

Y Adgi(d)ga(e)
d,e

(d,e)=1

as min{ Dy, Dy} — 0o, where for j = 1,2, hj(n) = gj(n)(1 — gj(n))~! and v is Euler’s constant.
If in addition g1(p), g2(p) < 1/p so that hi(p)ha(p) < 1/p?, which will be the case for us, then

(2.8) \ S A (@) < T[T 0 - o) T (1 - o)
d,e p<D1 p<D2
(d,e)=1

where C' > 0 is an absolute constant.

2.1.1. Notation. We will also use the notation
Ps(z1,22) = H 22 and Ps(z) := P53(3, 2).

21<p<z2
p=3 (mod 4)

Additionally, let 1(n) = 1n(n) = 1 denote the identity function and let 7(n) = (1x1)(n) = > 4, 1.
Also, define

1
(2.9) B(xig,a,€) = Y (lp xlp)n)——= > (Ip. x1p)(n).
n<lx (P(q> n<x
n=a (mod q) (n,q)=1

Further, n,d > 0 will denote small, but fixed real numbers.
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2.2. Preliminary lemmas. We begin by showing that the difference between the upper and lower
bound sieves is “small”.

Lemma 2.1. Let A* = {)\f} be upper and lower bound linear sieves (resp.) each of level w = zV"

where n > 0 is sufficiently small, whose sieve weights are supported on integers d such that d|P(y),
where y =z and (d,2Qo fir1) = 1; in particular

(2.10) Ay =0 if (d,2Q0 fir1) > 1.

Then

> (e (FEE) <o) (PR ) (s tmo

n<x

Q1]|Qon+4
a2)—1 Qo wloglogx T
©(Qo) (Q1)(logz)? ~ (logz)'®”

Proof. Switching order of summation, it follows that

> (e (PEE) <o (P2 ) (i xtmo

=Y+ > A > (Ip. * 1p;)(n).
T

Q1|Qon+4
<w n<x

< 52771/(

(2.11)

d
d|P(y) Qon+4=0 (mod dQ1)
(d,2Qo f171)=1

The inner sum on the RHS of (2.11) equals

1
(2.12) 2(dQ1) > (p.x1p)(n) + B(2;dQ1, v.¢)
’ n<x
(TL,dQ1):1

where ~y is the unique reduced residue (mod d@Q;) satisfying v- Qo = —4 (mod dQ1) and B is as
defined in (2.9). Also,

(2.13) Yo (pxlp)(n) =Y (Ip. x 1p)(n) + 0( > 1p(p)lp (m))-

n<z n<z p1p2<z
(n,dQ1)=1 (p1p2,dQ1)#1

Since d@Q1 < x1/9 (as 1 is small) and py < 21/9 the contribution to the error term from pip2 < x

with p1|(p1p2,dQ1) is < Engxug Zp1§x1/9 1 < x2/9. Also, since py > (logz)Bo

x 1 z(loglog x)
CAVIIED S PO S D S S y L zlosler)
log x Do (log z:)Bo
p1p2<z p2ldQ1  p1<z/p2 p2ldQ1
(P1p2,dQ1)=p2 p2>(log z) B0 p2>(log z) B0
10



Hence, using (2.12), (2.13), (2.14) along with the Fundamental Lemma of the Sieve (see Theorem
2.2 and recall [\g| < 1) with g(d) = ©(Q1)/¢(Q1d)?, and s = logw/logy = n~'/? we have that

oA > (1p, * 1p:)(n)

d<w n<lz
d|P(y) Qon+4=0 (mod dQ1)
(d72QO):1
1 ¢(Q1) ) 1/(4n'/2)
= lp. * 1p/)(n 1- 14+ O(n /™"
(215) sy 2t ] (1- ) 0+ o)

(P,2Qo f17m1)=1
_ xloglogx
+O< Z B(J:adle’Yag)‘> +O ((10gIL‘)B°1> .

d<w
(d,2)=1
Applying Theorem A.1 from the appendix, since w = 2V7 < 21/27°(1) we get that
> B (x3dQ1,7,)| <

d<w
(d,2)=1

T
(log )10

Using the two estimates above in (2.11) (note the main terms in (2.15) are the same for each of the
sieves AT so they cancel in (2.11)) and applying (A.3) (with ¢ = 1) from the appendix to estimate
the sum over n, completes the proof upon noting that

11 (1 (@) > _ G _ Qo

o p(@ip))  ¢(Qo)logy  ¢(Qo)nlogx

(p,2Qof1r1)=1

0

We next give a lower bound on the upper bound sieve, which together with Lemma 2.1 is strong
enough (given suitable parameter choices) to show the existence of infinitely many integers with
eractly two prime factors with the desired properties.

Lemma 2.2. Let w = 2V, y = 2", and At be as in Lemma 2.1. Let § > 3yn>0and z = 2379,
Then there exists a constant C1 > 0 such that

S (e (At ) (

n<x
(Qon+4,Ps3(y,z))=1
Q1|Qon+4

Proof. Consider the sifting sequence

o oo () amain

and primes P = {p >y : p=3 (mod 4)}. Recalling (2.10), we may write

X=Y 2 (1))

Qon—|—4> o e2512 Qo xloglogx
@ "2 0(Qo) (@) (log 2)*

e<w SD(te) n<zx
e|P(y) (n,Q1e)=1
(2.16) AF Q xloglog x
= 1 2 * 1 , n e >> 82 0 g g 7
n;,- . v e e;u p(e@r) ©(Qo) ¢(Q1)(logy)(log )
(n,Q1)=1 elP(y)

(e,2Qo fir1n)=1

2Note that g is multiplicative on the set of square-free d with (d, fir1) = 1.
11



where the lower bound follows from the Fundamental Lemma of the Sieve (see (2.15) and take D =
w, z = y in Theorem 2.2 and note that we then have s = n~/ 2) along with prime number theorem
for Gaussian primes in sectors to evaluate the sum over n (see (A.1), (A.3) in the Appendix).

For d|P3(y, z) note that (d,eQoQ1) = 1 for e such that ple = p <y, and (1p, * 1p;)(n) = 0 if
(d,n) # 1. It follows that (cf. (2.2) and (2.3) for the definition of A;)

MQuet = X (et en) (PR
Q1 \TCL»?S()QTEL+4

Qon+4=0 (mod d)

= > A > (Ip, * 1p,)(n)

e<w n<x
e|P(y) Qon+4=0 (mod eQ1)
Q0n+4EO (I‘IlOd d)

AF IS S
= Z m Z (Ip. * 1p)(n) + 74 = (p(d)X—i_ d>

e<w n<x
e|P(y) (n,Q1e)=1

where
ra < Y |B(w;deQi,7,¢e)l

e<w
(e,2)=1

and ~ is the unique residue class (mod de@;) with Qpy = —4 (mod eQ1) and Qoy = —4 (mod d);
also note that (d,eQ1) =1 and B is as in (2.9).

Hence, the half-dimensional Rosser-Iwaniec sieve, Theorem 2.1, gives for any D > z with s =
log D/ log z

> (Ip, * Lp ) (n)(A* x1) (W)
n>1 Ql
(Qon+4,P3(y,z))=1
(2.17) Q11Qon-+1
1
> xve) (1940 (g ) ) - 3
(log D)1/6 2
d| Ps(y,z)
where
1 log y 12
2.18 Viz) = - s S '
= ) nyZ < p— 1> log z n
p=3 (mod 4)

Taking D = z'%9, so s = 1 + 6, we have by Theorem A.1, which is proved in the appendix, that
(taking ¢ = ed@1)

T
2.1 ; .
(2.19) Y orle 3 (o0 mes Beseeol) < g
q<DQ1w
d|Ps(y,2) (¢,2)=1

Here note that DQw < 23737V < 237§ and the contribution of the divisor function is handled
by using Cauchy-Schwarz along with the trivial bound |B(z; ¢, a,€)| < x/q. Also note that f(t) ~
2y/E - Vt—Tast— 17 (see the equation after (14.3) of [15]), so f(s) = f(1+J) > V4. Using

this along with (2.16), (2.18), and (2.19) in (2.17) completes the proof.
(|
12



2.3. The Proof of Proposition 2.1. We first require a Brun-Titchmarsh type bound for primes
in narrow sectors.

Lemma 2.3. Let Q,q < 22/37°0) be odd. Then

q X
> l1<e :
2
p—airri<n ©(q) p(Q)(logx)
|arctan(b/a)|<e
qp+4=Qp1,p1 prime

Remark 2. The point of the lemma is that it holds for large moduli Q > z'/2. To accomplish
this we use asymptotic estimates for Gaussian integers o = a + ib with N(«) < x and N(a) = a
(mod Q) and |arg(a)| < e, where N(a) = aa is the norm of a. Details are given in Appendiz, cf.
section A.2.

The main step in the proof of Proposition 2.1 is the following lemma.

Lemma 2.4. Let z = 2379 where § > 0 is sufficiently small and y = " with 0 < n < 1/3. There
exists a constant Cy > 0 such that

> (Ip. * 1p)(n) = > (Ip. x1p)(n) + R

n<x n<lx
Q1]|Qon+4 Q1]Qon+4
4 4
(252 P(y) Pa(y,2))=1 (45 P(y)=1

p|Qon+4=p=1 (mod 4)
where
82 Qo x loglog x
/2 (Qo) »(Q1)(logx)?’

Proof. By construction for *lp:)(n) # 0, Qon +4 = 1 (mod 4) and @1 = 1 (mod 4) so that
(Qon+4)/Q1 =1 (mod 4) and must have an even number of prime factors which are congruent to
3 (mod 4). Since z > z'/4 the integers which contribute to R must have precisely two such prime
factors. Dropping several conditions on the integers n which contribute to R, it follows that R is
bounded by the number of integers n = pi1ps < z, (1p, *1p;)(n) # 0 such that (Qon+4)/Q1 = aqiq2
where b(a) =1, (a, P(y)) = 1, g1 = g2 = 3 (mod 4) and ¢, g2 are primes with z < g1, ¢2 < 2Qox/Q1
so a < 2Qox/(Q12%). By symmetry, it suffices to consider the terms with ¢; < go. We get that

(2200 R<2 > dp(p) >, ba) > > > 1p, (p1)-

p2<zl/? a< 207 2<qi< /Q;igolﬂc 01<¢2<2Qoz/Q1 p1</p2

0<R<(Cy -2

(a}&);:l Qop1p2+4=aq1q2Q1
Applying Lemma 2.3 with ¢ = Qgp2 and @ = aq1 Q1
Qo x
2.21 Ip () K e )
220 plgm v ©(Qo) p(aQ1)q1p2(log )2

Qop1p2+4=aq1q2Q1

2/3—0(1)
) , for 6 > 0 sufficiently small so the applica-

Note that z/py > %9 and Qops, aq1Q; < (i

P2
tion of Lemma 2.3 is valid.

We claim that
2
(2.22) b(a) < logz/z ’
.. P logy

13




which we will justify below. Additionally,

2Qox

1 log log % 1 log %
(2.23) > —~log Q@ o8 loglo B i
qn log 2z log z log 2z log 2z
z<q1< i%f
Therefore, using (2.21), (2.22), and (2.23) in (2.20) we conclude that
Ree. Qo xloga/ z; log /2* > 1p; (p2)
p(Qo) »(Q1)(logz)*logz | logy P2

pa<zl/9
82 Qo x - loglog x
/2 ¢(Qo) »(Q1)(logz)?

<e?

as desired.

It remains to justify (2.22). Let F(n) be the completely multiplicative function defined by
F(p) = 1if p > y and zero otherwise. Then for all t > y, it follows from basic estimates for
multiplicative functions (see (1.85) of [19]) that

t b(p) (p)> t
< 1 < .
logtg( + p—1 Vlogtlogy

For 1 <t <y the sum on the LHS is empty so the bound is true in that case as well. Hence, (2.22)
follows from this estimate along with partial summation. O

Proof of Proposition 2.1. Let § be sufficiently small in terms of n, C1 and Cs. Applying the in-
equality (2.6) for a lower bound sieve (also recall our notation (2.7)) along with Lemmas 2.1 and

2.2, using a lower bound sieve to take care of the condition (Q%L;r4,P(y)) = 1, we have that

S ez Y (et oy (D)
n<z nsz '
Q1]Qon+4 Q1]Qon+4
(Q%Ll+4,P(y)P3(y7Z)):1 (Q0n+4,P3(y,z))=1
= > (1p. * 1p ) (n)(AT + 1) (W)
1
n<x
(2.24) Q1[Qon-+4

(Qon+4,P3(y,2))=1

log1
L0 <52771/(4771/2)_1 @QQ zloglogx >

(Qo) »(Q1)(log x)?

1 1

e2612 Qo zloglogx pan'/? 2

>C 1+0 | —————
=2 6(Qo) (Qu)(log )2 e

14



Choosing 7 sufficiently small in terms of § (which is fixed) the O-term above is < 1/2 in absolute
value. Therefore, by (2.24) along with Lemma 2.4 it follows that

251/2 253/2
> (p, xlp)(n) > (QECE G0 ) Qo wloglogz
n<a ] 2 Y 172 | o(Qo) 9(Q1)(log z)
Q1|Qon—+4
(207t Py Py(y,2))=1

Q1
p|Qon+4=-p=1 (mod 4)

The term (%(51/ 2 _ 0y6%/ 2) is positive for ¢ sufficiently small in terms of Cy and Cs. Also b(Qon +
4) = 1 for n such that all the prime factors of Qon + 4 are congruent to 1 (mod 4). This completes
the proof. O

3. TRUNCATING THE SPECTRAL EQUATION

In this section we show that it is possible to achieve a very short truncation of the spectral
equation which holds for almost all new eigenvalues.

Theorem 3.1. Let A > 1. Then for B = B(A) sufficiently large we have for every eigenvalue
A € Apew N [1,2] except those outside an exceptional set of size O(x/(logx)?) that

(3.1)

Z r(m) {Wlog An + O(1)  in the weak coupling quantization,

m— An - é +0(1) in the strong coupling quantization.

m:lm—n|<2(logz)B

The above theorem is proved by capturing cancellation in the spectral equation even at very
small scales, for almost all new eigenvalues. This is done by showing that the average behavior of
sums of 7(n) over even very short intervals is fairly regular.

Lemma 3.1. Let x > 3 and 3 < L < z. Also, let h(z) = x/L. Then

(3.2) %}:

<z

2
< h(zx)(logz)?.

> r(n) —wh(0)

(<n<t+h(f)

Proof. We repeat a classical argument, which was used by Selberg [40] to study primes in short
intervals. Consider

Gty = W~ Lsxacs)  Re(s) > 1.

ns
n>1

where L(s, x4) is the Dirichlet L-function attached to the non-trivial Dirichlet character (mod 4),
and ((s) denotes the Riemann zeta-function. Note L(1,x4) = 7/4. Applying Perron’s formula,
then shifting contours to Re(s) = 1/2 (which is valid since the it is well-known that (g(;) (0 +it) <

t1=oto) for 0 < o < 1) and picking up a simple pole at s = 1 we see that for v,v +v/L ¢ Z

3 mm:?P%%M@M$@+2f—wds

v§n§v+%
v U1/2 .
=4L(1, x4) - 7 + 27T/R4CQ(1')(% + it)

15
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Notice that the integral on the RHS is a Fourier transform. Writing v = log(1 + %), making a
change of variables = €™ and then applying Plancherel’s Theorem yields

;2193( 3 r(n)—ﬂ.Dzdvg/R( 3 r(n)—ﬂ-i)giz

v<n<vt+7 eT<n<eTtv
8 . .
= [ oo & + )P (h +it)

where w,(s) = (e”* — 1)/s < min{r,1/(1 + [¢[)} uniformly for 1 < Re(s) < 1. To estimate the
integral on the RHS we apply the well-known bound

T
/ G (5 +it)[* dt < T(logT)?
0

(see the introduction of [33]). Hence we see that

/ Cagi) (5 + i) [P lw, (5 + it)|* dt <<y2/
R

. . dt
Cow (L +it)[2 dt + / o (& + i)
tl<1/v

H>1/w 2
1
<v(logl/v)? <« Z(log L)?.

Combining the estimates above we conclude that for h = h(z) = x/L

(3.3) % /x M( >

2
r(n) — 7Th(1))> dv < h(z)(logz)?.
v<n<v+h(v)

We will now bound the sum over integers £ < x on the LHS of (3.2) in terms of an integral over
1 <v<z. Let

Fv) = Z r(n) — wh(v)

v<n<v+h(v)
and let vy € [¢, £+ 1] be a point where the minimum of |F'(v)| on [¢, ¢+ 1] is achieved. Observe that
F(l)=F(u)) +O(r(f) +r(£*)+1)
where ¢* = [{ 4+ 1+ h({+1)|. Hence,
1 2 1 2, 1 2 2¢ pr
5ZF(@ < 5ZF(W) + ;Z(r (0) 4+ r2(0*)) + 1

<z <z <z
1 x
< / F(z)*dz 4 logz < h(x)(logz)?,
1

where the last bound follows from (3.3).
O

Lemma 3.2. Let A>3 and 2,Y > 3. Then for all but < z/(logx)? integers m € [1,x] we have

r(m+k) —r(m—k) (log z)34
2 z <

m 1/2m
Y <k<wm / -

Proof. Let



It suffices to consider m € [x/(logz)?,x]. Hence, by summation by parts for each integer m €
[z/(log x)?, 2] we have that

rm+ k) —r(m—k) Rp(@/2m)  R,(Ym) =2 R (¢
5 (m+ k) —r(m— k) - +/ (t)

: == dt.

Y2 cfp<gl/2m ) =
x = z

Using this along with Chebyshev’s inequality and the elementary inequality (|a| + |b] + |¢|)? <
32(a® + b% + ¢?) it follows that

(3.4)
_ _ 3A

4 x <m<a Z r(m+k) —r(m k)‘z(log:):)

(log $) Yﬂ<k§xl/3m k \/}7

. 2
P ¢ 5 Ry, (21/22)? (log )24 \ Bn (Y™)? (log )24 N /w”““m Ru(t)
= (logz)0A = T Yy? ym t2
—L - <m<z T

(log =)

In the integral we make a change of variables and apply the Cauchy-Schwarz inequality to get for
each m € [z/(logz)?, z] that

1/2m 2 A 1/2
T R (t) (log z)? /”C 1 m\ 2
. < o R, (t— .
(3.5) (/Ym 3 dt) <=5 g t2R <tx) dt

Observe that

R, (H%) = Z r(n) — Z r(n).

m<n<m+2H m—"H<n<m

Hence, by Lemma 3.1 with L = zz/H (along with an analogue of this lemma for the second sum,
which is proved in the same way) we get

1 2
~ 3" Rn, (H@) < H(logz)?,
X X

m<x

for 1 < H < /3. Using this bound and (3.5) in (3.4) gives

)3A
<m<uzx:

r(m 1K)~ r(m— k)| _ (logz
2 k ‘2 Ni%

T

A

(log x) Y Cheg/2m
Y- 1 2 1 2 1 3

v_(Uogz)” , (logx)”  (logo)’y =

logz)44 \  z1/2 Y Y (log )443

<
(
since we may assume Y < z'/2 otherwise the set on the LHS above is empty. U

Before proving the main result of this section we require the following technical lemma.

Lemma 3.3. Let u,v be sufficiently large positive real numbers such that v¥/1° < u < 2v. Lett > 1
be a real number, that is not an integer which is expressible as a sum of two squares, such that
lu —t| < vY/3. Then

S m) (ml_t _ m;’:q) — _rlogt + O(1).

1
mim—u|>v2

17



Proof. Let A(x) = 3 1.,<,7(n) = 7 + E(x), it is well-known that (cf. [42]) that E(z) < 3,
Also, let fi(z) = log %, (so fi(z) — 0 as z — o0). Since |u — t| < v'/3, partial summation
gives

Nl

> () = [ dwaae [ i

m:|m7u|>v%
= (ft(u — v%) — fe(u+ v%) - logt)

+ 0 l—i—maxui .
o |lutvz —t

The error is O(1) since we assumed |u — t| < v'/3. Also,

=] Wi

|u—t—v%|

ft(u—v%) — ft(u—HJ%) = log :
lu—t+v2]

+0(1) < 1.

We are now ready to prove the main result of this section.

Proof of Theorem 3.1. Let A > 1. In the weak coupling quantization, it follows from the spectral
equation (1.1) along with Lemma 3.3 that

(3.6) Y n:(_m; = mlog Ay + O(1)

m:m—n|< 2gl/2
— T

for every integer —%~3 < n < x, which is a sum of two squares. Note that the application of
¥ 8T Togx)

Lemma 3.3 is justified since it is well-known that A\, —n < nt —n < 10n'/4 (see for instance [32]
p. 43).

In the strong coupling quantization, applying Lemma 3.3 twice we get for m <n < z that

S () S ()|

m:|m—n|>2g1/2 m:\mf)\n|>)\,11/2

Hence, using this along with the spectral equation (1.2) we have

1 m 1 m
_ - — o1
S (i) = T () row
Im—n|<2z1/2 Im—An|<AY?
1
=—+0(1).
~+0()
Hence, in the strong coupling quantization for each m <n<z
r(m) 1
3.7 =—+0(1).
(37) > S —row

mm—n|<Zgl/2

xT

For Togd =7 <@, we now analyze the sum that appears on the LHS of both (3.6) and (3.7).
Let B > 1, to be determined later and consider

r(m) r(m) r(n+k)
3.8 = -
(38) Z m— A E m—/\n+ Z k — 6
[m—n|<Zgl/2 |m—n|<2(logz)B 2 (logx) B <|k|<Zzl/?
18




where recall §,, = \,, — n. Note that

1
> bn) gw ; b(n)é,,

n<x
60> (log z)B/2

T
b(n —s-
logx B/2 Z (log:L‘)B/2

Hence, for all but O(z/(log z)?/?) integers n <  which are representable as a sum of two squares,
6n < (logz)B/2. For these integers, with the second sum on the RHS of (3.8) equals

r(n+k)—r(n—k) r(n+ k)
(3.9) > ? + O [ (logz)B/? > =
2(logw)B<k<2gl/2 2 (log x) B <|k|<z1/2
Since
x ‘ B/2 r(n+ k)
#ﬁgngw.(logx) Z —— 1
(log z) 2 (log x) B <|k|<z1/2
B/2
< (log x) Z 22 (n+k)< logaz)B/2 y

(logz)B-A<[k|<azl/2 " n<z

the O-term in (3.9) is < 1 for all but O(z/(log z)?/2~4) integers m <n < z. The first sum in

(3.9) is estimated using Lemma 3.2, with Y = (log )?; so for B > 6A this sum is < 1 for all but at

most < z/(logz)? integers n < x. Hence, applying the two previous estimates in (3.9) and using

the resulting bound along with (3.8) in (3.6) and (3.7) completes the proof upon taking B > 6A.
U

4. ESTIMATES FOR NEW EIGENVALUES NEARBY ALMOST PRIMES

In this section we analyze the location of eigenvalues in Ayew nearby certain integers which are
almost primes. To state the result, let

Nl :{n eN: (1775 * 17%)(”) 7& 0, b(Q0n+4) =1, & Q1|Q0n+4}7

(4.1) Ny = {n €N : <Q°22;L4,P(y)> = 1},

where y = 2" with n as in Proposition 2.1 and Qo, Q1, ¢, 1p. and b(-) are as defined in the beginning
of Section 2. For j = 1,2 let Nj(z) = N;N[1,z]. In particular, for each n € Na(x), Qon+4 = Q1ly
where /¢, is an integer which is a sum of two squares. Moreover, since every prime divisor of £, is
>y=2a"soforn <z, P} < g < 2Qpx and

(4.2) #{pll,} < 727

Also, for a polynomial R = ) a,X" € Z[X], let |R||1 = )_ |an|. Note that by Propositions 2.1
and 2.2

1 xloglogx
©(Q1) (logz)3/2

9 Qo zloglogx
#No(e) e ©(QoQ1) (logz)*
19
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Additionally by using an upper bound sieve, it is not difficult to prove that
1 zxloglogx

(Q1) (logz)3/2
Qo xloglogx

(QoQ1) (logx)?

The main result of this section is the following proposition.

#MN (x) <e?
(4.4) 7

#NQ(I) <e?
12

Proposition 4.1. For alln € Nj(z), j = 1,2, except outside an exceptional set of size

#Nj(x)
£2(loglog z)1—o(1)

we have for m = Qon that m™ = m +4 and
r(m) r(m*)

m—Am mt—A\n,

_Jmlog A + O ((log log x)5) in the weak coupling quantization,
o ((log log x)5) in the strong coupling quantization.
We also require a sieve estimate for averages of correlations of multiplicative functions. The
following result is due to Henriot [17], which builds on the work of Nair and Tenenbaum [34]. See

Corollary 1 of [17] and the subsequent remark therein. Recall that 7(n) = >_;, 1 denotes the
divisor function.

Lemma 4.1. Let Ri(X),...,Rx(X) € Z[X] be irreducible, pairwise co-prime polynomials, for
which each polynomial R; does not have a fived prime divisor. Let D be the discriminant of R =
Ry Ry and og;(n) = #{a (mod n) : Rj(a) = 0 (mod n)}. Then there exist C,co > 0 such
that for any non-negative multiplicative functions Fj, j = 1,...,k with Fj(n) < 7(n), we have for
x> cOHRHi/lD and some A > 1 that

: in (n
S I ER () < Apa ] (1 _ W) (s F<>SR<>

n<lz j=1 p<x p 7=1 \nlzx
where
1 C
AD = H <1 + > ,
p|D P
and the implicit constant, C' and cy depend at most on the degree of R.

We first start with a technical lemma.

Lemma 4.2. Let f be a non-negative multiplicative function with f(n) < 7(n) and f(mn) <
max{1, f(n)}f(m) for m € N and n such that b(n) = 1. Then for 1 < |h| < 2'/3%, with h # 4 and
7 =1,2, we have

1 1\°¢ -1
(4.5) Z f(Qon + h) <<8—2~g(h) H <1+p> H<1+f(p;)#/\/j(a:)

neN;(x) plQoQ1 p<z

where C > 0 is an absolute constant and

g(h) = 7(|)r(1h — 4D [T (1 + ;)C 11 <1 + 1)0.

plh plh—4
20



Additionally (for h = 4) there exists C > 0 such that

C
> seuen<g e [1 (e2) T (1227 s,

neNi(z) PlQoQ1 P p<w
p=1 (mod 4)

Remark 3. When applying this lemma we will take f(n) = 1 -r(n),b(n) or 271" where wy(n) =
#{pln :p=1 (mod 4)}. The hypotheses of the lemma are satisfied for each of these choices.

Proof. Let T; = 2 if j =1 and T} = y if j = 2. Dropping several of the conditions on n € Nj we
get that (here ¢ < p denote primes)

> f@Qm+h)<2 Y > b(Quap+4)f(Qoap+ h).

(4.6) neN;(x) <V p<z/q
g=1 (mod 4) Q1|Qopg+4
(UG P(T;)=1

Let K = Qoq and Y = z/q. Note that the sum above is empty unless (K,Q;) = 1. Since
(K,Q1) = 1 there exist integers K,Q; with 1 < |[K| < @ and 1 < |@Q1] < K such that KK —
Q1Q, = 1. Also, for Z > 1 let Fy be the totally multiplicative function given by Fz(p) = 1 if
p > Z and zero otherwise. The inner sum on the RHS of (4.6) is bounded by

< ) Fypy (KZ; 4) b(Kn +4)f(Kn+ h) + Y1/2ol)
1
Q1T\L§Z+4
WD = N Fp(Qum — AR) Fr, (Km — 4Q1) b(KQum — 4Q1Q1) f(KQim + h — 4K K)
mg%

+ O(yl/?-ﬁ-o(l)).

First note b(KQ1n — 4Q1Q1) = b(Kn — 4Q1). Let d = (KQ1,h — 4KK) and suppose that h # 4.
We have

f(KQim +h —4AKK) < max{1, f(d)}f (Kdle"' h —2KK> .

Let Ri(X) = Q1X — 4K, Ro(X) = KX — 4Q,, R3(X) = X x 4 t=4KEK 44 D denote the
discriminant of R = R; RaR3. The polynomials Ry, Ro, R3 and multiplicative functions F} = F VY
Fy = Pr; - b and F3 = f satisfy the assumptions of Lemma 4.1. Also for (p, KQ1) = 1 we have
or(p) = 3 and gg, (p*) = 1 for each j = 1,2,3 and k > 1, which follows from Hensel’s lemma.

Hence, the sum in (4.7) is bounded by

_ C
< max{L, f(d)}Ap— 11 <1+ Fyy(p) + Fr;(p)b(p) + f(p) 3) 10 <1+1>

Ql p<Y P P '
1 C Y f(p) — 1)
d)}A - )
< max{L f( )} Dp|£‘!:21 <1 + p> Ql(log Y)3/2(10g1—1j)1/2 p]‘;!/ <1 + p

Write d = pi*---py*. For each j = 1,...,¢ we have p?j\h or p?j|h — 4 (depending on whether

p;’ K or pi’|Qy, respectively); so f(d) < 7(|h|)7(|h — 4]). Note the discriminant of R equals
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D = 16""&h2(h — 4)2 50 that

(L @}Ap < gh) T] (1+1)C
maxq L, D - .
plQ1 K p

Also since Y = z/q > /x, Hpgy (1 + %) < Hpgx (1 + %). Hence, applying the esti-

mates above in (4.6), summing over ¢ and using (4.3) gives the claimed bound for h # 4.

For h = 4 we argue similarly, only now in order to estimate (4.7) we use Lemma 4.1 with Ry, R
as before, R = R; Ry (so the discriminant is D = 16) and F} = Fr Fo=0-f. Also noting that
here d = Q1 we conclude that (4.7) is bounded by

<r@ 11 (14—;)0@};{0(“_(7(1’)5(17))

plQ1K
N v flp) -1
e I () o (2.
/2
PIGLK p) Qi(logz) o p
p=1 (mod 4)
Hence, the claim follows in the same way as before. O

Lemma 4.3. Let (loglogz)! < U < 5 (log x)Y/2. There exists C > 0 such that for all n € Nj(x),
j=1,2, outside a set of size

c 4
1 H 1\~ (loglogx)
plQ1Qo
the following hold:

(4.8) > b(Qon+k) =0,
1<|k|< { (log x)'/2
k#4
T(Qon + k)
4. — V<
(4.9) > i <V
1<|k|< 2 (log x) B
k4
and
T‘(Qon + k‘) 1
(4.10) > - <

U loglog x

Proof. We first establish (4.8). By Chebyshev’s inequality
(4.11) #{ne/\/j(x); > b(Qon + k) > 1} < > > b(Qon+k).

1<[k|< 5 (log 2) /2 1<|k|< - (log 2)1/2 nEN; (@)
k4 k4

Applying Lemma 4.2 to the inner sum and noting that

H<1+b(p)p_l> <<\/1(1)@

p<z
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we get that the LHS of (4.11) is bounded by

Nj(x
<] (1) B s

plQ1Qo 1<|k|< & (log z)1/2
(4.12) k7t
#Nj(z) (log log x)*
< 1I1 1+ > ER A
p|Q1Qo

where the second step follows upon using Lemma 4.1.
To prove (4.9), we argue similarly and apply Lemmas 4.1 and 4.2 to get

#{ne/\/j(x): > T(QWW>U}

k
1<|k|<2 (log 2) P i
k#£4

1 1
<5 o1 2. Qo+ k)
1<]k|<(log x) B neN;(z)
k#4

#Nj(a?) ( L1 g(k‘)
p

<
e2U
plQoQ1

<

>
)

#Nj(x) (

e2U
P|QoQ1

We will omit the proof of (4.10) since it follows similarly. O
For almost all n € N (z) it is possible to show that 7(Qon +4) =< (logn)&2/2+() however since

we do not actually need this estimate we will record the weaker estimate below, which suffices for
our purposes and is simpler to prove.

Lemma 4.4. Let v > 0 be sufficiently small. There exists C > 0 such that for all n € Ni(x)
outside a set of size

1 (loglog x)¢
< g2 #M(@) (log z)¥
the following holds
(4.13) (log )47 < 7(Qon + 4) < (logz)'/*.
Proof. We will only prove the lower bound stated in (4.13). Let wi(n) = > 1. For n
p=1 (mod 4)

which is a sum of two squares r(n) > 2«1(") " Using this with Chebyshev’s inequality and Lemma
4.2 the number of n € Nj(z) which r(Qon + 4) < (logz)/*~" is bounded by

log log )¢ 1y 1
(logx)1/4fz/ Z 27w1(Qon+4) <<(10gl,)1/47u . (Og ng) H <1 + > . 672#/\/'1(]:)

neNi(z) lOg r p<z 2p
p=1 (mod 4)
1 (loglog x)¢
< g2 #M () (log z)¥
using Lemma 4.2. O
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Proof of Proposition 4.1. By Theorem 3.1 we get for all but O(z/(log z)?) new eigenvalues A\, <
that

m—X\

Z r(m)  )mlogA+ O(1) in the weak coupling quantization,
é +0(1) in the strong coupling quantization.

\mfé\gé(logm)B

We now consider integers ¢ = Qon with n € Nj(z), j = 1,2 such that the above holds. Us-
ing Lemma 4.3, in particular (4.8) and (4.9) with U = (log logz)5 it follows that for all but

O(#N; /(£ (loglog z)'~°(M)) of these integers n € Nj(z), j = 1,2, with £ = Qon that (+ = ¢+ 4
and
r(m) () r(ef) 5
> w7 O ((ogloga)’).

Im—¢|<£ (logx) B

Combining the two estimates above completes the proof. ]

5. PROOFS OF THE MAIN THEOREMS

5.1. Quantization of Observables. On the unit cotangent bundle S*M=T? x S', a smooth
function f € C°°(S') has the Fourier expansion

Z f ¢, k‘ (x,¢) +ik¢.

CET2 kET

Following Kurlberg and Ueberschiir [28], we quantize our observables as follows. For g € L?(S!)
let

(5.1) (Op(f Z Z f ¢, k) zkargﬁ/*(g)ei(@ri,z) + Z f(g k):q\(O)ei(C’x).

£€Z2\0 CEZ? ke (€72 ke
Hence, for pure momentum observables f : S' — R one has
2 o = 3 1 (jg ) 30
£cz?

and for £ = 0, f<|€\) is defined to be [g f(6) L.

Let g\ be as given in (1.4). Then for f a pure momentum observable it follows from (1.4) and
(5.2) that

(Op(f)gr, gr) =

a-+1b
=1 ||GA||2 2w Z / <|a+zb)

(5.3) 1 2 >0 a2 2= o
s e o ( )
ZTLZO ﬁ n>0 ( a24+b2= ‘CL + Zb’

5.2. Measures associated to sequences of almost primes in narrow sectors. Let N7, N5
be as in (4.1). Before proceeding to the main result of this section we will specify our choice of
Qo, Q1. Consider the set of primes

(5.4) S={p:p=ad>+1%0<b<aand 0< arctan(b/a) < p~/1°}
and let ¢; be the jth element of S. It follows from work of Kubilius [25] that
2£9/10

#p<z:peS}x
24
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s0 q; < (jlogj)'%9. Let T = |loglogz|, H = [100logloglogz| and
T+H-1 T+2H-1
(5.5) Q=] o @@= 11 @
j=T j=T+H
Also, let rg,m1 € S with iloglogw < ro,r1 < %loglog:n and ag,a1 € 7Z with 0 < ag,a1 <
logloglogx. Let mq,my be integers, which are fixed (in terms of ), whose prime factors are all
congruent to 1 (mod 4). Write (mg,m1) = p{* ---pS and let ¢’ = pi'---pS where %log logz <
p; < loglogz, p; = c?—&—djz with 0 < ¢; < d; and arctan(c;j/d;) = arctan(b;/a;)+O(1/(loglog z)/10)

where a? + b? = p;j with 0 < b; < a4, for each j =1,...,5. We now take
mp
(5.6) Qo = Qomory’, Q= (mo,ml)r?lg/

Note that (Qg, Q1) = 1 and that Qq, Q1 < exp(200(logloglog z)?) < (log z)'/1? so that this choice
of (o, Q1 is consistent with our prior assumption. For j = 1,2 let

(5.7) Mj(z) ={m <z :m = Qon and n € N;}.
By (4.3) and (4.4),

(5.8) UMy (z) < 2L _Tlosloge

¢(Q1) Qo(log z)3/2
and
_ o 1 xloglogx
(59) #MQ(«T) =€ SO(QOQI) (logaz)z

We also now assume that
e = (loglogz)~ /4

Lemma 5.1. Let Qo, Q1 be as in (5.6) and €, > 0 be as in Proposition 2.1. Let m € M;(x),
j =1,2 where ./\/l(x) is defined as in (5.7). Then for f € C1(S) with |f'| < 1

o0 3 ) e, % () o

Under the same hypotheses, we have for m = Qon € Na(x) that there exists an integer £, which is
a sum of two squares with #{p|l,} < 2/n such that

1 a+ b 1 a+1b 1
f< .)z f<.)+0<>.
r(mt) a2+b22;m+ |a + b r(mily) a2+b22=:m1€n la + ib| (log log x)1/11
Proof. First note that for a unit, u of Z[i] i.e. u € {£1,+i}, that for any n € N

(512 2 f<\aa++z§j> 2 f<|2122|>

a2 +b2 2+b2

(5.11)

For m € M;(z) with j =1 or j = 2 write m = Q{mor;°n where n € Nj(z). The factorizations
of the ideals (m) = ((a + ib)(a — ib)) in Z[i] are in one-to-one correspondence with factorizations
(Qo) = ((ctid)(c—id)), (mo) = ((e+if)(e—if)), (rg") = ((g+ih)(g—ih)) and (n) = ((k+il)(k—il)),
since QO, mo,n are pairwise co-prime. Hence, it follows from this and (5.12) that

a+ b 1 afyo
i ¥ (i) =@ w2 X 2 3 ()
a?+b?= |a+7jb| (Q ) ( aEZ[z} BEZi] 'yEZ[z S€EZi] |Oéﬂ’75|
aa=Qy f=mo vy=r,° §6=n

(5.13)

(
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Let S be as in (5.4) and write the jth element of S as ¢; = a?—i—b?, with 0 < b; < a;. By construction,
for a € Z[i] with aav = Q) we can write v = u [ [ ¢ ;(a;+€5ibj) where J = {T,T'+1,..., T+ Hy -1},
€ {£1} and w is a unit. It follows that

H a; + €jib;

la; + ibj|

=u|1+0 Z]arctan(bj/aj)‘ :u+0<1>
= (log log x)1/11

where the unit u depends on . Also for 7 € Z[i] with vy = r3°, we have ﬁ = u+0(1/(loglog z)'/11)

and for 6 € Z[i] with §6 = n, we have W = u+ O(e). Hence by this and (5.12)

S Y YY) =2 X S| 3 (M) | +otertm)

a€Z[i] BELi) ~€EZ[i] S€Lli] aczZli] ~ezli) sezfi) | pezfi)

aa=Q( BB=mgy y7= 7“00 §6=n aa=Qy 'yW:rgo §6=n \BB=mo
a+ b
COLGREONDS f(,a+zb|>+0(€r(m)),
a?+b2=

thereby proving (5.10).
The proof of (5.11) follows along the same lines upon noting that for m = Qon € /\/lg( ) we can

/.01

write m™ erl o mo)g’ﬁ where ¢, is a sum of two squares. Note that @, Tmo) g
are pairwise co-prime by construction since all the prime divisors of ¢, are > y; the latter also
implies that #{p|¢,} < 2/n. O

5.3. Proof of Theorem 1.1. WLOG we can assume all the prime factors of mg are congruent to 1
(mod 4) (see (5.13)). Let Qo, Q1 be as in (5.6) and M;(x) be as in (5.7) and recall for m € M;(x)
that m = Qon where n € Ni(z) and N is as in (4.1). By (4.8) and Lemma 4.4 it follows that for all
but at most o(#M(z)) integers m € M, (x) that m* = m+4, (logz)"/*~" < r(m™*) < (logz)'/?t¥
(for any fixed v > 0) and 4 < r(m) < (logx)°™). Combining this with Proposition 4.1 we get that
for all but o(#M;(x)) integers m € M (z) that A\,, —m = o(1) and moreover

r(m
i ( /\) in the weak coupling quantization,
- J)1lo
(5.14) A — M, =< T%mT . . o
) in the strong coupling quantization.
r

Also note that for such m as above, we also have |\, — m™| > 3. Hence, using the above estimate
along with (4.8) and (4.10) with U = (loglogx)® we get for all but at most o(##M;(x)) integers
m € Mi(z) that (in both cases)

r(£ r(m r(m™
Z( ) _ rim) (m™)

_ 2 _ 2 _
= 0= ) (m — Am) (m* —A\p)

(5.15) :7’(7"))2 (1 +0 <r(m+)(m - Am)2>> +o(1)

(m— Ay r(m)
em
_<m_)\m>2 (1+ (1))
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Similarly, for all but at most o(#M;(z)) integers m € M(z)

616 S 2 ) w5 S (e o)

£>0 a2 +b2 2+b2

Therefore, combining (5.3), (5.14), (5.15) and (5.16) it follows for all but at most o(#M;(z))
integers m € Mj(z) we have that

(OD(grnr gan) =(1+o( P Am (L § f(‘”?b)ww(m*»

r(m) (m — Am)?

—(+o1) 3 f(M)—i—o(l)

—(14 0(1)) Tln Z‘; f<M)+0(5)

where the last step follows by (5.10). The estimate for the density of this subsequence of eigenvalues
follows immediately from (5.8), noting that Qo, Q1 < (log x)°™).

5.4. Proof of Theorem 1.2. WLOG we can assume all the prime factors of mg, m1 are congruent
to 1 (mod 4) (see 5.13). For sake of brevity let Lo = loglogz. Let Qo, Q1 be as in (5.6) and Ma(z)
be as in (5.7) and recall for m € Ma(z) that m = Qon where n € Ny(z) where Ns is as in (4.1).
Note for each m € Ma(x) that 7(m) > £, Also, by construction r(m)/r(m + 4) =< Zg—ﬁ where
H, ap,ay are also as in (5.6) and note ag, a1 < log Lo. Applying Proposition 4.1 we get that for all

m € Ma(x) outside an exceptional set of size o(#Ms(z)) that m™ = m + 4 and

(5.17) A —m_ r{m) ( +O( £5 )) = T(m+) (1+0 (L")

mt — X\, r(mT) r(m) r(m™*)

In particular, this implies that A, —m > L, Land mt — X\, > Ly L As before, using (4.8) and
(4.10) with U = L3 we get for all but at most o(#Maz(z)) integers m € Ma(z) that

r()) _ r(m) r(m®) _
(5.18) ; (ES R e Wy R ey +0(L37)
and
1 a+ b 1 a—+ b
- 2T f<\a+zbr> ATES WS f<|a+zb\>
' 1 a+1b 1
+ f +O(£;7)
R O (o) +oue



Let Cy,
(5.20)

(Ob(grmsgn) = (14 0(L; ) ( :

= W Applying (5.17),(5.18), and (5.19) in (5.3) we get

r(m) rim*) \ 7"
" >2>

m—An)2  (mT —A\p

| a+ib 1 a+ib »
N 2 f<|a+ib!)+(m+—>\m)2a z;m f<|a+ib|>+0(£2 )

a2+b2=m 24 p2—mt
a+ b 1-Cn a +1ib 1
(o) (20 o
( a2+zb2: la + ib| r(mt) a2+bz2:m+ |a + ib) 2
Applying (5.10) to the first sum above we get
a+1b Chm a + b

5.21 f ( . > = f ( > O(e).
(5.21) g: la+ib| )~ r(mg) 2%: la + ib|

Similarly, applying (5.11) to the second sum on the RHS of (5.20) we get that

1-0Cp a+ib\ 1-Cpy a+1b —1/11
(5.22) r(m®) Z / <|a+ib|) —or(maty) Z d <|a+z’b|> O,

a?+b2=m+ " a2 4+b2=m, 0,

for some integer £,, with #{p : p|lm} < 2/n by (4.2). Using (5.21) and (5.22) in (5.20) completes

the proof upon taking ¢ = £2—1/2

follows from (5.9).

. The estimate for the density of this subsequence of eigenvalues

5.5. Proof of Theorem 1.3. The proof of Theorem 1.3 relies on the following hypothesis con-
cerning the distribution of primes.

Hypothesis 1. Let Q1,Qq be as in (5.6) and ¢ > (loglogz)~'/? be sufficiently small. Also let
y = " where n > 0 is sufficiently small. Then the number of solutions (u,v) € Z? to

Qru — Qv =4

where v = p1pa and u = p3 are primes satisfying 1p_(p1)1p: (p2)1p.(p3) = 1, p3 >y such thatv < x
18
3 Qo zloglogx

> € Q0@ (loga)?

where P., P, are as in (2.1).
Proof of Theorem 1.3. Recall the definition of N3 given in (4.1). Let us define
Ny ={neNy:Qon+4=0Qip,bp) =1, &I[0,| <e}.
Following (5.7) we also define
Ms(z) ={m <z :m=Qon and n € N3}.
By Hypothesis 1 and (5.9) it follows that
(5.23) #Ms(x) < e#tMo(x)

where we also have used an upper bound sieve to get that #Ms(x) < e#Ma(x). Observe that

Ms(z) C Ma(x) and the exceptional set in Proposition 4.1 is o(#M3(x)) since we take ¢ =

(loglog z)~/%. Hence, we get that (5.17) holds for m € Mjz(x) outside an exceptional set of size

o(#Ms(x)). Similarly, we can conclude that (5.18) and (5.19) also hold for all m € M3s(x) outside
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an exceptional set of size o(#Ms3(z)). Therefore, arguing as in (5.20)—(5.22) we conclude that for
m € Ms(z) outside an exceptional set of size o(#M3(z)) we have that
(5.24)

(OD(Ngrn grn) = 3 f(a”b)+1‘cm T Zf<a+ib)+0(521/”)

T(mo) a?+b2=mg |a * Zb’ r(mlﬁn) a?+b2=m14, |a + Zb‘

where mg, m; are arbitrary, fixed integers whose prime factors are all congruent to 1 (mod 4) and
Crm = 1/(14r(m)/r(m+4)). By our hypothesis we have that ¢, = p with |6,| < e and (m1,p) = 1.
Hence, repeating the argument used to prove (5.10) it follows that

I I SR (=) B e B I (re=7) R

a?+b2=m14, a?+b2=m

Given 0 < ¢ < 1 with ¢ = d/e € Q we will now specify our choice of ag,a; (from (5.5)). Recall
we allow ag, a1 to grow slowly with = and Qf, @} have the same number of prime factors. Also, by
construction r(—"2—g') = r(m;). Let £ = |(logloglogz)'/?]. We take

(mo,m1) g

ap =2(e —d)r(m1)L and a; = dr(mo)L.

Hence,
1 d
(5.26) Cp = 1 4 2r(mo)(ao+1) e +o(l).
4r(m1)(a1+1)

We are now ready to complete the proof. Given any attainable measures fio,, ftoo, and 0 < ¢ <1
we can take {mg;}; {m1;} such that ug; weakly converges to jioo, and p1,; weakly converges to
Hoor, as j — oo. We also take {ag;};,{a1;}; so that dj/e; — c as j — oo. Therefore, by
(5.24),(5.25), and (5.26) we conclude that there exists {A\¢}; C Apew such that

<Op(f)g>\zv9/\z> H—o% C/S1 fdpioc, + (1 —c¢) /Sl Jdptoo, -

APPENDIX A. ARITHMETIC OVER Q(%)

Consider the number field Q(i) with ring of integers Z[i]. For b a non-zero integral ideal of Z[i]
the residue classes o (mod b), where («) and b are relatively prime ideals, form the multiplicative
group (Z[i]/b)*. We now summarize some well-known facts, which may be found in [35] or [19]. A
Dirichlet character (mod b) is a group homomorphism

x : (Z[i]/b)* — St

We extend y to all of Z[i] by setting x(a) = 0 for a and b which are not relatively prime. Let I denote
multiplicative group of non-zero fractional ideals and I, = {a € I : a and b are relatively prime}.
A Hecke Grofencharakter (mod b) is a homomorphism v : I, — C\ {0} for which there exists a
pair of homomorphisms

x : (Z[i]/0)* = S, Xeo : CF = S?
such that for an ideal () with a € Z[i]

P((a)) = x(a)xoo(a).

Conversely, given any y (mod b) and xo there exists a Grofilencharakter ¢) (mod b) such that
1 = X * Xoo Provided that x(u)xeo(u) =1 for each unit u € Z[i].
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In particular, for 4|k and a = («) a non-negative integer

P(a) = (@“)k

is a Hecke Groflenchakter (mod 1) and these Hecke Grofiencharakteren can be used to detect primes
in sectors. Additionally, given a positive rational integer ¢ with (4,¢) = 1 the homomorphism

XON:Iq—>S1

given by (x o N)(a) = x(N(a)) is a Dirichlet character (mod ¢), where x is a Dirichlet character
(mod q) for Z, that is x : (Z/(q))* — S', where Na is the norm of a. Hence, for 4|k

v(0) = (o N)(@) (2 )k

|

is a Hecke Groflencharakter with modulus ¢ and frequency k, where a = (a). (A priori « is
only defined up to multiplication by ¢, but for these characters the choice does not matter). The
L-function attached to the Groflencharakter ¢ given by

L(&W = Z ]3((2))57

has a functional equation and admits an analytic continuation to C\ {1}.
Moreover, if 1 is not a real character, L(s, 1) has a standard zero free region. That is, we have
c

log(q([t| + 1)(|k[ + 1))

L(o +it,¢) #0 for o>1-—

(see [19, Section 5.10]). In particular, if k& # 0,

S a0 (%) < W1+ 1) e (~evioe),

N(m)<z

where the summation is over prime ideal p = (7) with norm < z.

Furthermore, for k = 0 the same estimate holds for any complex x (mod ¢). However for k =0
and x (mod q) a real character, there may be a possible Siegel zero and in this case we have Siegel’s
estimate (see Section 5.9 of [19])

c(e)

qE

for any € > 0. Consequently, we have the Siegel-Walfisz type prime number theorem for (a,q) =1
and (¢,2) =1

(A1) Y o= ¥ HO(@)

L(o+it,x) #0 for c>1-—

N(m)<z (,0((]) N(m) <z
N(m)=a (mod q) (N(m),q)=1
0<argm<e O<arg w<e

for any A > 1. (After multiplication by i' for some | we can ensure that § = argi'm € [0,7/2); we
will let arg 7 denote this angle.)

Recall that a prime p =3 (mod 4) is inert in Z[i|; additionally, a prime p =1 (mod 4) splits in
Z[i] so that p = 77 = a® + b?, where 7 is a prime in Z[i]. Writing

1
B(z;q,a,¢) = Z (Ip. * 1pr)(n) — —— Z (1p. * 1pr)(n),
n<x QO(Q> n<x
n=a (mod q) (n,q)=1
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formula (A.1) gives, for (a,q) =1 and (gq,2) = 1, that

(A.2) B(w;q,a,€)] < —

(log )7
for ¢ < (log x)?. In addition it is worth noting that (A.1) also implies

(A.3) > (poxlp)(n) ~

n<x
n=a (mod q)

4¢2 rloglog
e(q) logx

We are now ready to state the following result which is an analog of the Bombieri-Vinogradov
Theorem.

Theorem A.1. There exists By sufficiently large so that

z
S s B a0 < S
<0 (a,9)=1 (logz)
(g,2)=1

for Q < '/ /(logz)Pe.

Let & € N. A sequence of complex numbers {f,} with |8,| < 7(n) satisfies the Siegel-Walfisz
property for S provided that for every ¢ € S and A > 0 and N > 2 we have

1 N
2 = 2 ﬁ"w(aogzv)f‘)

n<N n<N
n=a (mod q) (n,9)=1

for every a € Z with (a,q) = 1.

A.1. An application of the large sieve. We next recall a consequence of the large sieve, which
follows applying a minor modification of Theorem 9.17 of [15].

Lemma A.1. Let A > 1 and Q = xl/z(log x)~B where B = B(A) is sufficiently large. Suppose
{Bn} satisfies the Siegel-Walfisz property for all ¢ with (q,2) = 1. Then for any sequence {ay} of
complex numbers such that |ay,| < 7(n)

max Z Bmn — L Z Bman| < -

X A
= @o=t| o o= vle) o=, (log z)
(2,2)=1 NS g 2 B NS Gog ) B
mn=a (mod q) (mn,q)=1

Proof of Theorem A.1. By (A.2) the sequence (3, = 1p_(n) satisfies the Siegel-Walfisz condition for
all ¢ with (¢,2) = 1. Take ay, = 1p/(n) and note that (cf. (2.1))

> Upxlp)(n) = > 1p_(m)lp(n)

n<x mnSx‘

n=a (mod q) m,ngﬁ

mn=a (mod q)

and

Yo pxlp)m) = > lp.(m)lp(n).

n<x mn<zx
-1 < __w
(n»q) mn>~ (log :y)BO
(mn,q)=1

Hence, applying Lemma A.1 completes the proof.
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A.2. Gaussian integers in sectors with norms in progressions. The goal of this section is
to show that a result of Smith [43] (also cf. [46]) holds for Gaussian integers in sectors. We recall
that for a € Z[i], N(a) = |a|? denotes the norm of a. For a,q > 0 define

1a(q) = |{a1, a2 (mod q) : af + a3 = a (mod g)}|.

Proposition A.1. Let a,q > 0 be integers and put g = (a,q). Given an angle 6 and € € (0,27), let
S = S. g denote the set of lattice points o € Z[i] contained in the sector defined by’ |arg(a) — 6| <
€/2. Then, uniformly for e > 0,

{a € S: N(a)=a (mod q), N(a) < z}|
_ 6”;“2@ +0 (xlé/?’)

q

provided that ¢®g < 22129 for § > 0.

We begin by showing that solutions to a? + a2 = a (mod ¢) is well distributed in fairly small
boxes. Given ¢, let f : (Z/qZ)? — C denote the characteristic function of the set {(ai,as) €
(Z/qZ)? : a2 + a3 = a (mod ¢)}. With the modulo ¢ Fourier transform given by

(A4) f(&’ &) = Z fla, a2)e—2m’(§1a1+£2a2)/q

a1,a2 (mod q)

we recall the following estimate by Tolev [46]:
(A5) |6, &)l < aPr(0)(0.6,6)*(¢.0,6 + )" < ¢/*7(0)(0,61.82) (0, )2

~

By the Chinese remainder theorem, n,(q) is multiplicative in ¢, and we note that f(0,0) = 1,(q).
Let B C [0,q9) x [0,q) be a “box” with side lengths T', and let g = gp denote the characteristic
function of B N (Z/qZ)?. By standard estimates (from summing a geometric series) we have, for

§1,62 # 0,

(A.6) §(&1,8) < /16 &),
for & # 0,
(A.7) 9(£1,0) < Tq/l&l,

(and similarly for & # 0), and trivially
3(0,0) = T2
Lemma A.2. Let g = (a,q). Then

{(an,0z) € B o+ a3 =a (mod )} = 77 20+ O(¢ (o) logla)? )

Proof. By Fourier analysis on (Z/qZ)? (i.e., Plancherel’s theorem for finite abelian groups) we have

{(a1,a0) € B: a2 + a3 =a (mod ¢)}| = Z flag, a)g(ar, az)

ai,a2 (mod q)

_ % Z F(&1,6)9(61, &)
1 £1,€2 (mod q)

3By arg(a) we denote the complex argument chosen in such a way that it is single valued in an €/2-neighborhood
of 6.
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The main term is given by & = £ = 0 and equals
£(0,0)5(0,0) _ r2a(a)
7 7
Using (A.5) and (A.7) the contribution from (say) {1 = 0 and & # 0 is

1 & Tq Tq3/2 2 1/2 d1/2
(A.8) 7 Z ¢"?7(q)*(q:§2)' 9" * < Z Z s
a=1 dlg 0<&2<q/d 2
Tr(q)? log(q)g"/2
< (q) ql/gQ(Q)g _ O<q1/27_(q)3 log(q)gl/z).

The contribution from terms £ = 0 and &; # 0 is bounded similarly.
As for the terms &1, &2 # 0, we have by (A.5)

1 N 1/2.( 12 2
5 3 FeeiEa « S50 3 L ge.0) %
T ¢ &0 T ez

=¢"r(@?> )

dlq 0<&1,62<q/d

dl/2g1/2
d?£16:

< ¢**7(q)* log(q)?g"/*.

O

Concluding the proof of Proposition A.1. Take T = z(179/2 The case T > ¢ is straightforward
using a simple tiling argument, and we only give details for T' < q.

By a simple geometry of numbers argument, we may “tile” the sector S, intersected with a ball

of radius z'/2, with ex/T? 4+ O(z'/2/T) boxes B (with side lengths T') entirely contained in the
sector, and with O(z'/2/T) boxes intersecting the boundary. By Lemma A.2, each box B contains

72 280 4 0210 080

points satisfying a2 + o2 = a (mod q).
As 14(q) < ¢*F°M) (cf. [5, Lemma 2.8]), we find that the number of lattice points in the sector is

(cx/ T + O\ /T))(T” "q(‘” 1 0(¢"r()* 10g(0)%9"2))

_ €na(q)x L0 (3315/2 i 6gl/2q1/2+o(1)x5> .

e qt—o()

1-26) z1=9/3 0

For ¢3¢ < z*( the error term is <
A.3. Proof of Lemma 2.3. We may assume (Q,q) = 1 otherwise the result is trivial. Let 6 > 0
be sufficiently small but fixed and set

re(n) = Z 1.

a?+b?=n
|arg(a+idb)|<e
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Also, for n € N and z > 0 let P,(z) = [locp<.p- Let A= {Aq}, A" = {A\L} be upper bound sieves
of level D = 2% with (d,2¢) = 1 and (e,2Q) = 1. Then for z = 29/ we have

3 1< > Y () +0@E"?)

p=a?+b%<z m<qr+4 n<z
| arg(a+ib)|<e qn+4=0Qm
qp+4=Qpiwhere p; is prime (m,Py(z))=1
(n,Pq(z))=1

< Y S 1) () (e 1) (m) + 0@,
msgrtd anf:QO

Switching order of summation we have that the sum on the LHS above is

= Z )\d)\'leg(n) Z 1

d,e<D n<x m<qr+4
(dve)zl e‘n d\m
d,2q)=1,(e,2Q)=1 qn+4=Qm
(A.9) (d,29)=1,(e,2Q) /
= 2 n )
d,e<D n<lz
(d,e)=1 n=~ (mod Qed)

(d,29)=1,(e,2Q)=1
since the inner sum in the first equation above consists of precisely one term provided that gn+4 =0
(mod Qd) and is empty otherwise. Also, here v = —4eeq where ¢z = 1 (mod Qd) and ee = 1
(mod Qd). In particular, (v, Qed) = e.
Let us note some properties of the function 7,(q). Recall, n,(-) is multiplicative. Moreover, for
p>2and{>1

(A.10) )=yt 3 X0
0<5<e P’

and for any a,q > 1
2

(A1) (@) < J5r((@a)
(see [5, Eqn. (2.20) and Lemma 2.8]) where
_ () - ¥ "
(A12) w= 3 (%) = S0 snta/.0)
(b,g)=1

is the Ramanujan sum and y4 is the non-principal Dirichlet character (mod 4). In particular note
that if (a,q) = g then n4(q) = ny(q) for odd g¢.

By Proposition A.1, (A.10), (A.11) and recalling that (Qed,vy) = e we get the RHS of (A.9)
equals

A )‘/e 1-6/4
2ex Z (Qid)gm(Qed) +0 (x 5 )

d,e<D
(d,e)=1
(d,29)=1,(e,2Q)=1
= %LE(Q) Z )\d)\’; m(Qd)ne(e) o ﬂ
@ (ed?  m@) 9

d,e<D
(d,e)=1
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provided that Q3D7 < 22(1-20) which we rewrite as Q < z2/37119/3_ Using Theorem 2.3 in the form
of (2.8), and noting that 71 (Qd)/n1(Q) is a multiplicative function, we get that the above sum is

exm(Q) <1 ~ m(Qp) > <1 B np(p)>
(A.13) DNYGE pll P*m(Q) pg) )
(p,29)=1 (p2Q)=1
To evaluate the Euler products we use (A.10) to get n,(p) = p(1 + xa(p) — %), m(Qp)/m(Q) =

p+0O(1) and m(Q) = Q leQ (1 — X%@). Hence, by these estimates we get that (A.13) is

OIS ()

plQ plg

q ex

q
o) Q62<1ogx2H< p> S 20) 2(Q)0*(logn)?

for Q < £2/3119/3 which completes the proof, since § > 0 is arbitrary.

APPENDIX B. NON-ATTAINABLE QUANTUM LIMITS

Given an integer n such that r(n) > 0, define a probability measure pu,, on the unit circle by

1

AEZ[i]:|A2=n

i.e., jun is obtained by projection the set of Z2-lattice points on a circle of radius n'/2 to the unit

circle and § here denotes the Dirac delta function. A measure u is said to be attainable if u is a weak™
limit of some subsequence of measures ,,,. A partial classification of the set of attainable measures
were given in [30] in terms of their Fourier coefficients. Namely, for k € Z, let fi(k) := [ 2* du(z)
denote the k-th Fourier coefficent of p. By [30, Theorem 1.3], the inequalities

2(4)? — 1 < i(8) < max(E4)", (21(4)] - 1)?)
holds if u is attainable. In particular, for 4y > 0 small and i(4) = 1 — ~, we must have u(8) =
1 —4y+ O(%).

Now, by Theorem 1.2, there exists quantum limits that are convex combinations cv; +(1—c)vs for
c>0 arbltrary small, and where v; is the uniform measure (with (72(4),73(8)) = (0,0)), and v is
a Cilleruello type measure, i.e., localized on the four points £1, +i¢, and with (72(4), 72(8)) = (1,1).
Clearly such convex combmatlons cannot be attainable for ¢ small.
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